Literatura académica sobre el tema "Kinetic energy harvesters"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Kinetic energy harvesters".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Kinetic energy harvesters"

1

Chiu, Min Chie, Ying Chun Chang, Long Jyi Yeh, Chiu Hung Chung y Chen Hsin Chu. "An Experimental Study of Low-Frequency Vibration-Based Electromagnetic Energy Harvesters Used while Walking". Advanced Materials Research 918 (abril de 2014): 106–14. http://dx.doi.org/10.4028/www.scientific.net/amr.918.106.

Texto completo
Resumen
The goal of this paper is to develop and experimentally test portable vibration-based electromagnetic energy harvesters which are fit for extracting low frequency kinetic energy. Based on a previous study on fixed vibration-based electromagnetic energy harvesters, three kinds of portable energy harvesters (prototype I, prototype II, and prototype III) are developed and tested. To obtain the related parameters of the energy harvesters, an experimental platform used to measure the vibrational systems electrical power at the resonant frequency and other fixed frequencies is also established. Based on the research work of vibration theory, a low frequency vibration-arm mechanism (prototype III) which is easily in resonance with a walking tempo is developed. Here, a strong magnet fixed to one side of the vibration-arm along with a set of wires placed along the vibrating path will generate electricity. The circular device has a radius of 180 mm, a width of 50 mm, and weighs 200 grams. Because of its light mass, it is easy to carry and put into a backpack. Experimental results reveal that the energy harvester (prototype III) can easily transform kinetic energy into electrical power via the vibration-based electromagnetic system when walking at a normal speed. Consequently, electrical energy reaching 0.25 W is generated from the energy harvester (prototype III) by extracting kinetic energy produced by walking.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Shahosseini, I. y K. Najafi. "Mechanical Amplifier for Translational Kinetic Energy Harvesters". Journal of Physics: Conference Series 557 (27 de noviembre de 2014): 012135. http://dx.doi.org/10.1088/1742-6596/557/1/012135.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Ghaffarinejad, A., Y. Lu, R. Hinchet, D. Galayko, J. Y. Hasani y P. Basset. "Bennet's charge doubler boosting triboelectric kinetic energy harvesters". Journal of Physics: Conference Series 1052 (julio de 2018): 012027. http://dx.doi.org/10.1088/1742-6596/1052/1/012027.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Schaufuss, Joerg, Dirk Scheibner y Jan Mehner. "New approach of frequency tuning for kinetic energy harvesters". Sensors and Actuators A: Physical 171, n.º 2 (noviembre de 2011): 352–60. http://dx.doi.org/10.1016/j.sna.2011.07.022.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Basheer, Faiz, Elmehaisi Mehaisi, Ahmed Elsergany, Ahmed ElSheikh, Mehdi Ghommem y Fehmi Najar. "Energy harvesters for rotating systems: Modeling and performance analysis". tm - Technisches Messen 88, n.º 3 (16 de enero de 2021): 164–77. http://dx.doi.org/10.1515/teme-2020-0088.

Texto completo
Resumen
Abstract An exclusive reliance on batteries for miniature sensors has created the need for a self-sustained energy harvester to enable permanent power. This work introduces a pendulum-based energy harvester that is capable of harnessing kinetic energy from rotating structures to generate electric power through electromagnetic transduction. A computational model of the energy harvesting device is developed on Simscape to compute, analyze and compare the power generation capacities of the single, double and Rott’s pendulum systems. Simulation results are validated against their experimental counterparts reported in the literature. Results show an increase in the output voltage in a specific range of rotational speed for all three pendulum harvesters. The double pendulum exhibits the highest power generation potential among the simulated pendulum arrangements. A parametric study revealed that increasing the damping of the harvester decreased its output power, whereas an increase in mass and length of the harvester is observed to increase the output power and shift the optimal power generation subrange.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

O’Riordan, Eoghan, Ronan Frizzell, Diarmuid O’Connell y Elena Blokhina. "Characterisation of anti-resonance in two-degree-of-freedom electromagnetic kinetic energy harvester, with modified electromagnetic model". Journal of Intelligent Material Systems and Structures 29, n.º 10 (28 de marzo de 2018): 2295–306. http://dx.doi.org/10.1177/1045389x18758934.

Texto completo
Resumen
This article presents a detailed approach to the analysis of a two-degree-of-freedom electromagnetic kinetic energy harvester. These systems use multiple disconnected masses that can impact each other and the harvester housing. This causes complex dynamics in the system as significant momentum is transferred between the masses and, ultimately, results in strongly nonlinear behaviour. One particular nonlinear phenomenon of interest, which has not been previously characterised, is anti-resonance. Observing this phenomenon is important as it highlights efficient energy transfer between the masses, and maximising its effect can be used to enhance the harvesters’ overall performance. A range of mathematical techniques are used to better explain the concept of anti-resonance and how it can be used to improve the understanding of the system dynamics. In addition, the widely used model for electromagnetic transduction is amended to give a more precise representation of the transducer force for this embodiment of the kinetic energy harvester. This unique analysis yields a rich modelling approach that can be used to inform future kinetic energy harvester designs by identifying and optimising key design parameters. Comparisons are made with experimental measurements of a two-mass electromagnetic kinetic energy harvester, validating the modelling approach.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Lu, Zhuang, Quan Wen, Xianming He y Zhiyu Wen. "A Flutter-Based Electromagnetic Wind Energy Harvester: Theory and Experiments". Applied Sciences 9, n.º 22 (11 de noviembre de 2019): 4823. http://dx.doi.org/10.3390/app9224823.

Texto completo
Resumen
Wind energy harvesting is a promising way to offer power supply to low-power electronic devices. Miniature wind-induced vibration energy harvesters, which are currently being focused on by researchers in the field, offer the advantages of small volume and simple structure. In this article, an analytical model was proposed for the kinetic analysis of a flutter-based electromagnetic wind energy harvester. As a result, the critical wind speeds of energy harvesters with different magnet positions were predicted. To experimentally verify the analytical predictions and investigate the output performance of the proposed energy harvester, a small wind tunnel was built. The critical wind speeds measured by the experiment were found to be consistent with the predictions. Therefore, the proposed model can be used to predict the critical wind speed of a wind belt type energy harvester. The experimental results also show that placing the magnets near the middle of the membrane can result in lower critical wind speed and higher output performance. The optimized wind energy harvester was found to generate maximum average power of 705 μW at a wind speed of 10 m/s, offering application prospects for the power supply of low-power electronic devices. This work can serve as a reference for the structural design and theoretical analysis of a flutter-based wind energy harvester.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Ibrahima, Dauda Sh, Asan G. A. Muthalif y Tanveer Saleh. "A Piezoelectric Based Energy Harvester with Magnetic Interactions: Modelling and Simulation". Advanced Materials Research 1115 (julio de 2015): 549–54. http://dx.doi.org/10.4028/www.scientific.net/amr.1115.549.

Texto completo
Resumen
In recent years, utilizing kinetic energy in mechanical vibrations has become an interesting area of research. This is due to ubiquitous sources of vibration energy, coupled with the ever increasing demands to power wireless sensing electronics and Microelectromechanical (MEMs) devices with low energy requirements. Thus, researchers have ventured into developing different system configurations with the aim of harvesting vibration energy to power these devices. Cantilever beam systems with piezoelectric layer have been used as vibration energy scavengers due to their abilities of converting kinetic energy in vibrating bodies into electrical energy, whereas permanent magnets have been used to improve their performance. The only unresolved challenge is to develop energy harvesters that can produce optimum energy at a wider bandwidth. In this study, a mathematical model of a system of cantilever beams with piezoelectric layers having a magnetic coupled tip mass is proposed. The lumped parameter model of the harvester is developed to estimate the power output of the proposed harvester, and to visualise the effect of magnetic coupled tip mass in widening the frequency bandwidth of the energy harvester. Preliminary Simulation results using MATLAB have however shown the effectiveness of the proposed system.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Neri, Igor, Flavio Travasso, Riccardo Mincigrucci, Helios Vocca, Francesco Orfei y Luca Gammaitoni. "A real vibration database for kinetic energy harvesting application". Journal of Intelligent Material Systems and Structures 23, n.º 18 (6 de mayo de 2012): 2095–101. http://dx.doi.org/10.1177/1045389x12444488.

Texto completo
Resumen
In this article, we discuss the project of a vibration signal database for energy harvesting purpose. After a brief description where we present the technologies used to create the database and the procedures to acquire the signals, we show some results obtained using selected environmental noises from the database to characterize nonlinear energy harvesters.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Beach, Christopher y Alexander J. Casson. "Inertial Kinetic Energy Harvesters for Wearables: The Benefits of Energy Harvesting at the Foot". IEEE Access 8 (2020): 208136–48. http://dx.doi.org/10.1109/access.2020.3037952.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "Kinetic energy harvesters"

1

Zhang, Hanlu. "Modeling, simulation, and optimization of miniature tribo-electret kinetic energy harvesters". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC100.

Texto completo
Resumen
La récupération d'énergie dans l'environnement ambiant est une bonne solution d'alimentation durable et complémentaire dans certains produits électroniques grand public, réseaux de capteurs distribués sans fil, dispositifs portables ou implantables, systèmes "Internet of Things" avec beaucoup de nœuds, etc. par rapport aux batteries. Les mouvements et les vibrations sont des sources d’énergie les plus disponibles à cet effet. Les dispositifs collectant de l’énergie cinétique à petite échelle sont appelés récupérateurs d'énergie cinétique (RECs). Les RECs avec électrets (E-RECs) sont un type de RECs électrostatiques qui utilisent des électrets (diélectriques avec charges quasi permanentes) comme source de tension de polarisation, et qui peuvent générer de l'électricité grâce à l'effet d'induction électrostatique lorsque la la capacitance des E-RECs varie du fait des mouvements/vibrations. Cette thèse vise à étudier les caractéristiques de sortie transitoires des E-RECs à la fois par des simulations théoriques et des mesures expérimentales, et à optimiser l’efficacité et la puissance de sortie des E-RECs par charge triboélectrique et par d'autres méthodes adaptées à leurs caractéristiques de sortie, qui sont essentielles pour améliorer la performance des E-RECs par mouvements/vibrations.Tout d'abord, les caractéristiques de sortie à amplitude variable d'un E-REC en mode contact-séparation (CS) dans des cycles de travail transitoires sont examinées via les résultats de la simulation basés sur un modèle de circuit équivalent détaillé. Ces caractéristiques de sortie à amplitude variable sont attribuées au décalage du cycle de transfert de charge par rapport au cycle de mouvement d'excitation. Les influences de la condition initiale et de la résistance de charge sur la variation des pics de tension de sortie d'un tribo-électret REC (TE-REC) en mode CS réalisé avec un film électret en polytétrafluoroéthylène (PTFE) one été étudiées en détail et vérifiées à la fois par simulations et expériences.Deuxièmement, une méthode d'optimisation du temps de contact est utilisée pour améliorer la puissance de sortie et l'efficacité du TE-REC en mode CS avec une résistance de charge de 100 MΩ. L'énergie convertie théorique maximale par cycle de travail du TE-REC est analysée. Nous avons aussi étudié les influences de plusieurs facteurs défavorables qui généralement réduiraient la conversion d'énergie par cycle de travail du TE-REC. L’optimisation de l'intervalle d'air maximal et la méthode tribo-charge sont également utilisées pour améliorer la puissance moyenne sortie du TE- REC avec une surface de 4 cm × 4 cm, de ~ 150 μW à ~ 503 μW.Troisièmement, une méthode innovante et facile a été développée pour charger le film polymère électret en éthylène propylène fluoré (FEP) par pelage de ruban adhésif, sans utiliser de source de haute tension électrique. La distribution du potentiel de la surface du film de FEP est fortement modifiée après plusieurs pelages au ruban adhésif. Par conséquence, la tension et le courant de sortie des TE-REC fabriqués avec le film FEP traités sont beaucoup améliorés. Pour un TE-REC flexible d’une surface de 64 cm2 soufflé par du vent, une amélioration évidente d'environ 692% de la puissance de sortie, correspondant 2,5 μW à environ 19,8 μW, a été obtenue par cette méthode
Harvesting energy from the ambient environment is a good sustainable and complementary power supply solution in some consumer electronics, distributed wireless sensor networks, wearable or implantable devices, "Internet of Things" systems with lots of nodes, etc. in comparison with batteries. The ubiquitous kinetic energy in various motions and vibrations is one of the most available energy sources for such a purpose. The electret kinetic energy harvesters (E-KEHs) is one type of electrostatic kinetic energy harvesters using electrets (dielectrics with quasi-permanent charges) as the biasing voltage source, which can generate electricity based on the electrostatic induction effect when the capacitance of the E-KEHs is changed by the motions/vibrations. This thesis aims to investigate the transitory output characteristics of E-KEHs by both theoretical simulations and experimental measurements and to optimize the efficiency and output power of E-KEHs by tribo-charging and other methods adapted to their output characteristics, which are significant to improving the performance of E-KEHs.Firstly, the amplitude-variable output characteristics of a contact-separation (CS) mode E-KEH in transitory working cycles are investigated via the simulation results based on a detailed equivalent circuit model. These amplitude-variable output characteristics are attributed to the lag of the charge-transfer cycle behind the excitation motion cycle. The influences of both the initial condition and the load resistance on the variation in the output voltage peaks of a tribo-electret KEH (TE-KEH) are studied in detail and verified by both simulated and experimental data of a CS mode TE-KEH made with polytetrafluoroethylene (PTFE) electret film.Secondly, based on the analysis of the amplitude-variable output characteristics, a contact time optimization method is used to improve the output power and efficiency of the CS mode TE-KEH with a large load resistance of 100 MΩ. The theoretical maximum output energy per working cycle of the TE-KEH is analyzed. Several usually unfavorable factors that would reduce the practical output energy per working cycle of the TE-KEH are discussed. The maximum air gap optimization and the tribo-charging methods are also used together to further improve the average output power of the 4 cm × 4 cm sized TE-KEH from ~150 μW to ~503 μW.Thirdly, an innovative and facile tape-peeling tribo-charging method is developed to charge the fluorinated ethylene propylene (FEP) polymer film to make electrets without using any high voltage source. The surface potential distribution of the FEP film is apparently changed after several tape-peeling tribo-charging treatments. Consequently, the output voltage and current of TE-KEHs made with the FEP film are greatly improved. For a 64 cm2 sized flexible TE-KEH to harvest kinetic energy from wind, an apparent ~692% improvement in the output power from ~2.5 μW to ~19.8 μW was obtained by the tape-peeling charging method
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Kwon, Dongwon. "Piezoelectric kinetic energy-harvesting ics". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47571.

Texto completo
Resumen
Wireless micro-sensors can enjoy popularity in biomedical drug-delivery treatments and tire-pressure monitoring systems because they offer in-situ, real-time, non-intrusive processing capabilities. However, miniaturized platforms severely limit the energy of onboard batteries and shorten the lifespan of electronic systems. Ambient energy is an attractive alternative because the energy from light, heat, radio-frequency (RF) radiation, and motion can potentially be used to continuously replenish an exhaustible reservoir. Of these sources, solar light produces the highest power density, except when supplied from indoor lighting, under which conditions the available power decreases drastically. Harnessing thermal energy is viable, but micro-scale dimensions severely limit temperature gradients, the fundamental mechanism from which thermo piles draw power. Mobile electronic devices today radiate plenty of RF energy, but still, the available power rapidly drops with distance. Harvesting kinetic energy may not compete with solar power, but in contrast to indoor lighting, thermal, and RF sources, moderate and consistent vibration power across a vast range of applications is typical. Although operating conditions ultimately determine which kinetic energy-harvesting method is optimal, piezoelectric transducers are relatively mature and produce comparatively more power than their counterparts such as electrostatic and electromagnetic kinetic energy transducers. The presented research objective is to develop, design, simulate, fabricate, prototype, test, and evaluate CMOS ICs that harvest ambient kinetic energy in periodic and non-periodic vibrations using a small piezoelectric transducer to continually replenish an energy-storage device like a capacitor or a rechargeable battery. Although vibrations in surrounding environment produce abundant energy over time, tiny transducers can harness only limited power from the energy sources, especially when mechanical stimulation is weak. To overcome this challenge, the presented piezoelectric harvesters eliminate the need for a rectifier which necessarily imposes threshold limits and additional losses in the system. More fundamentally, the presented harvesting circuits condition the transducer to convert more electrical energy for a given mechanical input by increasing the electromechanical damping force of the piezoelectric transducer. The overall aim is to acquire more power by widening the input range and improving the efficiency of the IC as well as the transducer. The presented technique in essence augments the energy density of micro-scale electronic systems by scavenging the ambient kinetic energy and extends their operational lifetime. This dissertation reports the findings acquired throughout the investigation. The first chapter introduces the applications and challenges of micro-scale energy harvesting and also reviews the fundamental mechanisms and recent developments of various energy-converting transducers that can harness ambient energy in light, heat, RF radiation, and vibrations. Chapter 2 examines various existing piezoelectric harvesting circuits, which mostly adopt bridge rectifiers as their core. Chapter 3 then introduces a bridge-free piezoelectric harvester circuit that employs a switched-inductor power stage to eliminate the need for a bridge rectifier and its drawbacks. More importantly, the harvester strengthens the electrical damping force of the piezoelectric device and increases the output power of the harvester. The chapter also presents the details of the integrated-circuit (IC) implementation and the experimental results of the prototyped harvester to corroborate and clarify the bridge-free harvester operation. One of the major discoveries from the first harvester prototype is the fact that the harvester circuit can condition the piezoelectric transducer to strengthen its electrical damping force and increase the output power of the harvester. As such, Chapter 4 discusses various energy-investment strategies that increase the electrical damping force of the transducer. The chapter presents, evaluates, and compares several switched-inductor harvester circuits against each other. Based on the investigation in Chapter 4, an energy-investing piezoelectric harvester was designed and experimentally evaluated to confirm the effectiveness of the investing scheme. Chapter 5 explains the details of the IC design and the measurement results of the prototyped energy-investing piezoelectric harvester. Finally, Chapter 6 concludes the dissertation by revisiting the challenges of miniaturized piezoelectric energy harvesters and by summarizing the fundamental contributions of the research. With the same importance as with the achievements of the investigation, the last chapter lists the technological limits that bound the performance of the proposed harvesters and briefly presents perspectives from the other side of the research boundary for future investigations of micro-scale piezoelectric energy harvesting.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Wen, Quan. "A Novel Micro Fluid Kinetic Energy Harvester Based on the Vortex-Induced Vibration Principle and the Piezo Effect". Doctoral thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-184346.

Texto completo
Resumen
In this thesis, a miniaturized energy harvester system is developed. The energy harvester converts fluid kinetic energy into electrical energy without using any rotating components. The working principle of the energy harvester is based on the so called vortex-induced vibration. Such systems have the potential to provide energy for wireless sensor networks in the field of inline measurements for gas, oil or water transportation systems. The theoretical background of the vortex-induced vibration (VIV) is studied. Based on the studies, a fluid-structure interaction simulation is carried out to optimize the structure of the energy harvester. As result, the conversion efficiency is significantly improved, which is experimentally confirmed. A series of demonstrators are manufactured according to the simulation and optimization results. It is tested on a self-constructed test bench. To further improve the performance, an electromagnetic generator is proposed, and therefore, a multimethod demonstrator realized. The demonstrators are working in air flow already at a velocity of 2 m/s, and reach the maximum efficiency at 3.6 m/s. This performance ranks among the best published results and is discussed in detail
In der vorliegenden Arbeit wird ein miniaturisiertes Energiegewinnungssystem entwickelt, das unter Verzicht auf rotierende Komponenten kinetische Strömungsenergie in elektrische Energie umwandelt. Die Funktion dieses Wandlers basiert auf der sogenannten wirbelinduzierten Vibration. Derartige Systeme besitzen unter anderem das Potenzial, drahtlose Sensornetzwerke zur Erfassung von Messdaten in Gas-, Öl- oder Wassertransportsystemen mit Energie zu versorgen zu können. In der Arbeit wird der theoretische Hintergrund der wirbelinduzierten Vibration untersucht und darauf basierend werden Fluid-Struktur-Wechselwirkungssimulationen zur Strukturoptimierung durchgeführt in deren Ergebnis eine theoretische Verbesserung der Effizienz des Wandlers um ein Mehrfaches erreicht wird, die auch praktisch bestätigt wird. Unter Berücksichtigung der Simulations- und Optimierungsergebnisse wurden eine Reihe von Demonstratoren gefertigt, die auf einem selbst konstruierten Prüfstand getestet wurden. Zur weiteren Erhöhung der Leistungsfähigkeit des Wandlers wird ein zusätzlicher elektromagnetischer Generator vorgeschlagen und damit ein Multi-Methoden-Demonstrator technisch realisiert. Die Demonstratoren arbeiten in strömender Luft bereits bei Geschwindigkeiten von 2 m/s und erreichen bei 3,6 m/s ihre maximale Effizienz. Die erreichten Ergebnisse ordnen sich im Vergleich mit denen aus entsprechenden Publikationen vorn ein und werden ausführlich diskutiert
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Wen, Quan [Verfasser], Thomas [Akademischer Betreuer] Geßner, Thomas [Gutachter] Geßner y Ran [Gutachter] Liu. "A Novel Micro Fluid Kinetic Energy Harvester Based on the Vortex-Induced Vibration Principle and the Piezo Effect / Quan Wen ; Gutachter: Thomas Geßner, Ran Liu ; Betreuer: Thomas Geßner". Chemnitz : Universitätsbibliothek Chemnitz, 2015. http://d-nb.info/1213813913/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Schaufuß, Jörg. "Energieversorgung autarker Sensorsysteme im industriellen Umfeld durch kinetische Energiewandler mit Schwerpunkt auf dem elektrostatischen Wandlerprinzip". Doctoral thesis, Universitätsbibliothek Chemnitz, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-129344.

Texto completo
Resumen
In der vorliegenden Arbeit wird die Entwicklung eines kinetischen Energy Harvesters vorgestellt, der auf Grundlage des elektrostatischen Wandlerprinzips aus Vibrationen elektrische Energie generiert. Für die Umsetzung wurde eine Siliziummikrostruktur entworfen, die für Arbeitsfrequenzen unter 100 Hz ausgelegt ist. Die Zahnstruktur der verwendeten Elektroden ermöglicht Spaltabstände im Submikrometerbereich und folglich große Kapazitätsänderungen, die durch die Elektrodengeometrie zusätzlich mit einer höheren Frequenz als die mechanische Bewegung stattfinden. Vergleichsweise große Leistungsausbeuten und geringe Quellimpedanzen sind dadurch erreichbar. Die geometrischen Parameter der Elektroden wurden unter Berücksichtigung der auftretenden Fertigungstoleranzen und Wechselwirkungen zueinander optimiert. Für die Ausnutzung einer ausreichend großen Inertialmasse wurde ein feinwerktechnisch hergestellter Hebelmechanismus an die Mikrostruktur angekoppelt. Über diesen wird zusätzlich ein neuer Ansatz zur Abstimmung der Eigenfrequenz des Harvesters umgesetzt. Experimentelle Untersuchungen zeigten Ausgangsleistungen im einstelligen Mikrowattbereich bei Anregungen im Zehntel m/s²-Bereich. Durch fortschreitende Optimierungen der Fertigungstechnologie sind noch deutliche Leistungssteigerungen um mindestens zwei Größenordnungen möglich. Weiterhin wird ein Energiemanagementsystem vorgestellt, welches die effiziente Übertragung der Energie auf den Verbraucher ermöglicht
In this work the development of a kinetic energy harvester using the electrostatic conversion principle is presented. The silicon microstructure is designed to work in frequency ranges below 100Hz. Its toothed electrode structure enables gap distances in the sub micrometer range and consequently high changes of capacitance. Additionally, due to the electrode geometry the frequency of the capacitance changes is higher then the frequency of the mechanical movement. Thus high power outputs and low source impedances can be reached. The electrodes geometric parameters were optimized considering manufacturing tolerances and interactions of the parameters. To reach a sufficient inertial mass, a lever mechanism manufactured by precision engineering was connected to the microstructure. This mechanism also allows the implementation of a new method of frequency tuning. In experimental tests power outputs in the single digit microwatt range under excitations of 0.3 m/s² were reached. In accordance of further optimizations of the manufacturing technology significantly higher outputs, by at least two orders of magnitude, are possible,. Furthermore an energy management system is presented, that allows the efficient transfer of the electrical energy to the consumer
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Dierks, Eric Carl. "Design of an electromagnetic vibration energy harvester for structural health monitoring of bridges employing wireless sensor networks". Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-08-4221.

Texto completo
Resumen
Energy harvesting is playing an increasingly important role in supplying power to monitoring and automation systems such as structural health monitoring using wireless sensor networks. This importance is most notable when the structures to be monitored are in rural, hazardous, or limited access environments such as busy highway bridges where traffic would be greatly disrupted during maintenance, inspection, or battery replacement. This thesis provides an overview of energy harvesting technologies and details the design, prototyping, testing, and simulation of an energy harvester which converts the vibrations of steel highway bridges into stored electrical energy through the use of a translational electromagnetic generator, to power a wireless sensor network for bridge structural health monitoring. An analysis of bridge vibrations, the use of nonlinear and linear harvester compliance, resonant frequency tuning, and bandwidth widening to maximize the energy harvested is presented. The design approach follows broad and focused background research, functional analysis, broad and focused concept generation and selection, early prototyping, parametric modeling and simulation, rapid prototyping with selective laser sintering, and laboratory testing with replicated bridge vibration. The key outcomes of the work are: a breadth of conceptual designs, extensive literature review, a prototype which harvests an average of 80µW under bridge vibration, a prototype which provides quick assembly, mounting and tuning, and the conclusion that a linear harvester out performs a nonlinear harvester with stiffening magnetic compliance for aperiodic vibrations such as those from highway bridges.
text
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Kinetic energy harvesters"

1

Basset, Philippe, Elena Blokhina y Dimitri Galayko. "Mechanical Aspects of Kinetic Energy Harvesters: Linear Resonators". En Electrostatic Kinetic Energy Harvesting, 27–54. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119007487.ch3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Basset, Philippe, Elena Blokhina y Dimitri Galayko. "Mechanical Aspects of Kinetic Energy Harvesters: Nonlinear Resonators". En Electrostatic Kinetic Energy Harvesting, 55–74. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119007487.ch4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Basset, Philippe, Elena Blokhina y Dimitri Galayko. "Basic Conditioning Circuits for Capacitive Kinetic Energy Harvesters". En Electrostatic Kinetic Energy Harvesting, 135–53. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119007487.ch8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Basset, Philippe, Elena Blokhina y Dimitri Galayko. "Nonlinear Resonance and its Application to Electrostatic Kinetic Energy Harvesters". En Electrostatic Kinetic Energy Harvesting, 97–119. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119007487.ch6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Khalifa, Sara, Guohao Lan, Mahbub Hassan, Wen Hu y Aruna Seneviratne. "Human Context Detection From Kinetic Energy Harvesting Wearables". En Advances in Wireless Technologies and Telecommunication, 107–33. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-3290-3.ch005.

Texto completo
Resumen
Advances in energy harvesting hardware have created an opportunity for realizing self-powered wearables for continuous and pervasive Human Context Detection (HCD). Unfortunately, the power consumption of the continuous context sensing using accelerometer is relatively high compared to the amount of power that can be harvested practically, which limits the usefulness of energy harvesting. This chapter employs and infers HCD directly from the Kinetic Energy Harvesting (KEH) patterns generated from a wearable device that harvests kinetic energy to power itself. This proposal eliminates the need for accelerometer, making HCD practical for self-powered devices. The authors discuss in more details the use of KEH patterns as an energy efficient source of information for five main applications, human activity recognition, step detection, calorie expenditure estimation, hotword detection, and transport mode detection. This confirms the potential sensing capabilities of KEH for a wide range of wearable applications, moving us closer towards self-powered autonomous wearables.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Prasanth, B., Deepa Kaliyaperumal, R. Jeyanthi y Saravanan Brahmanandam. "Real-Time Optimization of Regenerative Braking System in Electric Vehicles". En Electric Vehicles and the Future of Energy Efficient Transportation, 193–218. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-7626-7.ch008.

Texto completo
Resumen
In the present era, electric vehicles (EV) have revolutionized the world with their dominant features like cleanliness and high efficiency compared to that of the internal combustion (IC) engine-based vehicles. To crave for the higher efficiency of the EV during the braking, the kinetic energy of the EV is converted into electrical energy, which is harvested into storage system, called regenerative braking. Various techniques such as artificial neural network (ANN) and fuzzy-based controllers consider factors like state of charge of the battery and supercapacitor and brake demand for calculating the regenerative braking energy. A force distribution curve is designed to ensure that the braking force is distributed and applied on the four wheels simultaneously. In real-time optimization, an operating area is formed for maximizing the regenerative force which is evaluated by linear programming. It is proved that the drive range of the vehicle is increased by 25.7% compared to the one with non-RBS. In this work, RTO-based control loop for regenerative braking system is simulated in MATLAB/Simulink.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Kinetic energy harvesters"

1

Sandhu, Muhammad Moid, Kai Geissdoerfer, Sara Khalifa, Raja Jurdak, Marius Portmann y Brano Kusy. "Towards Energy Positive Sensing using Kinetic Energy Harvesters". En 2020 IEEE International Conference on Pervasive Computing and Communications (PerCom). IEEE, 2020. http://dx.doi.org/10.1109/percom45495.2020.9127356.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

O'Riordan, Eoghan, Elena Blokhina y Dimitri Galayko. "Electromechanical coupling in electrostatic kinetic energy harvesters". En 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS). IEEE, 2016. http://dx.doi.org/10.1109/icecs.2016.7841229.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Todorov, Georgi, Todor Todorov, Ivan Ivanov, Stanimir Valtchev y Ben Klaassens. "Tuning techniques for kinetic MEMS energy harvesters". En INTELEC 2011 - 2011 33rd International Telecommunications Energy Conference. IEEE, 2011. http://dx.doi.org/10.1109/intlec.2011.6099874.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Bessaad, Abdelkrim, Amine Rhouni, Philippe Basset y Dimitri Galayko. "Power Management Integrated Circuit for Electrostatic Kinetic Energy Harvesters". En 2020 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2020. http://dx.doi.org/10.1109/iscas45731.2020.9180972.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Bessaad, Abdelkrim, Amine Rhouni y Dimitri Galayko. "Maximum Power Point Tracking MPPT Algorithm for Kinetic Energy Harvesters". En 2021 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2021. http://dx.doi.org/10.1109/iscas51556.2021.9401343.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Yang, Wei, Panagiotis Alevras y Shahrzad Towfighian. "Investigation of Vibration Energy Harvesting Using Two Cantilevers With Random Input". En ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3860.

Texto completo
Resumen
There is a growing interest to convert ambient mechanical energy to electrical energy by vibration energy harvesters. Realistic vibrations are random and spread over a large frequency range. Most energy harvesters are linear with narrow frequency bandwidth and show low performance, which led to creation of nonlinear harvesters that have larger bandwidth. This article presents a simulation study of a nonlinear energy harvester that contains two cantilever beams coupled by magnetic force. One of the cantilever beam is covered partially by piezoelectric material, while the other beam is normal to the first one and is used to create a variable potential energy function. The variable double-well potential function enables optimum conversion of the kinetic energy and thus larger output. The system is modeled by coupled Duffing oscillator equations. To represent the ambient vibrations, the response to Gaussian random input signal (generated by Shinozuka formula) is studied using power spectral density. The effects of different parameters on the system are also investigated. The results show that the double cantilever harvester has a threshold distance, where the harvester can perform optimally regardless of the excitation level. This observation is opposite to that of the conventional fixed magnet cantilever system where the optimal distance varies with the excitation level. Results of this study can be used to enhance energy efficiency of vibration energy harvesters.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Trigona, Carlo, Bruno Ando y Salvatore Baglio. "Measurements and analysis of body induced movements for kinetic energy harvesters". En 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2018. http://dx.doi.org/10.1109/i2mtc.2018.8409791.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Trigona, Carlo, Bruno Ando y Salvatore Baglio. "Measurements and Investigations of Helicopter-Induced Vibrations for Kinetic Energy Harvesters". En 2019 IEEE Sensors Applications Symposium (SAS). IEEE, 2019. http://dx.doi.org/10.1109/sas.2019.8706082.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Sudano, A., D. Accoto, M. T. Francomano, F. Salvinelli y E. Guglielmelli. "Optimization of kinetic energy harvesters design for fully implantable Cochlear Implants". En 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011. http://dx.doi.org/10.1109/iembs.2011.6091892.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Bessaad, Abdelkrim, Amine Rhouni, Philippe Basset y Dimitri Galayko. "Autonomous CMOS Power Management Integrated Circuit for Electrostatic Kinetic Energy Harvesters e-KEH". En 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS). IEEE, 2019. http://dx.doi.org/10.1109/icecs46596.2019.8964736.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía