Literatura académica sobre el tema "Kinetic energy harvesters"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Kinetic energy harvesters".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Kinetic energy harvesters"
Chiu, Min Chie, Ying Chun Chang, Long Jyi Yeh, Chiu Hung Chung y Chen Hsin Chu. "An Experimental Study of Low-Frequency Vibration-Based Electromagnetic Energy Harvesters Used while Walking". Advanced Materials Research 918 (abril de 2014): 106–14. http://dx.doi.org/10.4028/www.scientific.net/amr.918.106.
Texto completoShahosseini, I. y K. Najafi. "Mechanical Amplifier for Translational Kinetic Energy Harvesters". Journal of Physics: Conference Series 557 (27 de noviembre de 2014): 012135. http://dx.doi.org/10.1088/1742-6596/557/1/012135.
Texto completoGhaffarinejad, A., Y. Lu, R. Hinchet, D. Galayko, J. Y. Hasani y P. Basset. "Bennet's charge doubler boosting triboelectric kinetic energy harvesters". Journal of Physics: Conference Series 1052 (julio de 2018): 012027. http://dx.doi.org/10.1088/1742-6596/1052/1/012027.
Texto completoSchaufuss, Joerg, Dirk Scheibner y Jan Mehner. "New approach of frequency tuning for kinetic energy harvesters". Sensors and Actuators A: Physical 171, n.º 2 (noviembre de 2011): 352–60. http://dx.doi.org/10.1016/j.sna.2011.07.022.
Texto completoBasheer, Faiz, Elmehaisi Mehaisi, Ahmed Elsergany, Ahmed ElSheikh, Mehdi Ghommem y Fehmi Najar. "Energy harvesters for rotating systems: Modeling and performance analysis". tm - Technisches Messen 88, n.º 3 (16 de enero de 2021): 164–77. http://dx.doi.org/10.1515/teme-2020-0088.
Texto completoO’Riordan, Eoghan, Ronan Frizzell, Diarmuid O’Connell y Elena Blokhina. "Characterisation of anti-resonance in two-degree-of-freedom electromagnetic kinetic energy harvester, with modified electromagnetic model". Journal of Intelligent Material Systems and Structures 29, n.º 10 (28 de marzo de 2018): 2295–306. http://dx.doi.org/10.1177/1045389x18758934.
Texto completoLu, Zhuang, Quan Wen, Xianming He y Zhiyu Wen. "A Flutter-Based Electromagnetic Wind Energy Harvester: Theory and Experiments". Applied Sciences 9, n.º 22 (11 de noviembre de 2019): 4823. http://dx.doi.org/10.3390/app9224823.
Texto completoIbrahima, Dauda Sh, Asan G. A. Muthalif y Tanveer Saleh. "A Piezoelectric Based Energy Harvester with Magnetic Interactions: Modelling and Simulation". Advanced Materials Research 1115 (julio de 2015): 549–54. http://dx.doi.org/10.4028/www.scientific.net/amr.1115.549.
Texto completoNeri, Igor, Flavio Travasso, Riccardo Mincigrucci, Helios Vocca, Francesco Orfei y Luca Gammaitoni. "A real vibration database for kinetic energy harvesting application". Journal of Intelligent Material Systems and Structures 23, n.º 18 (6 de mayo de 2012): 2095–101. http://dx.doi.org/10.1177/1045389x12444488.
Texto completoBeach, Christopher y Alexander J. Casson. "Inertial Kinetic Energy Harvesters for Wearables: The Benefits of Energy Harvesting at the Foot". IEEE Access 8 (2020): 208136–48. http://dx.doi.org/10.1109/access.2020.3037952.
Texto completoTesis sobre el tema "Kinetic energy harvesters"
Zhang, Hanlu. "Modeling, simulation, and optimization of miniature tribo-electret kinetic energy harvesters". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC100.
Texto completoHarvesting energy from the ambient environment is a good sustainable and complementary power supply solution in some consumer electronics, distributed wireless sensor networks, wearable or implantable devices, "Internet of Things" systems with lots of nodes, etc. in comparison with batteries. The ubiquitous kinetic energy in various motions and vibrations is one of the most available energy sources for such a purpose. The electret kinetic energy harvesters (E-KEHs) is one type of electrostatic kinetic energy harvesters using electrets (dielectrics with quasi-permanent charges) as the biasing voltage source, which can generate electricity based on the electrostatic induction effect when the capacitance of the E-KEHs is changed by the motions/vibrations. This thesis aims to investigate the transitory output characteristics of E-KEHs by both theoretical simulations and experimental measurements and to optimize the efficiency and output power of E-KEHs by tribo-charging and other methods adapted to their output characteristics, which are significant to improving the performance of E-KEHs.Firstly, the amplitude-variable output characteristics of a contact-separation (CS) mode E-KEH in transitory working cycles are investigated via the simulation results based on a detailed equivalent circuit model. These amplitude-variable output characteristics are attributed to the lag of the charge-transfer cycle behind the excitation motion cycle. The influences of both the initial condition and the load resistance on the variation in the output voltage peaks of a tribo-electret KEH (TE-KEH) are studied in detail and verified by both simulated and experimental data of a CS mode TE-KEH made with polytetrafluoroethylene (PTFE) electret film.Secondly, based on the analysis of the amplitude-variable output characteristics, a contact time optimization method is used to improve the output power and efficiency of the CS mode TE-KEH with a large load resistance of 100 MΩ. The theoretical maximum output energy per working cycle of the TE-KEH is analyzed. Several usually unfavorable factors that would reduce the practical output energy per working cycle of the TE-KEH are discussed. The maximum air gap optimization and the tribo-charging methods are also used together to further improve the average output power of the 4 cm × 4 cm sized TE-KEH from ~150 μW to ~503 μW.Thirdly, an innovative and facile tape-peeling tribo-charging method is developed to charge the fluorinated ethylene propylene (FEP) polymer film to make electrets without using any high voltage source. The surface potential distribution of the FEP film is apparently changed after several tape-peeling tribo-charging treatments. Consequently, the output voltage and current of TE-KEHs made with the FEP film are greatly improved. For a 64 cm2 sized flexible TE-KEH to harvest kinetic energy from wind, an apparent ~692% improvement in the output power from ~2.5 μW to ~19.8 μW was obtained by the tape-peeling charging method
Kwon, Dongwon. "Piezoelectric kinetic energy-harvesting ics". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47571.
Texto completoWen, Quan. "A Novel Micro Fluid Kinetic Energy Harvester Based on the Vortex-Induced Vibration Principle and the Piezo Effect". Doctoral thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-184346.
Texto completoIn der vorliegenden Arbeit wird ein miniaturisiertes Energiegewinnungssystem entwickelt, das unter Verzicht auf rotierende Komponenten kinetische Strömungsenergie in elektrische Energie umwandelt. Die Funktion dieses Wandlers basiert auf der sogenannten wirbelinduzierten Vibration. Derartige Systeme besitzen unter anderem das Potenzial, drahtlose Sensornetzwerke zur Erfassung von Messdaten in Gas-, Öl- oder Wassertransportsystemen mit Energie zu versorgen zu können. In der Arbeit wird der theoretische Hintergrund der wirbelinduzierten Vibration untersucht und darauf basierend werden Fluid-Struktur-Wechselwirkungssimulationen zur Strukturoptimierung durchgeführt in deren Ergebnis eine theoretische Verbesserung der Effizienz des Wandlers um ein Mehrfaches erreicht wird, die auch praktisch bestätigt wird. Unter Berücksichtigung der Simulations- und Optimierungsergebnisse wurden eine Reihe von Demonstratoren gefertigt, die auf einem selbst konstruierten Prüfstand getestet wurden. Zur weiteren Erhöhung der Leistungsfähigkeit des Wandlers wird ein zusätzlicher elektromagnetischer Generator vorgeschlagen und damit ein Multi-Methoden-Demonstrator technisch realisiert. Die Demonstratoren arbeiten in strömender Luft bereits bei Geschwindigkeiten von 2 m/s und erreichen bei 3,6 m/s ihre maximale Effizienz. Die erreichten Ergebnisse ordnen sich im Vergleich mit denen aus entsprechenden Publikationen vorn ein und werden ausführlich diskutiert
Wen, Quan [Verfasser], Thomas [Akademischer Betreuer] Geßner, Thomas [Gutachter] Geßner y Ran [Gutachter] Liu. "A Novel Micro Fluid Kinetic Energy Harvester Based on the Vortex-Induced Vibration Principle and the Piezo Effect / Quan Wen ; Gutachter: Thomas Geßner, Ran Liu ; Betreuer: Thomas Geßner". Chemnitz : Universitätsbibliothek Chemnitz, 2015. http://d-nb.info/1213813913/34.
Texto completoSchaufuß, Jörg. "Energieversorgung autarker Sensorsysteme im industriellen Umfeld durch kinetische Energiewandler mit Schwerpunkt auf dem elektrostatischen Wandlerprinzip". Doctoral thesis, Universitätsbibliothek Chemnitz, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-129344.
Texto completoIn this work the development of a kinetic energy harvester using the electrostatic conversion principle is presented. The silicon microstructure is designed to work in frequency ranges below 100Hz. Its toothed electrode structure enables gap distances in the sub micrometer range and consequently high changes of capacitance. Additionally, due to the electrode geometry the frequency of the capacitance changes is higher then the frequency of the mechanical movement. Thus high power outputs and low source impedances can be reached. The electrodes geometric parameters were optimized considering manufacturing tolerances and interactions of the parameters. To reach a sufficient inertial mass, a lever mechanism manufactured by precision engineering was connected to the microstructure. This mechanism also allows the implementation of a new method of frequency tuning. In experimental tests power outputs in the single digit microwatt range under excitations of 0.3 m/s² were reached. In accordance of further optimizations of the manufacturing technology significantly higher outputs, by at least two orders of magnitude, are possible,. Furthermore an energy management system is presented, that allows the efficient transfer of the electrical energy to the consumer
Dierks, Eric Carl. "Design of an electromagnetic vibration energy harvester for structural health monitoring of bridges employing wireless sensor networks". Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-08-4221.
Texto completotext
Capítulos de libros sobre el tema "Kinetic energy harvesters"
Basset, Philippe, Elena Blokhina y Dimitri Galayko. "Mechanical Aspects of Kinetic Energy Harvesters: Linear Resonators". En Electrostatic Kinetic Energy Harvesting, 27–54. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119007487.ch3.
Texto completoBasset, Philippe, Elena Blokhina y Dimitri Galayko. "Mechanical Aspects of Kinetic Energy Harvesters: Nonlinear Resonators". En Electrostatic Kinetic Energy Harvesting, 55–74. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119007487.ch4.
Texto completoBasset, Philippe, Elena Blokhina y Dimitri Galayko. "Basic Conditioning Circuits for Capacitive Kinetic Energy Harvesters". En Electrostatic Kinetic Energy Harvesting, 135–53. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119007487.ch8.
Texto completoBasset, Philippe, Elena Blokhina y Dimitri Galayko. "Nonlinear Resonance and its Application to Electrostatic Kinetic Energy Harvesters". En Electrostatic Kinetic Energy Harvesting, 97–119. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119007487.ch6.
Texto completoKhalifa, Sara, Guohao Lan, Mahbub Hassan, Wen Hu y Aruna Seneviratne. "Human Context Detection From Kinetic Energy Harvesting Wearables". En Advances in Wireless Technologies and Telecommunication, 107–33. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-3290-3.ch005.
Texto completoPrasanth, B., Deepa Kaliyaperumal, R. Jeyanthi y Saravanan Brahmanandam. "Real-Time Optimization of Regenerative Braking System in Electric Vehicles". En Electric Vehicles and the Future of Energy Efficient Transportation, 193–218. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-7626-7.ch008.
Texto completoActas de conferencias sobre el tema "Kinetic energy harvesters"
Sandhu, Muhammad Moid, Kai Geissdoerfer, Sara Khalifa, Raja Jurdak, Marius Portmann y Brano Kusy. "Towards Energy Positive Sensing using Kinetic Energy Harvesters". En 2020 IEEE International Conference on Pervasive Computing and Communications (PerCom). IEEE, 2020. http://dx.doi.org/10.1109/percom45495.2020.9127356.
Texto completoO'Riordan, Eoghan, Elena Blokhina y Dimitri Galayko. "Electromechanical coupling in electrostatic kinetic energy harvesters". En 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS). IEEE, 2016. http://dx.doi.org/10.1109/icecs.2016.7841229.
Texto completoTodorov, Georgi, Todor Todorov, Ivan Ivanov, Stanimir Valtchev y Ben Klaassens. "Tuning techniques for kinetic MEMS energy harvesters". En INTELEC 2011 - 2011 33rd International Telecommunications Energy Conference. IEEE, 2011. http://dx.doi.org/10.1109/intlec.2011.6099874.
Texto completoBessaad, Abdelkrim, Amine Rhouni, Philippe Basset y Dimitri Galayko. "Power Management Integrated Circuit for Electrostatic Kinetic Energy Harvesters". En 2020 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2020. http://dx.doi.org/10.1109/iscas45731.2020.9180972.
Texto completoBessaad, Abdelkrim, Amine Rhouni y Dimitri Galayko. "Maximum Power Point Tracking MPPT Algorithm for Kinetic Energy Harvesters". En 2021 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2021. http://dx.doi.org/10.1109/iscas51556.2021.9401343.
Texto completoYang, Wei, Panagiotis Alevras y Shahrzad Towfighian. "Investigation of Vibration Energy Harvesting Using Two Cantilevers With Random Input". En ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3860.
Texto completoTrigona, Carlo, Bruno Ando y Salvatore Baglio. "Measurements and analysis of body induced movements for kinetic energy harvesters". En 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2018. http://dx.doi.org/10.1109/i2mtc.2018.8409791.
Texto completoTrigona, Carlo, Bruno Ando y Salvatore Baglio. "Measurements and Investigations of Helicopter-Induced Vibrations for Kinetic Energy Harvesters". En 2019 IEEE Sensors Applications Symposium (SAS). IEEE, 2019. http://dx.doi.org/10.1109/sas.2019.8706082.
Texto completoSudano, A., D. Accoto, M. T. Francomano, F. Salvinelli y E. Guglielmelli. "Optimization of kinetic energy harvesters design for fully implantable Cochlear Implants". En 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011. http://dx.doi.org/10.1109/iembs.2011.6091892.
Texto completoBessaad, Abdelkrim, Amine Rhouni, Philippe Basset y Dimitri Galayko. "Autonomous CMOS Power Management Integrated Circuit for Electrostatic Kinetic Energy Harvesters e-KEH". En 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS). IEEE, 2019. http://dx.doi.org/10.1109/icecs46596.2019.8964736.
Texto completo