Artículos de revistas sobre el tema "Kinetic energy harvesters"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Kinetic energy harvesters".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Chiu, Min Chie, Ying Chun Chang, Long Jyi Yeh, Chiu Hung Chung y Chen Hsin Chu. "An Experimental Study of Low-Frequency Vibration-Based Electromagnetic Energy Harvesters Used while Walking". Advanced Materials Research 918 (abril de 2014): 106–14. http://dx.doi.org/10.4028/www.scientific.net/amr.918.106.
Texto completoShahosseini, I. y K. Najafi. "Mechanical Amplifier for Translational Kinetic Energy Harvesters". Journal of Physics: Conference Series 557 (27 de noviembre de 2014): 012135. http://dx.doi.org/10.1088/1742-6596/557/1/012135.
Texto completoGhaffarinejad, A., Y. Lu, R. Hinchet, D. Galayko, J. Y. Hasani y P. Basset. "Bennet's charge doubler boosting triboelectric kinetic energy harvesters". Journal of Physics: Conference Series 1052 (julio de 2018): 012027. http://dx.doi.org/10.1088/1742-6596/1052/1/012027.
Texto completoSchaufuss, Joerg, Dirk Scheibner y Jan Mehner. "New approach of frequency tuning for kinetic energy harvesters". Sensors and Actuators A: Physical 171, n.º 2 (noviembre de 2011): 352–60. http://dx.doi.org/10.1016/j.sna.2011.07.022.
Texto completoBasheer, Faiz, Elmehaisi Mehaisi, Ahmed Elsergany, Ahmed ElSheikh, Mehdi Ghommem y Fehmi Najar. "Energy harvesters for rotating systems: Modeling and performance analysis". tm - Technisches Messen 88, n.º 3 (16 de enero de 2021): 164–77. http://dx.doi.org/10.1515/teme-2020-0088.
Texto completoO’Riordan, Eoghan, Ronan Frizzell, Diarmuid O’Connell y Elena Blokhina. "Characterisation of anti-resonance in two-degree-of-freedom electromagnetic kinetic energy harvester, with modified electromagnetic model". Journal of Intelligent Material Systems and Structures 29, n.º 10 (28 de marzo de 2018): 2295–306. http://dx.doi.org/10.1177/1045389x18758934.
Texto completoLu, Zhuang, Quan Wen, Xianming He y Zhiyu Wen. "A Flutter-Based Electromagnetic Wind Energy Harvester: Theory and Experiments". Applied Sciences 9, n.º 22 (11 de noviembre de 2019): 4823. http://dx.doi.org/10.3390/app9224823.
Texto completoIbrahima, Dauda Sh, Asan G. A. Muthalif y Tanveer Saleh. "A Piezoelectric Based Energy Harvester with Magnetic Interactions: Modelling and Simulation". Advanced Materials Research 1115 (julio de 2015): 549–54. http://dx.doi.org/10.4028/www.scientific.net/amr.1115.549.
Texto completoNeri, Igor, Flavio Travasso, Riccardo Mincigrucci, Helios Vocca, Francesco Orfei y Luca Gammaitoni. "A real vibration database for kinetic energy harvesting application". Journal of Intelligent Material Systems and Structures 23, n.º 18 (6 de mayo de 2012): 2095–101. http://dx.doi.org/10.1177/1045389x12444488.
Texto completoBeach, Christopher y Alexander J. Casson. "Inertial Kinetic Energy Harvesters for Wearables: The Benefits of Energy Harvesting at the Foot". IEEE Access 8 (2020): 208136–48. http://dx.doi.org/10.1109/access.2020.3037952.
Texto completoAzam, Huda, Noor Hazrin Hany Mohamad Hanif y Aliza Aini Md Ralib. "MAGNETICALLY INDUCED PIEZOELECTRIC ENERGY HARVESTER VIA HYBRID KINETIC MOTION". IIUM Engineering Journal 20, n.º 1 (1 de junio de 2019): 245–57. http://dx.doi.org/10.31436/iiumej.v20i1.981.
Texto completoWang, Nianying, Ruofeng Han, Changnan Chen, Jiebin Gu y Xinxin Li. "Double-Deck Metal Solenoids 3D Integrated in Silicon Wafer for Kinetic Energy Harvester". Micromachines 12, n.º 1 (12 de enero de 2021): 74. http://dx.doi.org/10.3390/mi12010074.
Texto completoNguyen Duy, Vinh y Hyung-Man Kim. "A Study of the Movement, Structural Stability, and Electrical Performance for Harvesting Ocean Kinetic Energy Based on IPMC Material". Processes 8, n.º 6 (27 de mayo de 2020): 641. http://dx.doi.org/10.3390/pr8060641.
Texto completoCadei, Andrea, Alessandro Dionisi, Emilio Sardini y Mauro Serpelloni. "Kinetic and thermal energy harvesters for implantable medical devices and biomedical autonomous sensors". Measurement Science and Technology 25, n.º 1 (13 de noviembre de 2013): 012003. http://dx.doi.org/10.1088/0957-0233/25/1/012003.
Texto completoCHANG, Jen-Yuan (James) y Mike GUTIERREZ. "Self-Powered Kinetic Energy Harvesters for Seek-Induced Vibrations in Hard Disk Drives". Journal of Advanced Mechanical Design, Systems, and Manufacturing 4, n.º 1 (2010): 96–106. http://dx.doi.org/10.1299/jamdsm.4.96.
Texto completoYu-Jen, Wang, Chuang Tsung-Yi y Yu Jui-Hsin. "Design and kinetic analysis of piezoelectric energy harvesters with self-adjusting resonant frequency". Smart Materials and Structures 26, n.º 9 (14 de agosto de 2017): 095037. http://dx.doi.org/10.1088/1361-665x/aa7ad6.
Texto completoHuang, Ledeng, Ruishi Wang, Zhenhua Yang y Longhan Xie. "Energy Harvesting Backpacks for Human Load Carriage: Modelling and Performance Evaluation". Electronics 9, n.º 7 (28 de junio de 2020): 1061. http://dx.doi.org/10.3390/electronics9071061.
Texto completoRheinländer, Carl C. y Norbert Wehn. "Harvester-aware transient computing: Utilizing the mechanical inertia of kinetic energy harvesters for a proactive frequency-based power loss detection". Integration 75 (noviembre de 2020): 122–30. http://dx.doi.org/10.1016/j.vlsi.2020.06.010.
Texto completoO’Riordan, Eoghan, Dimitri Galayko, Philippe Basset y Elena Blokhina. "Complete electromechanical analysis of electrostatic kinetic energy harvesters biased with a continuous conditioning circuit". Sensors and Actuators A: Physical 247 (agosto de 2016): 379–88. http://dx.doi.org/10.1016/j.sna.2016.06.018.
Texto completoSokolov, Andrii, Dhiman Mallick, Saibal Roy, Michael Peter Kennedy y Elena Blokhina. "Modelling and Verification of Nonlinear Electromechanical Coupling in Micro-Scale Kinetic Electromagnetic Energy Harvesters". IEEE Transactions on Circuits and Systems I: Regular Papers 67, n.º 2 (febrero de 2020): 565–77. http://dx.doi.org/10.1109/tcsi.2019.2938421.
Texto completoZhu, Hongjun, Tao Tang, Huohai Yang, Junlei Wang, Jinze Song y Geng Peng. "The State-of-the-Art Brief Review on Piezoelectric Energy Harvesting from Flow-Induced Vibration". Shock and Vibration 2021 (1 de abril de 2021): 1–19. http://dx.doi.org/10.1155/2021/8861821.
Texto completoMösch, Mario, Gerhard Fischerauer y Daniel Hoffmann. "A Self-Adaptive and Self-Sufficient Energy Harvesting System". Sensors 20, n.º 9 (29 de abril de 2020): 2519. http://dx.doi.org/10.3390/s20092519.
Texto completoJasim, Abbas F., Hao Wang, Greg Yesner, Ahmad Safari y Pat Szary. "Performance Analysis of Piezoelectric Energy Harvesting in Pavement: Laboratory Testing and Field Simulation". Transportation Research Record: Journal of the Transportation Research Board 2673, n.º 3 (27 de febrero de 2019): 115–24. http://dx.doi.org/10.1177/0361198119830308.
Texto completoXu, Ye, Sebastian Bader, Michele Magno, Philipp Mayer y Bengt Oelmann. "System Implementation Trade-Offs for Low-Speed Rotational Variable Reluctance Energy Harvesters". Sensors 21, n.º 18 (21 de septiembre de 2021): 6317. http://dx.doi.org/10.3390/s21186317.
Texto completoBeeby, Stephen P., Leran Wang, Dibin Zhu, Alex S. Weddell, Geoff V. Merrett, Bernard Stark, Gyorgy Szarka y Bashir M. Al-Hashimi. "A comparison of power output from linear and nonlinear kinetic energy harvesters using real vibration data". Smart Materials and Structures 22, n.º 7 (7 de junio de 2013): 075022. http://dx.doi.org/10.1088/0964-1726/22/7/075022.
Texto completoRubes, Ondrej, Zdenek Machu, Oldrich Sevecek y Zdenek Hadas. "Crack Protective Layered Architecture of Lead-Free Piezoelectric Energy Harvester in Bistable Configuration". Sensors 20, n.º 20 (14 de octubre de 2020): 5808. http://dx.doi.org/10.3390/s20205808.
Texto completoGallardo-Vega, Carlos, Octavio López-Lagunes, Omar I. Nava-Galindo, Arxel De León, Jorge Romero-García, Luz Antonio Aguilera-Cortés, Jaime Martínez-Castillo y Agustín L. Herrera-May. "Triboelectric Energy Harvester Based on Stainless Steel/MoS2 and PET/ITO/PDMS for Potential Smart Healthcare Devices". Nanomaterials 11, n.º 6 (10 de junio de 2021): 1533. http://dx.doi.org/10.3390/nano11061533.
Texto completoZheng, Guang Ping, Z. Han y Y. Z. Liu. "The Microstructural, Mechanical and Electro-Mechanical Properties of Graphene Aerogel-PVDF Nanoporous Composites". Journal of Nano Research 29 (diciembre de 2014): 1–6. http://dx.doi.org/10.4028/www.scientific.net/jnanor.29.1.
Texto completoHam, Seong Su, Gyoung-Ja Lee, Dong Yeol Hyeon, Yeon-gyu Kim, Yeong-won Lim, Min-Ku Lee, Jin-Ju Park et al. "Kinetic motion sensors based on flexible and lead-free hybrid piezoelectric composite energy harvesters with nanowires-embedded electrodes for detecting articular movements". Composites Part B: Engineering 212 (mayo de 2021): 108705. http://dx.doi.org/10.1016/j.compositesb.2021.108705.
Texto completoZabihi, Niloufar y Mohamed Saafi. "Recent Developments in the Energy Harvesting Systems from Road Infrastructures". Sustainability 12, n.º 17 (20 de agosto de 2020): 6738. http://dx.doi.org/10.3390/su12176738.
Texto completoLi, Jie Hong, Ming Jing Cai y Long Han Xie. "Develop a Magnetic Pendulum to Scavenge Human Kinetic Energy from Arm Motion". Applied Mechanics and Materials 590 (junio de 2014): 48–52. http://dx.doi.org/10.4028/www.scientific.net/amm.590.48.
Texto completoAouali, Kaouthar, Najib Kacem, Noureddine Bouhaddi y Mohamed Haddar. "On the Optimization of a Multimodal Electromagnetic Vibration Energy Harvester Using Mode Localization and Nonlinear Dynamics". Actuators 10, n.º 2 (30 de enero de 2021): 25. http://dx.doi.org/10.3390/act10020025.
Texto completoManjarres, Jose y Mauricio Pardo. "An Energy Logger for Kinetic-Powered Wrist-Wearable Systems". Electronics 9, n.º 3 (15 de marzo de 2020): 487. http://dx.doi.org/10.3390/electronics9030487.
Texto completoCHANG, Jen-Yuan (James). "DVM-04 SELF-POWERED SEEK-INDUCED KINETIC ENERGY HARVESTER IN COMPUTER HARD DISK DRIVES(Drive Mechanisms I,Technical Program of Oral Presentations)". Proceedings of JSME-IIP/ASME-ISPS Joint Conference on Micromechatronics for Information and Precision Equipment : IIP/ISPS joint MIPE 2009 (2009): 169–70. http://dx.doi.org/10.1299/jsmemipe.2009.169.
Texto completoNarolia, Tejkaran, Vijay K. Gupta y IA Parinov. "Design and experimental study of rotary-type energy harvester". Journal of Intelligent Material Systems and Structures 31, n.º 13 (12 de junio de 2020): 1594–603. http://dx.doi.org/10.1177/1045389x20930085.
Texto completoNa, Yeong-min, Hyun-seok Lee y Jong-kyu Park. "A study on piezoelectric energy harvester using kinetic energy of ocean". Journal of Mechanical Science and Technology 32, n.º 10 (octubre de 2018): 4747–55. http://dx.doi.org/10.1007/s12206-018-0922-1.
Texto completoBeyaz, Mustafa, Hacene Baelhadj, Sahar Habibiabad, Shyam Adhikari, Hossein Davoodi y Vlad Badilita. "A Non-Resonant Kinetic Energy Harvester for Bioimplantable Applications". Micromachines 9, n.º 5 (5 de mayo de 2018): 217. http://dx.doi.org/10.3390/mi9050217.
Texto completoLee, Chibum y Hee Jae Park. "Design of Optimal Kinetic Energy Harvester Using Double Pendulum". Journal of the Korean Society of Manufacturing Technology Engineers 24, n.º 6 (15 de diciembre de 2015): 619–24. http://dx.doi.org/10.7735/ksmte.2015.24.6.619.
Texto completoZeng, Peng y Alireza Khaligh. "A Permanent-Magnet Linear Motion Driven Kinetic Energy Harvester". IEEE Transactions on Industrial Electronics 60, n.º 12 (diciembre de 2013): 5737–46. http://dx.doi.org/10.1109/tie.2012.2229674.
Texto completoZeng, Shan, Chunwei Zhang, Kaifa Wang, Baolin Wang y Li Sun. "Analysis of delamination of unimorph cantilever piezoelectric energy harvesters". Journal of Intelligent Material Systems and Structures 29, n.º 9 (14 de febrero de 2018): 1875–83. http://dx.doi.org/10.1177/1045389x17754273.
Texto completoSong, Jiayang y Kean C. Aw. "An energy harvester from human vibrational kinetic energy for wearable biomedical devices". International Journal of Biomechatronics and Biomedical Robotics 3, n.º 1 (2014): 54. http://dx.doi.org/10.1504/ijbbr.2014.059281.
Texto completoKwon, Dae-Sung, Hee-Jin Ko, Min-Ook Kim, Yongkeun Oh, Jaesam Sim, Kyounghoon Lee, Kyung-Ho Cho y Jongbaeg Kim. "Piezoelectric energy harvester converting strain energy into kinetic energy for extremely low frequency operation". Applied Physics Letters 104, n.º 11 (17 de marzo de 2014): 113904. http://dx.doi.org/10.1063/1.4869130.
Texto completoAyala-Garcia, I. N., P. D. Mitcheson, E. M. Yeatman, D. Zhu, J. Tudor y S. P. Beeby. "Magnetic tuning of a kinetic energy harvester using variable reluctance". Sensors and Actuators A: Physical 189 (enero de 2013): 266–75. http://dx.doi.org/10.1016/j.sna.2012.11.004.
Texto completoKumar, Mithlesh, G. M. A. Murali Krishna, Banibrata Mukherjee y Siddhartha Sen. "Design of SOI MEMS-based Bennet’s doubler kinetic energy harvester". Journal of Micro/Nanolithography, MEMS, and MOEMS 19, n.º 01 (20 de febrero de 2020): 1. http://dx.doi.org/10.1117/1.jmm.19.1.015001.
Texto completoAyala-Garcia, I. N., D. Zhu, M. J. Tudor y S. P. Beeby. "A tunable kinetic energy harvester with dynamic over range protection". Smart Materials and Structures 19, n.º 11 (21 de septiembre de 2010): 115005. http://dx.doi.org/10.1088/0964-1726/19/11/115005.
Texto completoMachů, Zdeněk, Oldřich Ševeček, Zdeněk Hadaš y Michal Kotoul. "Modeling of electromechanical response and fracture resistance of multilayer piezoelectric energy harvester with residual stresses". Journal of Intelligent Material Systems and Structures 31, n.º 19 (30 de julio de 2020): 2261–87. http://dx.doi.org/10.1177/1045389x20942832.
Texto completoKim, In-Ho, Seon-Jun Jang, Shi-Baek Park, Hyung-Jo Jung y Young-Cheol Kim. "Tunable yo-yo energy harvester with oblique springs". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234, n.º 16 (25 de marzo de 2020): 3185–94. http://dx.doi.org/10.1177/0954406220913593.
Texto completoLitak, Grzegorz, Jerzy Margielewicz, Damian Gąska, Piotr Wolszczak y Shengxi Zhou. "Multiple Solutions of the Tristable Energy Harvester". Energies 14, n.º 5 (26 de febrero de 2021): 1284. http://dx.doi.org/10.3390/en14051284.
Texto completoVan Herbruggen, Ben, Jaron Fontaine, Anniek Eerdekens, Margot Deruyck, Wout Joseph y Eli De Poorter. "Feasibility of Wireless Horse Monitoring Using a Kinetic Energy Harvester Model". Electronics 9, n.º 10 (20 de octubre de 2020): 1730. http://dx.doi.org/10.3390/electronics9101730.
Texto completoWu, Shuai, P. C. K. Luk, Chunfang Li, Xiangyu Zhao y Zongxia Jiao. "Investigation of an Electromagnetic Wearable Resonance Kinetic Energy Harvester With Ferrofluid". IEEE Transactions on Magnetics 53, n.º 9 (septiembre de 2017): 1–6. http://dx.doi.org/10.1109/tmag.2017.2714621.
Texto completo