Literatura académica sobre el tema "Lateral Bracing System"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Lateral Bracing System".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Lateral Bracing System"
Hemmati, Ali y Ali Kheyroddin. "BEHAVIOR OF LARGE-SCALE BRACING SYSTEM IN TALL BUILDINGS SUBJECTED TO EARTHQUAKE LOADS". Journal of Civil Engineering and Management 19, n.º 2 (18 de abril de 2013): 206–16. http://dx.doi.org/10.3846/13923730.2012.741613.
Texto completoShamivand, Abbas y Jalal Akbari. "Ring-Shaped Lateral Bracing System for Steel Structures". International Journal of Steel Structures 20, n.º 2 (16 de diciembre de 2019): 493–503. http://dx.doi.org/10.1007/s13296-019-00299-z.
Texto completoLee, Kang Seok. "An Experimental Study on Hybrid Noncompression CF Bracing and GF Sheet Wrapping Reinforcement Method to Restore Damaged RC Structures". Shock and Vibration 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/202751.
Texto completoHadad, Hadad S., Ibrahim M. Metwally y Sameh El-Betar. "Cyclic Behavior of Braced Concrete Frames: Experimental Investigation and Numerical Simulation". Building Research Journal 61, n.º 2 (1 de marzo de 2015): 101–14. http://dx.doi.org/10.2478/brj-2014-0008.
Texto completoSarhan, Osamah y Mahdy Raslan. "Study of the elastic stiffness factor of steel structures with different lateral load resisting systems". International Journal of Advanced Engineering, Sciences and Applications 1, n.º 2 (30 de abril de 2020): 6–11. http://dx.doi.org/10.47346/ijaesa.v1i2.26.
Texto completoMeynerd Rafael, Jusuf Wilson y Alva Yuventus Lukas. "COMPARISON STUDY OF BRACING CONFIGURATION WITH SHEAR LINK IN ECCENTRICALLY BRACED FRAME STEEL STRUCTURE". Journal Innovation of Civil Engineering (JICE) 1, n.º 1 (2 de noviembre de 2020): 7. http://dx.doi.org/10.33474/jice.v1i1.9058.
Texto completoBaijian, Tang, Shao Jianhua, Pei Xingzhu y Gu Sheng. "Mechanical Performance of Mega Steel Frame-Prestressed Composite Bracing Structure". Open Civil Engineering Journal 8, n.º 1 (7 de marzo de 2014): 23–41. http://dx.doi.org/10.2174/1874149501408010023.
Texto completoBagheri, Saman, Siamak S. Shishvan, Majid Barghian y Behzad Baniahmad. "A new energy dissipative cable bracing system". Advances in Structural Engineering 22, n.º 14 (27 de junio de 2019): 3134–46. http://dx.doi.org/10.1177/1369433219858726.
Texto completoKlasson, Anders, Roberto Crocetti, Ivar Björnsson y Eva Frühwald Hansson. "Design for lateral stability of slender timber beams considering slip in the lateral bracing system". Structures 16 (noviembre de 2018): 157–63. http://dx.doi.org/10.1016/j.istruc.2018.09.007.
Texto completoShen, Chao Ming y Jun Yuan Guo. "Static Mechanical Performance of Mega Steel Frame-Prestressed Composite Bracing Structure". Advanced Materials Research 838-841 (noviembre de 2013): 477–82. http://dx.doi.org/10.4028/www.scientific.net/amr.838-841.477.
Texto completoTesis sobre el tema "Lateral Bracing System"
Al, Mamun Abdullah. "Investigating the Performance of Wood Portal Frames as Alternative Bracing Systems in Light-Frame Wood Buildings". Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23142.
Texto completoMichel, Kenan. "Distribution of Lateral Forces on Reinforced Masonry Bracing Elements Considering Inelastic Material Behavior - Deformation-Based Matrix Method -". Technische Universität Dresden, 2021. https://tud.qucosa.de/id/qucosa%3A75156.
Texto completoSorensen, Taylor J. "Quantifying the Lateral Bracing Provided by Standing Steam Roof Systems". DigitalCommons@USU, 2016. https://digitalcommons.usu.edu/etd/4695.
Texto completoStark, John W. "The effect of lateral bracing on the dynamic response of wood floor systems". Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-01242009-063313/.
Texto completoSeek, Michael Walter. "Prediction of Lateral Restraint Forces in Sloped Z-section Supported Roof Systems Using the Component Stiffness Method". Diss., Virginia Tech, 2007. http://hdl.handle.net/10919/28357.
Texto completoPh. D.
Michel, Kenan. "Performance Based Seismic Design of Lateral Force Resisting System". 2020. https://tud.qucosa.de/id/qucosa%3A72374.
Texto completoLateral Force Resisting System, in this case reinforced concrete core walls of a 10 story building consists of gravity columns and shear walls, has been analyzed in linear (assuming linear elastic material behavior of concrete) and nonlinear cracked (considering plastic material behavior of concrete) case, for seismic loading. Starting with the basic method of equivalent lateral force to estimate the seismic loads, then using the up to date method, The Performance Based Seismic Design, which uses real seismic records and apply the accelerations on the building using the software ETABS. After applying the accelerations, maximum resulted forces and deformations have been evaluated. The building then have been designed for the maximum resulted forces. The contents of the main report are: - General description of the building, site seismic information, site response spectra, loading and seismic forces including modal response spectrum analysis. - Linear design of the model for gravity and seismic loads, P-M interaction diagrams developed for U cross section from reinforced concrete, designing longitudinal and shear reinforcement of the shear walls and coupling beam. - Two variants of Nonlinear model, designing the core wall (shear walls) according to each variant, studying the influence of damping model on the nonlinear dynamic response, as well as the influence of the coupling beam model on the nonlinear dynamic response. - Design verification, starting with defining the performance objects, and model for time history analysis. Two performance objectives have been studied: Fully operational and Life safety level verifications. - Additional study was performed for the response of non-structural elements due to seismic loading in two cases: Fully operational and Life safety level verifications. - Reinforcement Drawings have been finalized and attached to the report. - Conclusion and recommendations was at the end of the report. It is important for the society, because the used method could be used for the seismic design of any building. It could be wood building or masonry building. Designing a masonry building case will be the subject of future research project. Overall objectives: Linear and Nonlinear seismic design of reinforced concrete building using the performance bases seismic design.:Acknowledgement 4 PART I: General Information, Site and Loading 5 1. General Information About the Building 5 1.1. Specified Material Properties: 6 1.2. Site Information: 6 1.3. Geometry (Figure I.1): 7 2. Site Seismicity and Design Coefficients 7 2.1. USGS Results 7 2.2. Site Response Spectra 8 2.3. Design Coefficients And Factors For Seismic Force-Resisting Systems 8 3. Loading 9 3.1. Determination Of Seismic Forces 9 3.2. Modal Response Spectrum Analysis 9 3.3. Seismic Load Effects And Combinations 11 PART II: Core Wall Design - Linear Model 12 4. Model of ETABS 12 4.1. Geometry 12 4.2. Gravity Loads 13 4.3. Seismic Loads 15 4.4. Tabulated Selected Results From ETABS Analysis 16 5. P-M Interaction Diagrams 17 5.1. N-S Direction 17 5.2. E-W Direction 19 6. Lateral Force Resisting System, Linear 20 6.1. Longitudinal Reinforcement 20 6.2. Shear Reinforcement 22 6.3. Boundary Elements 24 6.3.1. Transverse Reinforcement Of Boundary Elements 26 6.4. Coupling Beams 27 7. Detailing 30 PART III: Site Response Spectra and Input Ground Motions 31 8. Performance Levels 31 8.1. ASCE 7-16 Target Spectra 31 8.2. Site Response Spectra 34 8.2.1. Ground Motion Conditioning 34 8.2.2. Amplitude Scaling 37 8.2.3. Pseudo Acceleration and Displacement Response Spectra 38 PART IV: Non-Linear Model 40 9. Variant 1 of Non-Linear Model 40 9.1. Complete Core Wall Design for Combined Axial-Flexure 40 9.2. Modal Analysis 43 9.3. Influence of the Damping Model on the Nonlinear Dynamic Response 49 10. Variant 2 of Non-Linear Model 57 10.1. Influence of the Coupling Beam Model on the Nonlinear Dynamic Response 57 10.2. Estimated Roof Displacement 68 PART V: Design Verification 70 11. General 70 11.1. Performance Objectives 70 11.2. Model For Time-History Analyses 71 11.3. Performance Level Verification 71 11.4. Fully Operational Performance Level Verification 71 11.5. Life Safety Performance Level Verification 78 PART VI: Capacity Design of Force Controlled Elements and Regions and Design of Acceleration-Sensitive Nonstructural Elements 87 12. General 87 12.1. Design Verification 87 12.1.1. Full Occupancy Case 87 12.1.2. Life Safety Case 91 12.1.3. Observations on Plots 93 12.2. Acceleration response spectra at roof level 94 12.2.1. Observations on Plots 95 12.3. Core Wall 97 12.4. Design Detail Comparison 103 12.5. Detailed Drawing 103 12.6. Diaphragm 104 12.7. Fire Sprinkler System 117 12.8. Overhanging Projector 119 PART VII: Conclusion 122
Chen, Brian Scott. "Top-lateral bracing systems for trapezoidal steel box-girder bridges". Thesis, 2002. http://hdl.handle.net/2152/494.
Texto completoChen, Brian Scott Yura J. A. Frank Karl H. "Top-lateral bracing systems for trapezoidal steel box-girder bridges". 2002. http://wwwlib.umi.com/cr/utexas/fullcit?p3108484.
Texto completoLibros sobre el tema "Lateral Bracing System"
Leslie, Thomas. Steel and Wind: The Braced Frame, 1890–1897. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252037542.003.0004.
Texto completoCapítulos de libros sobre el tema "Lateral Bracing System"
Yu, Q. S. ‘Kent’ y C. M. Uang. "Effects of lateral bracing and system restraint on the behavior of RBS moment connections". En Behaviour of Steel Structures in Seismic Areas, 755–62. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003211198-103.
Texto completoThomas, Merin y Gayathri Krishnakumar. "Behavior of Harp and Perimetral Bracing System in Pre-engineered Building Subjected to Lateral Loads". En Lecture Notes in Civil Engineering, 659–65. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80312-4_55.
Texto completo"Lateral Bracing Systems". En Structural Competency for Architects, 123–32. Routledge, 2014. http://dx.doi.org/10.4324/9780203583159-21.
Texto completoBiegus, A. y D. Czepiżak. "Global geometrical imperfections for refined analysis of lateral roof bracing systems". En Metal Structures 2016, 187–96. CRC Press, 2016. http://dx.doi.org/10.1201/b21417-26.
Texto completoActas de conferencias sobre el tema "Lateral Bracing System"
Biggs, D. T. y D. B. Throop. "Lateral Bracing with Hybrid Masonry—System Overview". En Structures Congress 2010. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41130(369)89.
Texto completoJacot, Benjamin, Corentin Fivet, Mitchell Shope, Dimitrios Pagonakis y John Ochsendorf. "An Optimized Bracing System for Distributed Lateral Loads". En 5th Annual International Conference on Architecture and Civil Engineering (ACE 2017). Global Science & Technology Forum (GSTF), 2017. http://dx.doi.org/10.5176/2301-394x_ace17.117.
Texto completoZhou, Y. Edward y Amy Eitel Biegalski. "Problem Diagnosis and Retrofit of Lateral Bracing System of a Truss Bridge". En Structures Congress 2008. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/41016(314)6.
Texto completoArimura, Kentaro, Takashi Yamaguchi, Kohei Funayama y Naoto Hirosawa. "Analytical Study on Bearing Capacity as a Structural System of Corroded Steel Bridge". En IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.1393.
Texto completoRing, J. B. y Charles Kim. "A Passive Brace to Improve Activities of Daily Living Utilizing Compliant Parallel Mechanisms". En ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59616.
Texto completoRamseyer, Chris, Royce Floyd, Lisa Holliday y Seth Roswurm. "Influence of Lateral Load Bracing Systems on Damage and Survivability of Residential Structures Impacted by the Moore, Oklahoma, Tornado of May 20, 2013". En Structures Congress 2014. Reston, VA: American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413357.131.
Texto completo