Literatura académica sobre el tema "Leave one out method"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Leave one out method".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Leave one out method"
Krzanowski, W. J. y D. J. Hand. "ASSESSING ERROR RATE ESTIMATORS: THE LEAVE-ONE-OUT METHOD RECONSIDERED". Australian Journal of Statistics 39, n.º 1 (marzo de 1997): 35–46. http://dx.doi.org/10.1111/j.1467-842x.1997.tb00521.x.
Texto completoZhang, Tong. "Leave-One-Out Bounds for Kernel Methods". Neural Computation 15, n.º 6 (1 de junio de 2003): 1397–437. http://dx.doi.org/10.1162/089976603321780326.
Texto completoLi, Xiping, David Tripe, Chris Malone y David Smith. "Measuring systemic risk contribution: The leave-one-out z-score method". Finance Research Letters 36 (octubre de 2020): 101316. http://dx.doi.org/10.1016/j.frl.2019.101316.
Texto completoBrovelli, Maria Antonia, Mattia Crespi, Francesca Fratarcangeli, Francesca Giannone y Eugenio Realini. "Accuracy assessment of high resolution satellite imagery orientation by leave-one-out method". ISPRS Journal of Photogrammetry and Remote Sensing 63, n.º 4 (julio de 2008): 427–40. http://dx.doi.org/10.1016/j.isprsjprs.2008.01.006.
Texto completoALPTEKIN, AHMET y OLCAY KURSUN. "MISS ONE OUT: A CROSS-VALIDATION METHOD UTILIZING INDUCED TEACHER NOISE". International Journal of Pattern Recognition and Artificial Intelligence 27, n.º 07 (noviembre de 2013): 1351003. http://dx.doi.org/10.1142/s0218001413510038.
Texto completoMontoya Perez, Ileana, Antti Airola, Peter J. Boström, Ivan Jambor y Tapio Pahikkala. "Tournament leave-pair-out cross-validation for receiver operating characteristic analysis". Statistical Methods in Medical Research 28, n.º 10-11 (20 de agosto de 2018): 2975–91. http://dx.doi.org/10.1177/0962280218795190.
Texto completoBelotti, Federico y Franco Peracchi. "Fast leave-one-out methods for inference, model selection, and diagnostic checking". Stata Journal: Promoting communications on statistics and Stata 20, n.º 4 (diciembre de 2020): 785–804. http://dx.doi.org/10.1177/1536867x20976312.
Texto completoLee, M. M. S., S. S. Keerthi, C. J. Ong y D. DeCoste. "An Efficient Method for Computing Leave-One-Out Error in Support Vector Machines With Gaussian Kernels". IEEE Transactions on Neural Networks 15, n.º 3 (mayo de 2004): 750–57. http://dx.doi.org/10.1109/tnn.2004.824266.
Texto completoBo, Liefeng, Ling Wang y Licheng Jiao. "Feature Scaling for Kernel Fisher Discriminant Analysis Using Leave-One-Out Cross Validation". Neural Computation 18, n.º 4 (1 de abril de 2006): 961–78. http://dx.doi.org/10.1162/neco.2006.18.4.961.
Texto completoLv, Liye, Xueguan Song y Wei Sun. "Modify Leave-One-Out Cross Validation by Moving Validation Samples around Random Normal Distributions: Move-One-Away Cross Validation". Applied Sciences 10, n.º 7 (3 de abril de 2020): 2448. http://dx.doi.org/10.3390/app10072448.
Texto completoTesis sobre el tema "Leave one out method"
Tseng, Hsin-Wu, Jiahua Fan y Matthew A. Kupinski. "Design of a practical model-observer-based image quality assessment method for x-ray computed tomography imaging systems". SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 2016. http://hdl.handle.net/10150/622347.
Texto completoTaner, Serdar. "Image Classification For Content Based Indexing". Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/2/1093269/index.pdf.
Texto completoTandan, Isabelle y Erika Goteman. "Bank Customer Churn Prediction : A comparison between classification and evaluation methods". Thesis, Uppsala universitet, Statistiska institutionen, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-411918.
Texto completoMonari, Gaétan. "Sélection de modèles non linéaires par "leave-one-out": étude théorique et application des réseaux de neurones au procédé de soudage par points". Phd thesis, Université Pierre et Marie Curie - Paris VI, 1999. http://pastel.archives-ouvertes.fr/pastel-00000676.
Texto completoMONARI, GAETAN. "Selection de modeles non lineaires par leave-one-out ; etude theorique et application des reseaux de neurones au procede de soudage par points". Paris 6, 1999. http://www.theses.fr/1999PA066349.
Texto completoBabay, Dhouib Amel. "Contribution à la modélisation de l'influence des caractéristiques des fibres de coton et des paramètres du processus sur les propriétés des filés classiques et flammés". Valenciennes, 2004. http://ged.univ-valenciennes.fr/nuxeo/site/esupversions/81169dfa-b5b8-4f19-b771-cfef62fe792a.
Texto completoNowadays, the industry of the short fibre spinning mill needs performing tools allowing the modelling of process and the prediction of the yarn properties in order to control the level of quality of its products, to satisfy the customers and to increase their competitivity. Within this framework, the spinner, willing to improve and adapt continuously his product, must have more rational knowledge of the process of spinning mill, in particular concerning the correlations between the fibre and the yarn characteristics. Indeed, the fibre properties have a determining influence on the working of the machines, the quality and the cost of the final product. Thus, we propose a prediction system made up of several neuronal models allowing to predict the properties of two categories of yarns: ring spun and fancy yarns starting from the knowledge of the characteristics of cotton fibres and the structural parameters. The choice of the neuronal models having the optimal architecture was accomplished thanks to the application of an original approach called "virtual leave-one-out". The performances of the established models are evaluated and analyzed on the basis of a real data base gathered from an industrial spinning mill manufacturing yarns for the "denim" applications. Finally, the analysis of the impact of the input variables on the various model outputs has confirmed the validity of the variation of the modelled properties and has also shown that the established models reflect very well the experimental reality
Horn, Jean-François. "Diagnostic des maladies neurodégénératives à partor d'images obtenues par tomographie d'émission monophotonique et à l'aide de méthodes de classement avec apprentissage supervisé". Paris 6, 2009. http://www.theses.fr/2009PA066454.
Texto completoDizon, Lucas y Martin Johansson. "Atrial Fibrillation Detection Algorithm Evaluation and Implementation in Java". Thesis, KTH, Skolan för teknik och hälsa (STH), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-158878.
Texto completoFörmaksflimmer är en vanlig hjärtrytmrubbning som kännetecknas av en avsaknad eller oregelbunden kontraktion av förmaken. Sjukdomen är en riskfaktor för andra allvarligare sjukdomar och de totala kostnaderna för samhället är betydande. Det skulle därför vara fördelaktigt att effektivisera och förbättra prevention samt diagnostisering av förmaksflimmer. Kliniskt diagnostiseras förmaksflimmer med hjälp av till exempel pulspalpation och auskultation av hjärtat, men diagnosen brukar fastställas med en EKG-undersökning. Det finns idag flertalet algoritmer för att detektera arytmin genom att analysera ett EKG. En av de vanligaste metoderna är att undersöka variabiliteten av hjärtrytmen (HRV) och utföra olika sorters statistiska beräkningar som kan upptäcka episoder av förmaksflimmer som avviker från en normal sinusrytm. I detta projekt har två metoder för att detektera förmaksflimmer utvärderats i Matlab, en baseras på beräkningar av variationskoefficienten och den andra använder sig av logistisk regression. EKG som kommer från databasen Physionet MIT används för att träna och testa modeller av algoritmerna. Innan EKG-signalen kan användas måste den behandlas för att ta bort olika typer av brus och artefakter. Vid test av algoritmen med variationskoefficienten blev resultatet en sensitivitet på 91,38%, en specificitet på 93,93% och en noggrannhet på 92,92%. För logistisk regression blev sensitiviteten 97,23%, specificiteten 93,79% och noggrannheten 95,39%. Algoritmen med logistisk regression presterade bättre och valdes därför för att implementeras i Java, där uppnåddes en sensitivitet på 91,31%, en specificitet på 93,47% och en noggrannhet på 95,25%.
Brites, Alice Dantas. "Monitoramento dos efeitos ecológicos e socioeconômicos da comercialização de produtos florestais não madereiros". Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/90/90131/tde-24032011-215203/.
Texto completoAmazon, non-timber forest products, ecological effects, socioeconomic effects, monitoring.
Jhou, Wan-Jhen y 周琬真. "Convolutive independent component analysis by density estimation and leave-one-out approximation". Thesis, 2005. http://ndltd.ncl.edu.tw/handle/60627297990860247707.
Texto completo國立東華大學
應用數學系
93
This work explores blind separation of convolutive mixtures of independent sources. The convolutive structure consists of multiple, e.g. τ, mixing matrices, each corresponding to a different time delay, through which a segment of consecutive source signals are convoluted to form an observation. Based on the convolutive structure, the observations are temporally correlated among their different components. As τ = 1, the convolutive structure reduces to a linear transformation that produces temporally uncorrelated observations among different components, simply to a case typically attacked by independent component analysis (ICA). For arbitrary τ, estimating the convolutive structure as well as source signals subject to given observations decomposes to τ simultaneous sub-tasks following the leave-one approximation, each corresponding to optimizing a mixing matrix subject to a set of intermediate observations, each measuring the convolutive result of source signals through the other τ-1 mixing matrices. By the decomposition, each of τ simultaneous sub-tasks translates to a typical ICA task and can be directly resolved by the density estimation based ICA algorithm here. Numerical simulations show the novel approach is effective for blind source separation of fetal ECG and event-related potentials (ERP) signals.
Libros sobre el tema "Leave one out method"
Busacca, Maurizio y Roberto Paladini. Collaboration Age. Venice: Fondazione Università Ca’ Foscari, 2020. http://dx.doi.org/10.30687/978-88-6969-424-0.
Texto completoStrong, S. I. 3. Step one in the IRAC method: the issue. Oxford University Press, 2018. http://dx.doi.org/10.1093/he/9780198811152.003.0003.
Texto completoFoucault Welles, Brooke y Sandra González-Bailón, eds. The Oxford Handbook of Networked Communication. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780190460518.001.0001.
Texto completoTrout, J. D. All Talked Out. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190686802.001.0001.
Texto completoLafer, Gordon. The One Percent Solution. Cornell University Press, 2017. http://dx.doi.org/10.7591/cornell/9781501703065.001.0001.
Texto completoHoffman, Lawrence A. Jewish Liturgy and Jewish Scholarship: Method and Cosmology. Editado por Martin Goodman. Oxford University Press, 2009. http://dx.doi.org/10.1093/oxfordhb/9780199280322.013.0029.
Texto completoRose, Jonathan. Readers' Liberation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198723554.001.0001.
Texto completoWilliam A, Schabas. Part 8 Appeal and Revision: Appel et Révision, Art.82 Appeal against other decisions/Appel d’autres décisions. Oxford University Press, 2016. http://dx.doi.org/10.1093/law/9780198739777.003.0087.
Texto completoBanati, Prerna, ed. Sustainable Human Development Across the Life Course. Policy Press, 2021. http://dx.doi.org/10.1332/policypress/9781529204827.001.0001.
Texto completoCaney, Simon. Justice and Posterity. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198813248.003.0009.
Texto completoCapítulos de libros sobre el tema "Leave one out method"
Tsumoto, Shusaku y Shoji Hirano. "Evaluation of Leave-One Out Method Based on Incremental Sampling Scheme". En Rough Sets and Intelligent Systems Paradigms, 225–36. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08729-0_22.
Texto completoChernousova, Elena, Nikolay Razin, Olga Krasotkina, Vadim Mottl y David Windridge. "Linear Regression via Elastic Net: Non-enumerative Leave-One-Out Verification of Feature Selection". En Clusters, Orders, and Trees: Methods and Applications, 377–90. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0742-7_22.
Texto completoZhang, Tong. "A Leave-One-out Cross Validation Bound for Kernel Methods with Applications in Learning". En Lecture Notes in Computer Science, 427–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44581-1_28.
Texto completoWebb, Geoffrey I., Claude Sammut, Claudia Perlich, Tamás Horváth, Stefan Wrobel, Kevin B. Korb, William Stafford Noble et al. "Leave-One-Out Error". En Encyclopedia of Machine Learning, 601. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_470.
Texto completoTsuda, Koji y Motoaki Kawanabe. "The Leave-One-Out Kernel". En Artificial Neural Networks — ICANN 2002, 727–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46084-5_118.
Texto completoWebb, Geoffrey I., Claude Sammut, Claudia Perlich, Tamás Horváth, Stefan Wrobel, Kevin B. Korb, William Stafford Noble et al. "Leave-One-Out Cross-Validation". En Encyclopedia of Machine Learning, 600–601. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_469.
Texto completoAckermann, Friedrich, Grit Herrmann, Stefan Posch y Gerhard Sagerer. "Evaluierung eines Protein-Dockingsystems durch Leave-One-Out-Test". En Informatik aktuell, 130–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80294-2_14.
Texto completoRuxin, Qin, Chen Jing, Deng Naiyang y Tian Yingjie. "A Leave-One-Out Bound for ν−Support Vector Regression". En Computational Science – ICCS 2007, 669–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72588-6_113.
Texto completoYuan, Jin, Yan-Ming Li, Cheng-Liang Liu y Xuan F. Zha. "Leave-One-Out Cross-Validation Based Model Selection for Manifold Regularization". En Advances in Neural Networks - ISNN 2010, 457–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13278-0_59.
Texto completoBo, Liefeng, Ling Wang y Licheng Jiao. "Multiple Parameter Selection for LS-SVM Using Smooth Leave-One-Out Error". En Advances in Neural Networks — ISNN 2005, 851–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11427391_136.
Texto completoActas de conferencias sobre el tema "Leave one out method"
Wang, Xiaolin, Masao Utiyama, Andrew Finch, Taro Watanabe y Eiichiro Sumita. "Leave-one-out Word Alignment without Garbage Collector Effects". En Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2015. http://dx.doi.org/10.18653/v1/d15-1209.
Texto completoTsumoto, Shusaku y Shoji Hirano. "Formal analysis of leave-one out method based on decremental sampling scheme". En 2014 IEEE International Conference on Systems, Man and Cybernetics - SMC. IEEE, 2014. http://dx.doi.org/10.1109/smc.2014.6974349.
Texto completoLiu, Jianguo, Neil Danait, Shawn Hu y Sayon Sengupta. "A leave-one-feature-out wrapper method for feature selection in data classification". En 2013 6th International Conference on Biomedical Engineering and Informatics (BMEI). IEEE, 2013. http://dx.doi.org/10.1109/bmei.2013.6747021.
Texto completoFukuta, Kentaro, Tomomasa Nagashima y Yoshifumi Okada. "LEAF: Leave-One-Out Forward Selection Method for Cancer Classification Using Gene Expression Data". En 2010 IEEE/ACIS 9th International Conference on Computer and Information Science (ICIS). IEEE, 2010. http://dx.doi.org/10.1109/icis.2010.132.
Texto completoTsumoto, Shusaku y Shoji Hirano. "Formal Analysis of Leave-One-Out Methods Based on Decremental Sampling Scheme". En 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT). IEEE, 2014. http://dx.doi.org/10.1109/wi-iat.2014.121.
Texto completoZhang, Bo, Xianyuan Huang, Long Fan y Guobin Chang. "Sparseness of the LS-SVM algorithm based on the leave one out cross validation method with Multibeam data". En EITCE 2020: 2020 4th International Conference on Electronic Information Technology and Computer Engineering. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3443467.3443763.
Texto completoWang, Yu-Jen, Shyang-Jye Chang, Kuo-Chieh Fu y Chien-Erh Weng. "Design of a Dual-Resonance Excitation Langevin Piezoelectric Actuator Using Taguchi Method". En ASME 2016 Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/isps2016-9506.
Texto completoZurru, Antioco Luigi, Antonello Mura y Ilaria Tatulli. "Leave no one behind. Design inclusive motor activities in Primary Teacher Education Courses". En Fifth International Conference on Higher Education Advances. Valencia: Universitat Politècnica València, 2019. http://dx.doi.org/10.4995/head19.2019.9411.
Texto completoBlack, Emily y Matt Fredrikson. "Leave-one-out Unfairness". En FAccT '21: 2021 ACM Conference on Fairness, Accountability, and Transparency. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3442188.3445894.
Texto completoBender, Dieter, Ali Jalali, Daniel J. Licht y C. Nataraj. "Prediction of Periventricular Leukomalacia Occurrence in Neonates Using a Novel Support Vector Machine Classifier Optimization Method". En ASME 2015 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/dscc2015-9984.
Texto completoInformes sobre el tema "Leave one out method"
Iyer, R., J. P. Shulka y A. Verma. Community Leave No One Behind: Lessons from a Pilot. Institute of Development Studies (IDS), julio de 2021. http://dx.doi.org/10.19088/slh.2021.014.
Texto completoMARTINEZ, RUBEL F. A Visual Empirical Region of Influence Pattern Recognition Tool for Leave-One-Out Data Analysis. Office of Scientific and Technical Information (OSTI), marzo de 2002. http://dx.doi.org/10.2172/793409.
Texto completoShukla, J. P. y Anupma Verma. Community Leave No One Behind: Handbook For Practitioners. Institute of Development Studies (IDS), julio de 2021. http://dx.doi.org/10.19088/slh.2021.015.
Texto completoLi, Howell, Tom Platte, Jijo K. Mathew, W. Benjamin Smith, Enrique Saldivar-Carranza y Darcy M. Bullock. Using Connected Vehicle Data to Reassess Dilemma Zone Performance of Heavy Vehicles. Purdue University, 2020. http://dx.doi.org/10.5703/1288284317321.
Texto completoDowning, W. Logan, Howell Li, William T. Morgan, Cassandra McKee y Darcy M. Bullock. Using Probe Data Analytics for Assessing Freeway Speed Reductions during Rain Events. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317350.
Texto completo