Artículos de revistas sobre el tema "Longevity. Saccharomyces cerevisiae Saccharomyces cerevisiae Proteins Signal Transduction"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Longevity. Saccharomyces cerevisiae Saccharomyces cerevisiae Proteins Signal Transduction".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Santangelo, George M. "Glucose Signaling in Saccharomyces cerevisiae". Microbiology and Molecular Biology Reviews 70, n.º 1 (marzo de 2006): 253–82. http://dx.doi.org/10.1128/mmbr.70.1.253-282.2006.
Texto completoLevin, David E. "Cell Wall Integrity Signaling in Saccharomyces cerevisiae". Microbiology and Molecular Biology Reviews 69, n.º 2 (junio de 2005): 262–91. http://dx.doi.org/10.1128/mmbr.69.2.262-291.2005.
Texto completoAlepuz, Paula M., Dina Matheos, Kyle W. Cunningham y Francisco Estruch. "The Saccharomyces cerevisiae RanGTP-Binding Protein Msn5p Is Involved in Different Signal Transduction Pathways". Genetics 153, n.º 3 (1 de noviembre de 1999): 1219–31. http://dx.doi.org/10.1093/genetics/153.3.1219.
Texto completoWhiteway, Malcolm, Daniel Dignard y David Y. Thomas. "Mutagenesis of Ste18, a putative Gγ subunit in the Saccharomyces cerevisiae pheromone response pathway". Biochemistry and Cell Biology 70, n.º 10-11 (1 de octubre de 1992): 1230–37. http://dx.doi.org/10.1139/o92-169.
Texto completoGerst, J. E., K. Ferguson, A. Vojtek, M. Wigler y J. Field. "CAP is a bifunctional component of the Saccharomyces cerevisiae adenylyl cyclase complex." Molecular and Cellular Biology 11, n.º 3 (marzo de 1991): 1248–57. http://dx.doi.org/10.1128/mcb.11.3.1248.
Texto completoGerst, J. E., K. Ferguson, A. Vojtek, M. Wigler y J. Field. "CAP is a bifunctional component of the Saccharomyces cerevisiae adenylyl cyclase complex". Molecular and Cellular Biology 11, n.º 3 (marzo de 1991): 1248–57. http://dx.doi.org/10.1128/mcb.11.3.1248-1257.1991.
Texto completoMösch, Hans-Ulrich y Gerald R. Fink. "Dissection of Filamentous Growth by Transposon Mutagenesis in Saccharomyces cerevisiae". Genetics 145, n.º 3 (1 de marzo de 1997): 671–84. http://dx.doi.org/10.1093/genetics/145.3.671.
Texto completoMiyajima, I., N. Nakayama, M. Nakafuku, Y. Kaziro, K. Arai y K. Matsumoto. "Suppressors of a gpa1 mutation cause sterility in Saccharomyces cerevisiae." Genetics 119, n.º 4 (1 de agosto de 1988): 797–804. http://dx.doi.org/10.1093/genetics/119.4.797.
Texto completoSitcheran, Raquel, Roger Emter, Anastasia Kralli y Keith R. Yamamoto. "A Genetic Analysis of Glucocorticoid Receptor Signaling: Identification and Characterization of Ligand-Effect Modulators in Saccharomyces cerevisiae". Genetics 156, n.º 3 (1 de noviembre de 2000): 963–72. http://dx.doi.org/10.1093/genetics/156.3.963.
Texto completoSuzuki-Fujimoto, T., M. Fukuma, K. I. Yano, H. Sakurai, A. Vonika, S. A. Johnston y T. Fukasawa. "Analysis of the galactose signal transduction pathway in Saccharomyces cerevisiae: interaction between Gal3p and Gal80p." Molecular and Cellular Biology 16, n.º 5 (mayo de 1996): 2504–8. http://dx.doi.org/10.1128/mcb.16.5.2504.
Texto completoKim, Jeong-Ho, Valérie Brachet, Hisao Moriya y Mark Johnston. "Integration of Transcriptional and Posttranslational Regulation in a Glucose Signal Transduction Pathway in Saccharomyces cerevisiae". Eukaryotic Cell 5, n.º 1 (enero de 2006): 167–73. http://dx.doi.org/10.1128/ec.5.1.167-173.2006.
Texto completoGomez, Shawn M., Shaw-Hwa Lo y Andrey Rzhetsky. "Probabilistic Prediction of Unknown Metabolic and Signal-Transduction Networks". Genetics 159, n.º 3 (1 de noviembre de 2001): 1291–98. http://dx.doi.org/10.1093/genetics/159.3.1291.
Texto completoNeiman, A. M., B. J. Stevenson, H. P. Xu, G. F. Sprague, I. Herskowitz, M. Wigler y S. Marcus. "Functional homology of protein kinases required for sexual differentiation in Schizosaccharomyces pombe and Saccharomyces cerevisiae suggests a conserved signal transduction module in eukaryotic organisms." Molecular Biology of the Cell 4, n.º 1 (enero de 1993): 107–20. http://dx.doi.org/10.1091/mbc.4.1.107.
Texto completoYoon, Je-Hyun, Eui-Ju Choi y Roy Parker. "Dcp2 phosphorylation by Ste20 modulates stress granule assembly and mRNA decay in Saccharomyces cerevisiae". Journal of Cell Biology 189, n.º 5 (31 de mayo de 2010): 813–27. http://dx.doi.org/10.1083/jcb.200912019.
Texto completoFujimura, H. A. "The yeast G-protein homolog is involved in the mating pheromone signal transduction system." Molecular and Cellular Biology 9, n.º 1 (enero de 1989): 152–58. http://dx.doi.org/10.1128/mcb.9.1.152.
Texto completoFujimura, H. A. "The yeast G-protein homolog is involved in the mating pheromone signal transduction system". Molecular and Cellular Biology 9, n.º 1 (enero de 1989): 152–58. http://dx.doi.org/10.1128/mcb.9.1.152-158.1989.
Texto completoSchrick, Kathrin, Barbara Garvik y Leland H. Hartwell. "Mating in Saccharomyces cerevisiae: The Role of the Pheromone Signal Transduction Pathway in the Chemotropic Response to Pheromone". Genetics 147, n.º 1 (1 de septiembre de 1997): 19–32. http://dx.doi.org/10.1093/genetics/147.1.19.
Texto completoCatlett, Natalie L., Olen C. Yoder y B. Gillian Turgeon. "Whole-Genome Analysis of Two-Component Signal Transduction Genes in Fungal Pathogens". Eukaryotic Cell 2, n.º 6 (diciembre de 2003): 1151–61. http://dx.doi.org/10.1128/ec.2.6.1151-1161.2003.
Texto completoSchmidt, A., M. N. Hall y A. Koller. "Two FK506 resistance-conferring genes in Saccharomyces cerevisiae, TAT1 and TAT2, encode amino acid permeases mediating tyrosine and tryptophan uptake." Molecular and Cellular Biology 14, n.º 10 (octubre de 1994): 6597–606. http://dx.doi.org/10.1128/mcb.14.10.6597.
Texto completoSchmidt, A., M. N. Hall y A. Koller. "Two FK506 resistance-conferring genes in Saccharomyces cerevisiae, TAT1 and TAT2, encode amino acid permeases mediating tyrosine and tryptophan uptake". Molecular and Cellular Biology 14, n.º 10 (octubre de 1994): 6597–606. http://dx.doi.org/10.1128/mcb.14.10.6597-6606.1994.
Texto completoBarr, M. M., H. Tu, L. Van Aelst y M. Wigler. "Identification of Ste4 as a potential regulator of Byr2 in the sexual response pathway of Schizosaccharomyces pombe." Molecular and Cellular Biology 16, n.º 10 (octubre de 1996): 5597–603. http://dx.doi.org/10.1128/mcb.16.10.5597.
Texto completoBlondel, Marc, Jean-Marc Galan y Matthias Peter. "Isolation and Characterization of HRT1 Using a Genetic Screen for Mutants Unable to Degrade Gic2p in Saccharomyces cerevisiae". Genetics 155, n.º 3 (1 de julio de 2000): 1033–44. http://dx.doi.org/10.1093/genetics/155.3.1033.
Texto completoJethmalani, Yogita y Erin M. Green. "Using Yeast to Define the Regulatory Role of Protein Lysine Methylation". Current Protein & Peptide Science 21, n.º 7 (23 de septiembre de 2020): 690–98. http://dx.doi.org/10.2174/1389203720666191023150727.
Texto completoPoulsen, Peter, Boqian Wu, Richard F. Gaber y Morten C. Kielland-Brandt. "Constitutive Signal Transduction by Mutant Ssy5p and Ptr3p Components of the SPS Amino Acid Sensor System in Saccharomyces cerevisiae". Eukaryotic Cell 4, n.º 6 (junio de 2005): 1116–24. http://dx.doi.org/10.1128/ec.4.6.1116-1124.2005.
Texto completoMcBride, Anne E., Cecilia Zurita-Lopez, Anthony Regis, Emily Blum, Ana Conboy, Shannon Elf y Steven Clarke. "Protein Arginine Methylation in Candida albicans: Role in Nuclear Transport". Eukaryotic Cell 6, n.º 7 (4 de mayo de 2007): 1119–29. http://dx.doi.org/10.1128/ec.00074-07.
Texto completoHoltzman, DA, S. Yang y DG Drubin. "Synthetic-lethal interactions identify two novel genes, SLA1 and SLA2, that control membrane cytoskeleton assembly in Saccharomyces cerevisiae". Journal of Cell Biology 122, n.º 3 (1 de agosto de 1993): 635–44. http://dx.doi.org/10.1083/jcb.122.3.635.
Texto completoChautard, Hélène, Michel Jacquet, Françoise Schoentgen, Nicole Bureaud y Hélène Bénédetti. "Tfs1p, a Member of the PEBP Family, Inhibits the Ira2p but Not the Ira1p Ras GTPase-Activating Protein in Saccharomyces cerevisiae". Eukaryotic Cell 3, n.º 2 (abril de 2004): 459–70. http://dx.doi.org/10.1128/ec.3.2.459-470.2004.
Texto completoKolb, Alexander R., Teresa M. Buck y Jeffrey L. Brodsky. "Saccharomyces cerivisiae as a model system for kidney disease: what can yeast tell us about renal function?" American Journal of Physiology-Renal Physiology 301, n.º 1 (julio de 2011): F1—F11. http://dx.doi.org/10.1152/ajprenal.00141.2011.
Texto completoAbeliovich, Hagai, William A. Dunn, John Kim y Daniel J. Klionsky. "Dissection of Autophagosome Biogenesis into Distinct Nucleation and Expansion Steps". Journal of Cell Biology 151, n.º 5 (27 de noviembre de 2000): 1025–34. http://dx.doi.org/10.1083/jcb.151.5.1025.
Texto completoKao, L. R., J. Peterson, R. Ji, L. Bender y A. Bender. "Interactions between the ankyrin repeat-containing protein Akr1p and the pheromone response pathway in Saccharomyces cerevisiae." Molecular and Cellular Biology 16, n.º 1 (enero de 1996): 168–78. http://dx.doi.org/10.1128/mcb.16.1.168.
Texto completoDavenport, K. D., K. E. Williams, B. D. Ullmann y M. C. Gustin. "Activation of the Saccharomyces cerevisiae Filamentation/Invasion Pathway by Osmotic Stress in High-Osmolarity Glycogen Pathway Mutants". Genetics 153, n.º 3 (1 de noviembre de 1999): 1091–103. http://dx.doi.org/10.1093/genetics/153.3.1091.
Texto completoTraincard, F., E. Ponte, J. Pun, B. Coukell y M. Veron. "Evidence for the presence of an NF-kappaB signal transduction system in Dictyostelium discoideum". Journal of Cell Science 112, n.º 20 (15 de octubre de 1999): 3529–35. http://dx.doi.org/10.1242/jcs.112.20.3529.
Texto completoElion, E. A., B. Satterberg y J. E. Kranz. "FUS3 phosphorylates multiple components of the mating signal transduction cascade: evidence for STE12 and FAR1." Molecular Biology of the Cell 4, n.º 5 (mayo de 1993): 495–510. http://dx.doi.org/10.1091/mbc.4.5.495.
Texto completoLi, Fang y Sean P. Palecek. "EAP1, a Candida albicans Gene Involved in Binding Human Epithelial Cells". Eukaryotic Cell 2, n.º 6 (diciembre de 2003): 1266–73. http://dx.doi.org/10.1128/ec.2.6.1266-1273.2003.
Texto completoRodicio, Rosaura, Sabrina Koch, Hans-Peter Schmitz y Jürgen J. Heinisch. "KlRHO1 and KlPKC1 are essential for cell integrity signalling in Kluyveromyces lactis". Microbiology 152, n.º 9 (1 de septiembre de 2006): 2635–49. http://dx.doi.org/10.1099/mic.0.29105-0.
Texto completoWinters, Matthew J. y Peter M. Pryciak. "Interaction with the SH3 Domain Protein Bem1 Regulates Signaling by the Saccharomyces cerevisiae p21-Activated Kinase Ste20". Molecular and Cellular Biology 25, n.º 6 (15 de marzo de 2005): 2177–90. http://dx.doi.org/10.1128/mcb.25.6.2177-2190.2005.
Texto completoHuang, Sidong, Douglas A. Jeffery, Malcolm D. Anthony y Erin K. O'Shea. "Functional Analysis of the Cyclin-Dependent Kinase Inhibitor Pho81 Identifies a Novel Inhibitory Domain". Molecular and Cellular Biology 21, n.º 19 (1 de octubre de 2001): 6695–705. http://dx.doi.org/10.1128/mcb.21.19.6695-6705.2001.
Texto completoAbeliovich, Hagai, Chao Zhang, William A. Dunn, Kevan M. Shokat y Daniel J. Klionsky. "Chemical Genetic Analysis of Apg1 Reveals A Non-kinase Role in the Induction of Autophagy". Molecular Biology of the Cell 14, n.º 2 (febrero de 2003): 477–90. http://dx.doi.org/10.1091/mbc.e02-07-0413.
Texto completoXu, Wenjie, Frank J. Smith, Ryan Subaran y Aaron P. Mitchell. "Multivesicular Body-ESCRT Components Function in pH Response Regulation inSaccharomyces cerevisiaeandCandida albicans". Molecular Biology of the Cell 15, n.º 12 (diciembre de 2004): 5528–37. http://dx.doi.org/10.1091/mbc.e04-08-0666.
Texto completoHoward, Susie C., Ya-Wen Chang, Yelena V. Budovskaya y Paul K. Herman. "The Ras/PKA Signaling Pathway of Saccharomyces cerevisiae Exhibits a Functional Interaction With the Sin4p Complex of the RNA Polymerase II Holoenzyme". Genetics 159, n.º 1 (1 de septiembre de 2001): 77–89. http://dx.doi.org/10.1093/genetics/159.1.77.
Texto completoJaniak-Spens, Fabiola, Jeffrey M. Sparling, Michael Gurfinkel y Ann H. West. "Differential Stabilities of Phosphorylated Response Regulator Domains Reflect Functional Roles of the Yeast Osmoregulatory SLN1 and SSK1 Proteins". Journal of Bacteriology 181, n.º 2 (15 de enero de 1999): 411–17. http://dx.doi.org/10.1128/jb.181.2.411-417.1999.
Texto completoSahu, Mahima Sagar, Sandip Patra, Kundan Kumar y Rupinder Kaur. "SUMOylation in Human Pathogenic Fungi: Role in Physiology and Virulence". Journal of Fungi 6, n.º 1 (4 de marzo de 2020): 32. http://dx.doi.org/10.3390/jof6010032.
Texto completoLiu, Zhengchang, Janet Thornton, Mário Spírek y Ronald A. Butow. "Activation of the SPS Amino Acid-Sensing Pathway in Saccharomyces cerevisiae Correlates with the Phosphorylation State of a Sensor Component, Ptr3". Molecular and Cellular Biology 28, n.º 2 (5 de noviembre de 2007): 551–63. http://dx.doi.org/10.1128/mcb.00929-07.
Texto completoNocero, M., T. Isshiki, M. Yamamoto y C. S. Hoffman. "Glucose repression of fbp1 transcription of Schizosaccharomyces pombe is partially regulated by adenylate cyclase activation by a G protein alpha subunit encoded by gpa2 (git8)." Genetics 138, n.º 1 (1 de septiembre de 1994): 39–45. http://dx.doi.org/10.1093/genetics/138.1.39.
Texto completoHan, L. y J. Colicelli. "A human protein selected for interference with Ras function interacts directly with Ras and competes with Raf1." Molecular and Cellular Biology 15, n.º 3 (marzo de 1995): 1318–23. http://dx.doi.org/10.1128/mcb.15.3.1318.
Texto completoPHALIP, Vincent, Jian-Hong LI y Cheng-Cai ZHANG. "HstK, a cyanobacterial protein with both a serine/threonine kinase domain and a histidine kinase domain: implication for the mechanism of signal transduction". Biochemical Journal 360, n.º 3 (10 de diciembre de 2001): 639–44. http://dx.doi.org/10.1042/bj3600639.
Texto completoWu, Mingxuan, Lucy S. Chong, David H. Perlman, Adam C. Resnick y Dorothea Fiedler. "Inositol polyphosphates intersect with signaling and metabolic networks via two distinct mechanisms". Proceedings of the National Academy of Sciences 113, n.º 44 (19 de octubre de 2016): E6757—E6765. http://dx.doi.org/10.1073/pnas.1606853113.
Texto completoSchmitz, Hans-Peter, Stefanie Huppert, Anja Lorberg y Jürgen J. Heinisch. "Rho5p downregulates the yeast cell integrity pathway". Journal of Cell Science 115, n.º 15 (1 de agosto de 2002): 3139–48. http://dx.doi.org/10.1242/jcs.115.15.3139.
Texto completoGrishin, A. V., J. L. Weiner y K. J. Blumer. "Biochemical and genetic analysis of dominant-negative mutations affecting a yeast G-protein gamma subunit." Molecular and Cellular Biology 14, n.º 7 (julio de 1994): 4571–78. http://dx.doi.org/10.1128/mcb.14.7.4571.
Texto completoGrishin, A. V., J. L. Weiner y K. J. Blumer. "Biochemical and genetic analysis of dominant-negative mutations affecting a yeast G-protein gamma subunit". Molecular and Cellular Biology 14, n.º 7 (julio de 1994): 4571–78. http://dx.doi.org/10.1128/mcb.14.7.4571-4578.1994.
Texto completo