Artículos de revistas sobre el tema "LSTM"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "LSTM".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Murugesan, R., Eva Mishra y Akash Hari Krishnan. "Forecasting agricultural commodities prices using deep learning-based models: basic LSTM, bi-LSTM, stacked LSTM, CNN LSTM, and convolutional LSTM". International Journal of Sustainable Agricultural Management and Informatics 8, n.º 3 (2022): 242. http://dx.doi.org/10.1504/ijsami.2022.125757.
Texto completoKrishnan, Akash Hari, R. Murugesan y Eva Mishra. "Forecasting agricultural commodities prices using deep learning-based models: basic LSTM, bi-LSTM, stacked LSTM, CNN LSTM, and convolutional LSTM". International Journal of Sustainable Agricultural Management and Informatics 8, n.º 3 (2022): 1. http://dx.doi.org/10.1504/ijsami.2022.10048228.
Texto completoRoberg, Kevin J., Stephen Bickel, Neil Rowley y Chris A. Kaiser. "Control of Amino Acid Permease Sorting in the Late Secretory Pathway of Saccharomyces cerevisiae by SEC13, LST4, LST7 and LST78". Genetics 147, n.º 4 (1 de diciembre de 1997): 1569–84. http://dx.doi.org/10.1093/genetics/147.4.1569.
Texto completoVictor, Nancy y Daphne Lopez. "sl-LSTM". International Journal of Grid and High Performance Computing 12, n.º 3 (julio de 2020): 1–16. http://dx.doi.org/10.4018/ijghpc.2020070101.
Texto completoLiu, Zhandong, Wengang Zhou y Houqiang Li. "AB-LSTM". ACM Transactions on Multimedia Computing, Communications, and Applications 15, n.º 4 (10 de enero de 2020): 1–23. http://dx.doi.org/10.1145/3356728.
Texto completoSuebsombut, Paweena, Aicha Sekhari, Pradorn Sureephong, Abdelhak Belhi y Abdelaziz Bouras. "Field Data Forecasting Using LSTM and Bi-LSTM Approaches". Applied Sciences 11, n.º 24 (13 de diciembre de 2021): 11820. http://dx.doi.org/10.3390/app112411820.
Texto completoLiang, Xinyue. "Stock Market Prediction with RNN-LSTM and GA-LSTM". SHS Web of Conferences 196 (2024): 02006. http://dx.doi.org/10.1051/shsconf/202419602006.
Texto completoSong, Jun, Siliang Tang, Jun Xiao, Fei Wu y Zhongfei Zhang. "LSTM-in-LSTM for generating long descriptions of images". Computational Visual Media 2, n.º 4 (15 de noviembre de 2016): 379–88. http://dx.doi.org/10.1007/s41095-016-0059-z.
Texto completoNilasari, Ni Ketut Novia, Made Sudarma y Nyoman Gunantara. "Prediksi Nilai Cryptocurrency Dengan Metode Bi-LSTM dan LSTM". Majalah Ilmiah Teknologi Elektro 22, n.º 2 (19 de diciembre de 2023): 221. http://dx.doi.org/10.24843/mite.2023.v22i02.p09.
Texto completoZhang, Xinchen, Linghao Zhang, Qincheng Zhou y Xu Jin. "A Novel Bitcoin and Gold Prices Prediction Method Using an LSTM-P Neural Network Model". Computational Intelligence and Neuroscience 2022 (5 de mayo de 2022): 1–12. http://dx.doi.org/10.1155/2022/1643413.
Texto completoAbbas, Thekra. "Finger Vein Recognition with Hybrid Deep Learning Approach". Journal La Multiapp 4, n.º 1 (24 de julio de 2023): 23–33. http://dx.doi.org/10.37899/journallamultiapp.v4i1.788.
Texto completoSong, Kyungwoo, JoonHo Jang, Seung jae Shin y Il-Chul Moon. "Bivariate Beta-LSTM". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 5818–25. http://dx.doi.org/10.1609/aaai.v34i04.6039.
Texto completoKaryadi, Yadi. "Prediksi Kualitas Udara Dengan Metoda LSTM, Bidirectional LSTM, dan GRU". JATISI (Jurnal Teknik Informatika dan Sistem Informasi) 9, n.º 1 (17 de marzo de 2022): 671–84. http://dx.doi.org/10.35957/jatisi.v9i1.1588.
Texto completoLi, Youru, Zhenfeng Zhu, Deqiang Kong, Hua Han y Yao Zhao. "EA-LSTM: Evolutionary attention-based LSTM for time series prediction". Knowledge-Based Systems 181 (octubre de 2019): 104785. http://dx.doi.org/10.1016/j.knosys.2019.05.028.
Texto completoWan, Huaiyu, Shengnan Guo, Kang Yin, Xiaohui Liang y Youfang Lin. "CTS-LSTM: LSTM-based neural networks for correlatedtime series prediction". Knowledge-Based Systems 191 (marzo de 2020): 105239. http://dx.doi.org/10.1016/j.knosys.2019.105239.
Texto completoSang, Shuai y Lu Li. "A Novel Variant of LSTM Stock Prediction Method Incorporating Attention Mechanism". Mathematics 12, n.º 7 (22 de marzo de 2024): 945. http://dx.doi.org/10.3390/math12070945.
Texto completoD, Usha, Jesmalar L, Noorbasha Nagoor Meeravali, Mihirkumar B.Suthar, Rajeswari J, Pothumarthi Sridevi y Vengatesh T. "Enhanced Dengue Fever Prediction in India through Deep Learning with Spatially Attentive LSTMs". Cuestiones de Fisioterapia 54, n.º 2 (10 de enero de 2025): 3804–12. https://doi.org/10.48047/v3dm7y10.
Texto completoMajeed, Mokhalad A., Helmi Zulhaidi Mohd Shafri, Zed Zulkafli y Aimrun Wayayok. "A Deep Learning Approach for Dengue Fever Prediction in Malaysia Using LSTM with Spatial Attention". International Journal of Environmental Research and Public Health 20, n.º 5 (25 de febrero de 2023): 4130. http://dx.doi.org/10.3390/ijerph20054130.
Texto completoN. Laxmi, Et al. "Hybrid Deep Learning Algorithm for Insulin Dosage Prediction Using Blockchain and IOT". International Journal on Recent and Innovation Trends in Computing and Communication 11, n.º 10 (2 de noviembre de 2023): 1077–86. http://dx.doi.org/10.17762/ijritcc.v11i10.8627.
Texto completoChen, Yiqing, Zongzhu Chen, Kang Li, Tiezhu Shi, Xiaohua Chen, Jinrui Lei, Tingtian Wu et al. "Research of Carbon Emission Prediction: An Oscillatory Particle Swarm Optimization for Long Short-Term Memory". Processes 11, n.º 10 (19 de octubre de 2023): 3011. http://dx.doi.org/10.3390/pr11103011.
Texto completoKhataei Maragheh, Hamed, Farhad Soleimanian Gharehchopogh, Kambiz Majidzadeh y Amin Babazadeh Sangar. "A New Hybrid Based on Long Short-Term Memory Network with Spotted Hyena Optimization Algorithm for Multi-Label Text Classification". Mathematics 10, n.º 3 (2 de febrero de 2022): 488. http://dx.doi.org/10.3390/math10030488.
Texto completoPranolo, Andri, Xiaofeng Zhou, Yingchi Mao, Bambang Widi Pratolo, Aji Prasetya Wibawa, Agung Bella Putra Utama, Abdoul Fatakhou Ba y Abdullahi Uwaisu Muhammad. "Exploring LSTM-based Attention Mechanisms with PSO and Grid Search under Different Normalization Techniques for Energy demands Time Series Forecasting". Knowledge Engineering and Data Science 7, n.º 1 (16 de abril de 2024): 1. http://dx.doi.org/10.17977/um018v7i12024p1-12.
Texto completoYang, Tianyi, Quanming Zhao y Yifan Meng. "Ultra-short-term Photovoltaic Power Prediction Based on Multi-head ProbSparse Self-attention and Long Short-term Memory". Journal of Physics: Conference Series 2558, n.º 1 (1 de agosto de 2023): 012007. http://dx.doi.org/10.1088/1742-6596/2558/1/012007.
Texto completoIsmail, Mohammad Hafiz y Tajul Rosli Razak. "Predicting the Kijang Emas Bullion Price using LSTM Networks". Journal of Entrepreneurship and Business 8, n.º 2 (1 de junio de 2022): 11–18. http://dx.doi.org/10.17687/jeb.v8i2.849.
Texto completoIsmail, Mohammad Hafiz y Tajul Rosli Razak. "Predicting the Kijang Emas Bullion Price using LSTM Networks". Journal of Entrepreneurship and Business 8, n.º 2 (31 de diciembre de 2020): 11–18. http://dx.doi.org/10.17687/jeb.0802.02.
Texto completoChen, Qili, Bofan Liang y Jiuhe Wang. "A Comparative Study of LSTM and Phased LSTM for Gait Prediction". International Journal of Artificial Intelligence & Applications 10, n.º 4 (31 de julio de 2019): 57–66. http://dx.doi.org/10.5121/ijaia.2019.10405.
Texto completoTajalsir, ohammed, Susana Mu˜noz Hern´andez y Fatima Abdalbagi Mohammed. "ASERS-LSTM: Arabic Speech Emotion Recognition System Based on LSTM Model". Signal & Image Processing : An International Journal 13, n.º 1 (28 de febrero de 2022): 19–27. http://dx.doi.org/10.5121/sipij.2022.13102.
Texto completoLiu, Jun, Tong Zhang, Guangjie Han y Yu Gou. "TD-LSTM: Temporal Dependence-Based LSTM Networks for Marine Temperature Prediction". Sensors 18, n.º 11 (6 de noviembre de 2018): 3797. http://dx.doi.org/10.3390/s18113797.
Texto completoPark, KyoungJong. "Prediction of Tier in Supply Chain Using LSTM and Conv1D-LSTM". Journal of Society of Korea Industrial and Systems Engineering 43, n.º 2 (30 de junio de 2020): 120–25. http://dx.doi.org/10.11627/jkise.2020.43.2.120.
Texto completoWang, Hao. "Enhancing Stock Price Forecasting Accuracy Using LSTM and Bi-LSTM Models". ITM Web of Conferences 70 (2025): 04008. https://doi.org/10.1051/itmconf/20257004008.
Texto completoJiang, Longquan, Xuan Sun, Francesco Mercaldo y Antonella Santone. "DECAB-LSTM: Deep Contextualized Attentional Bidirectional LSTM for cancer hallmark classification". Knowledge-Based Systems 210 (diciembre de 2020): 106486. http://dx.doi.org/10.1016/j.knosys.2020.106486.
Texto completoRoy, Sanjiban Sekhar, Ali Ismail Awad, Lamesgen Adugnaw Amare, Mabrie Tesfaye Erkihun y Mohd Anas. "Multimodel Phishing URL Detection Using LSTM, Bidirectional LSTM, and GRU Models". Future Internet 14, n.º 11 (21 de noviembre de 2022): 340. http://dx.doi.org/10.3390/fi14110340.
Texto completoRiyadi, Willy y Jasmir Jasmir. "Performance Prediction of Airport Traffic Using LSTM and CNN-LSTM Models". MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer 22, n.º 3 (28 de julio de 2023): 627–38. http://dx.doi.org/10.30812/matrik.v22i3.3032.
Texto completoYadav, Hemant y Amit Thakkar. "NOA-LSTM: An efficient LSTM cell architecture for time series forecasting". Expert Systems with Applications 238 (marzo de 2024): 122333. http://dx.doi.org/10.1016/j.eswa.2023.122333.
Texto completoLi, Jianyao. "A Comparative Study of LSTM Variants in Prediction for Tesla’s Stock Price". BCP Business & Management 34 (14 de diciembre de 2022): 30–38. http://dx.doi.org/10.54691/bcpbm.v34i.2861.
Texto completoChen, Xingyu, Haijian Bai, Heng Ding, Jianshe Gao y Wenjuan Huang. "A Safety Control Method of Car-Following Trajectory Planning Based on LSTM". Promet - Traffic&Transportation 35, n.º 3 (28 de junio de 2023): 380–94. http://dx.doi.org/10.7307/ptt.v35i3.118.
Texto completoLu, Yi-Xiang, Xiao-Bo Jin, Dong-Jie Liu, Xin-Chang Zhang y Guang-Gang Geng. "Anomaly Detection Using Multiscale C-LSTM for Univariate Time-Series". Security and Communication Networks 2023 (23 de enero de 2023): 1–12. http://dx.doi.org/10.1155/2023/6597623.
Texto completoHan, Shipeng, Zhen Meng, Xingcheng Zhang y Yuepeng Yan. "Hybrid Deep Recurrent Neural Networks for Noise Reduction of MEMS-IMU with Static and Dynamic Conditions". Micromachines 12, n.º 2 (20 de febrero de 2021): 214. http://dx.doi.org/10.3390/mi12020214.
Texto completoPoetra, Chandra Kirana, Syafrial Fachri Pane y Nuraini Siti Fatonah. "Meningkatkan Akurasi Long-Short Term Memory (LSTM) pada Analisis Sentimen Vaksin Covid-19 di Twitter dengan Glove". Jurnal Telematika 16, n.º 2 (19 de enero de 2022): 85–90. http://dx.doi.org/10.61769/telematika.v16i2.400.
Texto completoZhao, Ziquan y Jing Bai. "Ultra-Short-Term Wind Power Forecasting Based on the MSADBO-LSTM Model". Energies 17, n.º 22 (14 de noviembre de 2024): 5689. http://dx.doi.org/10.3390/en17225689.
Texto completoYu, Yong, Xiaosheng Si, Changhua Hu y Jianxun Zhang. "A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures". Neural Computation 31, n.º 7 (julio de 2019): 1235–70. http://dx.doi.org/10.1162/neco_a_01199.
Texto completoRoy, Dilip Kumar, Tapash Kumar Sarkar, Sheikh Shamshul Alam Kamar, Torsha Goswami, Md Abdul Muktadir, Hussein M. Al-Ghobari, Abed Alataway, Ahmed Z. Dewidar, Ahmed A. El-Shafei y Mohamed A. Mattar. "Daily Prediction and Multi-Step Forward Forecasting of Reference Evapotranspiration Using LSTM and Bi-LSTM Models". Agronomy 12, n.º 3 (27 de febrero de 2022): 594. http://dx.doi.org/10.3390/agronomy12030594.
Texto completoKostyra, Tomasz Piotr. "Forecasting the yield curve for Poland with the PCA and machine learning". Bank i Kredyt Vol. 55, No. 4 (31 de agosto de 2024): 459–78. http://dx.doi.org/10.5604/01.3001.0054.8580.
Texto completoXiong, Ying, Xue Shi, Shuai Chen, Dehuan Jiang, Buzhou Tang, Xiaolong Wang, Qingcai Chen y Jun Yan. "Cohort selection for clinical trials using hierarchical neural network". Journal of the American Medical Informatics Association 26, n.º 11 (15 de julio de 2019): 1203–8. http://dx.doi.org/10.1093/jamia/ocz099.
Texto completoLiang, Bushun, Siye Wang, Yeqin Huang, Yiling Liu y Linpeng Ma. "F-LSTM: FPGA-Based Heterogeneous Computing Framework for Deploying LSTM-Based Algorithms". Electronics 12, n.º 5 (26 de febrero de 2023): 1139. http://dx.doi.org/10.3390/electronics12051139.
Texto completoPal, Subarno, Soumadip Ghosh y Amitava Nag. "Sentiment Analysis in the Light of LSTM Recurrent Neural Networks". International Journal of Synthetic Emotions 9, n.º 1 (enero de 2018): 33–39. http://dx.doi.org/10.4018/ijse.2018010103.
Texto completoBo, Yanping, Chunlei Zhang, Xiaoyu Fang, Yidi Sun, Changjiang Li, Meiyun An, Yun Peng y Yixin Lu. "Application of HP-LSTM Models for Groundwater Level Prediction in Karst Regions: A Case Study in Qingzhen City". Water 17, n.º 3 (27 de enero de 2025): 362. https://doi.org/10.3390/w17030362.
Texto completoYang, Guangyu, Quanjie Zhu, Dacang Wang, Yu Feng, Xuexi Chen y Qingsong Li. "Method and Validation of Coal Mine Gas Concentration Prediction by Integrating PSO Algorithm and LSTM Network". Processes 12, n.º 5 (28 de abril de 2024): 898. http://dx.doi.org/10.3390/pr12050898.
Texto completoYudi Widhiyasana, Transmissia Semiawan, Ilham Gibran Achmad Mudzakir y Muhammad Randi Noor. "Penerapan Convolutional Long Short-Term Memory untuk Klasifikasi Teks Berita Bahasa Indonesia". Jurnal Nasional Teknik Elektro dan Teknologi Informasi 10, n.º 4 (29 de noviembre de 2021): 354–61. http://dx.doi.org/10.22146/jnteti.v10i4.2438.
Texto completoZhou, Shuyi, Brandon J. Bethel, Wenjin Sun, Yang Zhao, Wenhong Xie y Changming Dong. "Improving Significant Wave Height Forecasts Using a Joint Empirical Mode Decomposition–Long Short-Term Memory Network". Journal of Marine Science and Engineering 9, n.º 7 (5 de julio de 2021): 744. http://dx.doi.org/10.3390/jmse9070744.
Texto completo