Literatura académica sobre el tema "Machine learning, Global Optimization"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Machine learning, Global Optimization".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Machine learning, Global Optimization"
Cassioli, A., D. Di Lorenzo, M. Locatelli, F. Schoen, and M. Sciandrone. "Machine learning for global optimization." Computational Optimization and Applications 51, no. 1 (2010): 279–303. http://dx.doi.org/10.1007/s10589-010-9330-x.
Texto completoKudyshev, Zhaxylyk A., Alexander V. Kildishev, Vladimir M. Shalaev, and Alexandra Boltasseva. "Machine learning–assisted global optimization of photonic devices." Nanophotonics 10, no. 1 (2020): 371–83. http://dx.doi.org/10.1515/nanoph-2020-0376.
Texto completoAbdul Salam, Mustafa, Ahmad Taher Azar, and Rana Hussien. "Swarm-Based Extreme Learning Machine Models for Global Optimization." Computers, Materials & Continua 70, no. 3 (2022): 6339–63. http://dx.doi.org/10.32604/cmc.2022.020583.
Texto completoTAKAMATSU, Ryosuke, and Wataru YAMAZAKI. "Global topology optimization of supersonic airfoil using machine learning technologies." Proceedings of The Computational Mechanics Conference 2021.34 (2021): 112. http://dx.doi.org/10.1299/jsmecmd.2021.34.112.
Texto completoTsoulos, Ioannis G., Alexandros Tzallas, Evangelos Karvounis, and Dimitrios Tsalikakis. "NeuralMinimizer: A Novel Method for Global Optimization." Information 14, no. 2 (2023): 66. http://dx.doi.org/10.3390/info14020066.
Texto completoHonda, M., and E. Narita. "Machine-learning assisted steady-state profile predictions using global optimization techniques." Physics of Plasmas 26, no. 10 (2019): 102307. http://dx.doi.org/10.1063/1.5117846.
Texto completoWu, Shaohua, Yong Hu, Wei Wang, Xinyong Feng, and Wanneng Shu. "Application of Global Optimization Methods for Feature Selection and Machine Learning." Mathematical Problems in Engineering 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/241517.
Texto completoMa, Sicong, Cheng Shang, Chuan-Ming Wang, and Zhi-Pan Liu. "Thermodynamic rules for zeolite formation from machine learning based global optimization." Chemical Science 11, no. 37 (2020): 10113–18. http://dx.doi.org/10.1039/d0sc03918g.
Texto completoHuang, Si-Da, Cheng Shang, Pei-Lin Kang, and Zhi-Pan Liu. "Atomic structure of boron resolved using machine learning and global sampling." Chemical Science 9, no. 46 (2018): 8644–55. http://dx.doi.org/10.1039/c8sc03427c.
Texto completoBarkalov, Konstantin, Ilya Lebedev, and Evgeny Kozinov. "Acceleration of Global Optimization Algorithm by Detecting Local Extrema Based on Machine Learning." Entropy 23, no. 10 (2021): 1272. http://dx.doi.org/10.3390/e23101272.
Texto completoTesis sobre el tema "Machine learning, Global Optimization"
Nowak, Hans II(Hans Antoon). "Strategic capacity planning using data science, optimization, and machine learning." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/126914.
Texto completoVeluscek, Marco. "Global supply chain optimization : a machine learning perspective to improve caterpillar's logistics operations." Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/13050.
Texto completoSchweidtmann, Artur M. [Verfasser], Alexander [Akademischer Betreuer] Mitsos, and Andreas [Akademischer Betreuer] Schuppert. "Global optimization of processes through machine learning / Artur M. Schweidtmann ; Alexander Mitsos, Andreas Schuppert." Aachen : Universitätsbibliothek der RWTH Aachen, 2021. http://d-nb.info/1240690924/34.
Texto completoTaheri, Mehdi. "Machine Learning from Computer Simulations with Applications in Rail Vehicle Dynamics and System Identification." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/81417.
Texto completoGabere, Musa Nur. "Prediction of antimicrobial peptides using hyperparameter optimized support vector machines." Thesis, University of the Western Cape, 2011. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_7345_1330684697.
Texto completoBelkhir, Nacim. "Per Instance Algorithm Configuration for Continuous Black Box Optimization." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS455/document.
Texto completoLiu, Liu. "Stochastic Optimization in Machine Learning." Thesis, The University of Sydney, 2019. http://hdl.handle.net/2123/19982.
Texto completoLeblond, Rémi. "Asynchronous optimization for machine learning." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEE057/document.
Texto completoBai, Hao. "Machine learning assisted probabilistic prediction of long-term fatigue damage and vibration reduction of wind turbine tower using active damping system." Thesis, Normandie, 2021. http://www.theses.fr/2021NORMIR01.
Texto completoChang, Allison An. "Integer optimization methods for machine learning." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/72643.
Texto completoLibros sobre el tema "Machine learning, Global Optimization"
Lin, Zhouchen, Huan Li, and Cong Fang. Accelerated Optimization for Machine Learning. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2910-8.
Texto completoAgrawal, Tanay. Hyperparameter Optimization in Machine Learning. Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6579-6.
Texto completoFazelnia, Ghazal. Optimization for Probabilistic Machine Learning. [publisher not identified], 2019.
Buscar texto completoNicosia, Giuseppe, Varun Ojha, Emanuele La Malfa, et al., eds. Machine Learning, Optimization, and Data Science. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95470-3.
Texto completoNicosia, Giuseppe, Varun Ojha, Emanuele La Malfa, et al., eds. Machine Learning, Optimization, and Data Science. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95467-3.
Texto completoJiang, Jiawei, Bin Cui, and Ce Zhang. Distributed Machine Learning and Gradient Optimization. Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-3420-8.
Texto completoPardalos, Panos, Mario Pavone, Giovanni Maria Farinella, and Vincenzo Cutello, eds. Machine Learning, Optimization, and Big Data. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27926-8.
Texto completoNicosia, Giuseppe, Panos Pardalos, Renato Umeton, Giovanni Giuffrida, and Vincenzo Sciacca, eds. Machine Learning, Optimization, and Data Science. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37599-7.
Texto completoKulkarni, Anand J., and Suresh Chandra Satapathy, eds. Optimization in Machine Learning and Applications. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0994-0.
Texto completoCapítulos de libros sobre el tema "Machine learning, Global Optimization"
Kearfott, Ralph Baker. "Mathematically Rigorous Global Optimization and Fuzzy Optimization." In Black Box Optimization, Machine Learning, and No-Free Lunch Theorems. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66515-9_7.
Texto completode Winter, Roy, Bas van Stein, Matthys Dijkman, and Thomas Bäck. "Designing Ships Using Constrained Multi-objective Efficient Global Optimization." In Machine Learning, Optimization, and Data Science. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13709-0_16.
Texto completoCocola, Jorio, and Paul Hand. "Global Convergence of Sobolev Training for Overparameterized Neural Networks." In Machine Learning, Optimization, and Data Science. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64583-0_51.
Texto completoZabinsky, Zelda B., Giulia Pedrielli, and Hao Huang. "A Framework for Multi-fidelity Modeling in Global Optimization Approaches." In Machine Learning, Optimization, and Data Science. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37599-7_28.
Texto completoGriewank, Andreas, and Ángel Rojas. "Treating Artificial Neural Net Training as a Nonsmooth Global Optimization Problem." In Machine Learning, Optimization, and Data Science. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37599-7_64.
Texto completoIssa, Mohamed, Aboul Ella Hassanien, and Ibrahim Ziedan. "Performance Evaluation of Sine-Cosine Optimization Versus Particle Swarm Optimization for Global Sequence Alignment Problem." In Machine Learning Paradigms: Theory and Application. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02357-7_18.
Texto completoWang, Yong-Jun, Jiang-She Zhang, and Yu-Fen Zhang. "An Effective and Efficient Two Stage Algorithm for Global Optimization." In Advances in Machine Learning and Cybernetics. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11739685_51.
Texto completoKiranyaz, Serkan, Turker Ince, and Moncef Gabbouj. "Improving Global Convergence." In Multidimensional Particle Swarm Optimization for Machine Learning and Pattern Recognition. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37846-1_5.
Texto completoConsoli, Sergio, Luca Tiozzo Pezzoli, and Elisa Tosetti. "Using the GDELT Dataset to Analyse the Italian Sovereign Bond Market." In Machine Learning, Optimization, and Data Science. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64583-0_18.
Texto completoRodrigues, Douglas, Gustavo Henrique de Rosa, Leandro Aparecido Passos, and João Paulo Papa. "Adaptive Improved Flower Pollination Algorithm for Global Optimization." In Nature-Inspired Computation in Data Mining and Machine Learning. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28553-1_1.
Texto completoActas de conferencias sobre el tema "Machine learning, Global Optimization"
He, Yi-chao, and Kun-qi Liu. "A Modified Particle Swarm Optimization for Solving Global Optimization Problems." In 2006 International Conference on Machine Learning and Cybernetics. IEEE, 2006. http://dx.doi.org/10.1109/icmlc.2006.258615.
Texto completoTamura, Kenichi, and Keiichiro Yasuda. "Spiral Multipoint Search for Global Optimization." In 2011 Tenth International Conference on Machine Learning and Applications (ICMLA). IEEE, 2011. http://dx.doi.org/10.1109/icmla.2011.131.
Texto completoYong-Jun Wang, Jiang-She Zhang, and Yu-Fen Zhang. "A fast hybrid algorithm for global optimization." In Proceedings of 2005 International Conference on Machine Learning and Cybernetics. IEEE, 2005. http://dx.doi.org/10.1109/icmlc.2005.1527462.
Texto completoSun, Gao-Ji. "A new evolutionary algorithm for global numerical optimization." In 2010 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2010. http://dx.doi.org/10.1109/icmlc.2010.5580961.
Texto completoNacef, Abdelhakim, Miloud Bagaa, Youcef Aklouf, Abdellah Kaci, Diego Leonel Cadette Dutra, and Adlen Ksentini. "Self-optimized network: When Machine Learning Meets Optimization." In GLOBECOM 2021 - 2021 IEEE Global Communications Conference. IEEE, 2021. http://dx.doi.org/10.1109/globecom46510.2021.9685681.
Texto completoLi, Xue-Qiang, Zhi-Feng Hao, and Han Huang. "An evolutionary algorithm with sorted race mechanism for global optimization." In 2010 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2010. http://dx.doi.org/10.1109/icmlc.2010.5580810.
Texto completoInjadat, MohammadNoor, Fadi Salo, Ali Bou Nassif, Aleksander Essex, and Abdallah Shami. "Bayesian Optimization with Machine Learning Algorithms Towards Anomaly Detection." In GLOBECOM 2018 - 2018 IEEE Global Communications Conference. IEEE, 2018. http://dx.doi.org/10.1109/glocom.2018.8647714.
Texto completoCandelieri, Antonio, and Francesco Archetti. "Sequential model based optimization with black-box constraints: Feasibility determination via machine learning." In PROCEEDINGS LEGO – 14TH INTERNATIONAL GLOBAL OPTIMIZATION WORKSHOP. Author(s), 2019. http://dx.doi.org/10.1063/1.5089977.
Texto completoChen, Chang-Huang. "Bare bone particle swarm optimization with integration of global and local learning strategies." In 2011 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2011. http://dx.doi.org/10.1109/icmlc.2011.6016781.
Texto completoSoroush, H. M. "Bicriteria single machine scheduling with setup times and learning effects." In PROCEEDINGS OF THE SIXTH GLOBAL CONFERENCE ON POWER CONTROL AND OPTIMIZATION. AIP, 2012. http://dx.doi.org/10.1063/1.4769005.
Texto completoInformes sobre el tema "Machine learning, Global Optimization"
Saenz, Juan Antonio, Ismael Djibrilla Boureima, Vitaliy Gyrya, and Susan Kurien. Machine-Learning for Rapid Optimization of Turbulence Models. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1638623.
Texto completoGu, Xiaofeng, A. Fedotov, and D. Kayran. Application of a machine learning algorithm (XGBoost) to offline RHIC luminosity optimization. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1777441.
Texto completoRolf, Esther, Jonathan Proctor, Tamma Carleton, et al. A Generalizable and Accessible Approach to Machine Learning with Global Satellite Imagery. National Bureau of Economic Research, 2020. http://dx.doi.org/10.3386/w28045.
Texto completoScheinberg, Katya. Derivative Free Optimization of Complex Systems with the Use of Statistical Machine Learning Models. Defense Technical Information Center, 2015. http://dx.doi.org/10.21236/ada622645.
Texto completoGhanshyam, Pilania, Kenneth James McClellan, Christopher Richard Stanek, and Blas P. Uberuaga. Physics-Informed Machine Learning for Discovery and Optimization of Materials: A Case Study of Scintillators. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1463529.
Texto completoBao, Jie, Chao Wang, Zhijie Xu, and Brian J. Koeppel. Physics-Informed Machine Learning with Application to Solid Oxide Fuel Cell System Modeling and Optimization. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1569289.
Texto completoGabelmann, Jeffrey, and Eduardo Gildin. A Machine Learning-Based Geothermal Drilling Optimization System Using EM Short-Hop Bit Dynamics Measurements. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1842454.
Texto completoQi, Fei, Zhaohui Xia, Gaoyang Tang, et al. A Graph-based Evolutionary Algorithm for Automated Machine Learning. Web of Open Science, 2020. http://dx.doi.org/10.37686/ser.v1i2.77.
Texto completoVittorio, Alan, and Kate Calvin. Using machine learning to improve land use/cover characterization and projection for scenario-based global modeling. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1769796.
Texto completoWu, S. Boiler Optimization Using Advance Machine Learning Techniques. Final Report for period September 30, 1995 - September 29, 2000. Office of Scientific and Technical Information (OSTI), 2005. http://dx.doi.org/10.2172/877237.
Texto completo