Siga este enlace para ver otros tipos de publicaciones sobre el tema: Metal-support interactions.

Artículos de revistas sobre el tema "Metal-support interactions"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Metal-support interactions".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Tauster, S. J. "Strong metal-support interactions." Accounts of Chemical Research 20, no. 11 (1987): 389–94. http://dx.doi.org/10.1021/ar00143a001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

BURCH, R. "Metal sulfide-support interactions." Journal of Catalysis 97, no. 2 (1986): 385–89. http://dx.doi.org/10.1016/0021-9517(86)90010-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Du, Xiaorui, Hailian Tang, and Botao Qiao. "Oxidative Strong Metal–Support Interactions." Catalysts 11, no. 8 (2021): 896. http://dx.doi.org/10.3390/catal11080896.

Texto completo
Resumen
The discoveries and development of the oxidative strong metal–support interaction (OMSI) phenomena in recent years not only promote new and deeper understanding of strong metal–support interaction (SMSI) but also open an alternative way to develop supported heterogeneous catalysts with better performance. In this review, the brief history as well as the definition of OMSI and its difference from classical SMSI are described. The identification of OMSI and the corresponding characterization methods are expounded. Furthermore, the application of OMSI in enhancing catalyst performance, and the influence of OMSI in inspiring discoveries of new types of SMSI are discussed. Finally, a brief summary is presented and some prospects are proposed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

del Arco, M., and V. Rives. "Metal-support and metal oxide-support interactions in Cu/TiO2." Reaction Kinetics and Catalysis Letters 31, no. 1 (1986): 239–44. http://dx.doi.org/10.1007/bf02062539.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Guenin, M., P. N. Da Silva, and R. Frety. "Influence of chlorine towards metal-support and metal-sulphur support interactions." Applied Catalysis 27, no. 2 (1986): 313–23. http://dx.doi.org/10.1016/s0166-9834(00)82927-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Douidah, A., P. Marécot, S. Szabo, and J. Barbier. "Evaluation of the metal–support interactions." Applied Catalysis A: General 225, no. 1-2 (2002): 21–31. http://dx.doi.org/10.1016/s0926-860x(01)00627-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Nicole, J., D. Tsiplakides, C. Pliangos, X. E. Verykios, Ch Comninellis, and C. G. Vayenas. "Electrochemical Promotion and Metal–Support Interactions." Journal of Catalysis 204, no. 1 (2001): 23–34. http://dx.doi.org/10.1006/jcat.2001.3360.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

BADYAL, J. P. S. "ChemInform Abstract: Strong Metal-Support Interactions." ChemInform 25, no. 2 (2010): no. http://dx.doi.org/10.1002/chin.199402301.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Li, Yangyang, Yunshang Zhang, Kun Qian, and Weixin Huang. "Metal–Support Interactions in Metal/Oxide Catalysts and Oxide–Metal Interactions in Oxide/Metal Inverse Catalysts." ACS Catalysis 12, no. 2 (2022): 1268–87. http://dx.doi.org/10.1021/acscatal.1c04854.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Okamoto, Yasuaki, Takeshi Kubota, Yoshiharu Ohto, and Saburo Nasu. "Metal Oxide−Support Interactions in Fe/ZrO2Catalysts." Journal of Physical Chemistry B 104, no. 35 (2000): 8462–70. http://dx.doi.org/10.1021/jp994122t.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Huang, Yuhui, Rui Zou, Yanjun Lin, and Chao Lu. "Electronic Metal–Support Interactions for Electrochemiluminescence Signal Amplification." Analytical Chemistry 93, no. 32 (2021): 11291–97. http://dx.doi.org/10.1021/acs.analchem.1c02423.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Linsmeier, Ch, and E. Taglauer. "Strong metal–support interactions on rhodium model catalysts." Applied Catalysis A: General 391, no. 1-2 (2011): 175–86. http://dx.doi.org/10.1016/j.apcata.2010.07.051.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Fujiwara, Kakeru, Kikuo Okuyama, and Sotiris E. Pratsinis. "Metal–support interactions in catalysts for environmental remediation." Environmental Science: Nano 4, no. 11 (2017): 2076–92. http://dx.doi.org/10.1039/c7en00678k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Hu, Pingping, Zhiwei Huang, Zakariae Amghouz, et al. "Electronic Metal-Support Interactions in Single-Atom Catalysts." Angewandte Chemie 126, no. 13 (2014): 3486–89. http://dx.doi.org/10.1002/ange.201309248.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Hu, Pingping, Zhiwei Huang, Zakariae Amghouz, et al. "Electronic Metal-Support Interactions in Single-Atom Catalysts." Angewandte Chemie International Edition 53, no. 13 (2014): 3418–21. http://dx.doi.org/10.1002/anie.201309248.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Liu, Jingyue Jimmy. "Advanced Electron Microscopy of Metal-Support Interactions in Supported Metal Catalysts." ChemCatChem 3, no. 6 (2011): 934–48. http://dx.doi.org/10.1002/cctc.201100090.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Tang, Hailian, Yang Su, Yalin Guo, et al. "Oxidative strong metal–support interactions (OMSI) of supported platinum-group metal catalysts." Chemical Science 9, no. 32 (2018): 6679–84. http://dx.doi.org/10.1039/c8sc01392f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Kubička, David, Narendra Kumar, Tapani Venäläinen, et al. "Metal−Support Interactions in Zeolite-Supported Noble Metals: Influence of Metal Crystallites on the Support Acidity." Journal of Physical Chemistry B 110, no. 10 (2006): 4937–46. http://dx.doi.org/10.1021/jp055754k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Guo, Yu, and Ya-Wen Zhang. "Metal Clusters Dispersed on Oxide Supports: Preparation Methods and Metal-Support Interactions." Topics in Catalysis 61, no. 9-11 (2018): 855–74. http://dx.doi.org/10.1007/s11244-018-0957-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Tang, Hailian, Jiake Wei, Fei Liu, et al. "Strong Metal–Support Interactions between Gold Nanoparticles and Nonoxides." Journal of the American Chemical Society 138, no. 1 (2015): 56–59. http://dx.doi.org/10.1021/jacs.5b11306.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Vander Wal, Randall L., Thomas M. Ticich, and Valerie E. Curtis. "Substrate–support interactions in metal-catalyzed carbon nanofiber growth." Carbon 39, no. 15 (2001): 2277–89. http://dx.doi.org/10.1016/s0008-6223(01)00047-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

BRAUNSCHWEIG, E. "Reversibility of strong metal-support interactions on Rh/TiO2." Journal of Catalysis 118, no. 1 (1989): 227–37. http://dx.doi.org/10.1016/0021-9517(89)90313-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Puskas, Imre, Theo H. Fleisch, Jan B. Hall, Bernard L. Meyers, and Robert T. Roginski. "Metal-support interactions in precipitated, magnesium-promoted cobaltsilica catalysts." Journal of Catalysis 134, no. 2 (1992): 615–28. http://dx.doi.org/10.1016/0021-9517(92)90347-k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Cargnello, M., P. Fornasiero, and R. J. Gorte. "Opportunities for Tailoring Catalytic Properties Through Metal-Support Interactions." Catalysis Letters 142, no. 9 (2012): 1043–48. http://dx.doi.org/10.1007/s10562-012-0883-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Campisi, Sebastiano, Carine Chan-Thaw, and Alberto Villa. "Understanding Heteroatom-Mediated Metal–Support Interactions in Functionalized Carbons: A Perspective Review." Applied Sciences 8, no. 7 (2018): 1159. http://dx.doi.org/10.3390/app8071159.

Texto completo
Resumen
Carbon-based materials show unique chemicophysical properties, and they have been successfully used in many catalytic processes, including the production of chemicals and energy. The introduction of heteroatoms (N, B, P, S) alters the electronic properties, often increasing the reactivity of the surface of nanocarbons. The functional groups on the carbons have been reported to be effective for anchoring metal nanoparticles. Although the interaction between functional groups and metal has been studied by various characterization techniques, theoretical models, and catalytic results, the role and nature of heteroatoms is still an object of discussion. The aim of this review is to elucidate the metal–heteroatoms interaction, providing an overview of the main experimental and theoretical outcomes about heteroatom-mediated metal–support interactions. Selected studies showing the effect of heteroatom–metal interaction in the liquid-phase alcohol oxidation will be also presented.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Luo, Zijie, Jia Wang, Wei Zhou, and Junsheng Li. "Catalyst-Support Interactions Promoted Acidic Electrochemical Oxygen Evolution Catalysis: A Mini Review." Molecules 28, no. 5 (2023): 2262. http://dx.doi.org/10.3390/molecules28052262.

Texto completo
Resumen
In the context of the growing human demand for green secondary energy sources, proton-exchange membrane water electrolysis (PEMWE) is necessary to meet the high-efficiency production of high-purity hydrogen required for proton-exchange membrane fuel cells (PEMFCs). The development of stable, efficient, and low-cost oxygen evolution reaction (OER) catalysts is key to promoting the large-scale application of hydrogen production by PEMWE. At present, precious metals remain irreplaceable in acidic OER catalysis, and loading the support body with precious metal components is undoubtedly an effective strategy to reduce costs. In this review, we will discuss the unique role of common catalyst-support interactions such as Metal-Support Interactions (MSIs), Strong Metal-Support Interactions (SMSIs), Strong Oxide-Support Interactions (SOSIs), and Electron-Metal-Support Interactions (EMSIs) in modulating catalyst structure and performance, thereby promoting the development of high-performance, high-stability, low-cost noble metal-based acidic OER catalysts.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Gómez-Polo, C., A. Gil, S. A. Korili, et al. "Magnetic Properties of Nickel and Cobalt Catalysts Supported on Nanoporous Oxides." Journal of Nanoscience and Nanotechnology 8, no. 6 (2008): 2905–11. http://dx.doi.org/10.1166/jnn.2008.18317.

Texto completo
Resumen
The aim of this work is to use magnetic measurements as a research tool in the study of possible metal-support interactions in nickel and cobalt nanoporous catalysts. Several physicochemical techniques, namely nitrogen adsorption, X-ray diffraction, temperature-programmed reduction and chemical analysis, were used to analyze the role of the preparation method and the nature of the support on the existence of such metal-support interactions and to relate them with the magnetic response of these nanoporous systems. The catalysts were prepared by incipient wetness impregnation and precipitation-deposition with two commercial oxides, γ-Al2O3 and SiO2, as supports. The magnetic behavior of the catalysts is drastically affected by the existence of interactions between the metal and the support during the preparation procedure. The samples with weak metal-support interactions have characteristic magnetic behavior of antiferromagnetic metal oxide nanoparticles, while the ones having strong interactions display spin-glass like behavior.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Konsolakis, Michalis, and Zisis Ioakeimidis. "Surface/structure functionalization of copper-based catalysts by metal-support and/or metal–metal interactions." Applied Surface Science 320 (November 2014): 244–55. http://dx.doi.org/10.1016/j.apsusc.2014.08.114.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Ji, L., J. Lin, and H. C. Zeng. "Metal−Support Interactions in Co/Al2O3Catalysts: A Comparative Study on Reactivity of Support." Journal of Physical Chemistry B 104, no. 8 (2000): 1783–90. http://dx.doi.org/10.1021/jp993400l.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Liu, Jingyue. "ChemInform Abstract: Advanced Electron Microscopy of Metal-Support Interactions in Supported Metal Catalysts." ChemInform 42, no. 41 (2011): no. http://dx.doi.org/10.1002/chin.201141203.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Mogorosi, Ramoshibidu P., Nico Fischer, Michael Claeys, and Eric van Steen. "Strong-metal–support interaction by molecular design: Fe–silicate interactions in Fischer–Tropsch catalysts." Journal of Catalysis 289 (May 2012): 140–50. http://dx.doi.org/10.1016/j.jcat.2012.02.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Zhang, Yunshang, Jin‐Xun Liu, Kun Qian, et al. "Structure Sensitivity of Au‐TiO 2 Strong Metal–Support Interactions." Angewandte Chemie International Edition 60, no. 21 (2021): 12074–81. http://dx.doi.org/10.1002/anie.202101928.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Zhang, Yunshang, Jin‐Xun Liu, Kun Qian, et al. "Structure Sensitivity of Au‐TiO 2 Strong Metal–Support Interactions." Angewandte Chemie 133, no. 21 (2021): 12181–88. http://dx.doi.org/10.1002/ange.202101928.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Vaarkamp, Marius, Jeff T. Miller, Frank S. Modica, and Dick C. Koningsberger. "The Influence of Metal-Support Interactions on the Whiteline Intensity." Japanese Journal of Applied Physics 32, S2 (1993): 454. http://dx.doi.org/10.7567/jjaps.32s2.454.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Shi, Qiaolan, Tianrong Yu, Renfei Wu, and Jian Liu. "Metal–Support Interactions of Single-Atom Catalysts for Biomedical Applications." ACS Applied Materials & Interfaces 13, no. 51 (2021): 60815–36. http://dx.doi.org/10.1021/acsami.1c18797.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Sault, Allen G., Charles H. F. Peden, and Elaine P. Boespflug. "Metal-Support Interactions in Hydrous Titanium Oxide-Supported Nickel Catalysts." Journal of Physical Chemistry 98, no. 6 (1994): 1652–62. http://dx.doi.org/10.1021/j100057a019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Ahmadi, M., H. Mistry, and B. Roldan Cuenya. "Tailoring the Catalytic Properties of Metal Nanoparticles via Support Interactions." Journal of Physical Chemistry Letters 7, no. 17 (2016): 3519–33. http://dx.doi.org/10.1021/acs.jpclett.6b01198.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Ozin, Geoffrey A., Francois Hugues, and Saba M. Mattar. "Atomic silver fluorescent probe of metal-support interactions in zeolites." Journal of Physical Chemistry 89, no. 2 (1985): 300–304. http://dx.doi.org/10.1021/j100248a025.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Mullins, D. R., and K. Z. Zhang. "Metal–support interactions between Pt and thin film cerium oxide." Surface Science 513, no. 1 (2002): 163–73. http://dx.doi.org/10.1016/s0039-6028(02)01704-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Soria, J., M. T. Blasco, and J. C. Conesa. "Metal-support interactions in supported nickel catalysts: a FMR study." Surface Science Letters 251-252 (July 1991): A373. http://dx.doi.org/10.1016/0167-2584(91)91015-o.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

AKUBUIRO, E. "Dopant-induced metal-support interactions 1. Influence on chemisorptive behavior." Journal of Catalysis 103, no. 2 (1987): 320–33. http://dx.doi.org/10.1016/0021-9517(87)90124-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Soria, J., M. T. Blasco, and J. C. Conesa. "Metal-support interactions in supported nickel catalysts: a FMR study." Surface Science 251-252 (July 1991): 1018–22. http://dx.doi.org/10.1016/0039-6028(91)91143-l.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Cammarota, Ryan C., Laura J. Clouston, and Connie C. Lu. "Leveraging molecular metal–support interactions for H2 and N2 activation." Coordination Chemistry Reviews 334 (March 2017): 100–111. http://dx.doi.org/10.1016/j.ccr.2016.06.014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Vayenas, C. G., and G. E. Pitselis. "Mathematical Modeling of Electrochemical Promotion and of Metal−Support Interactions." Industrial & Engineering Chemistry Research 40, no. 20 (2001): 4209–15. http://dx.doi.org/10.1021/ie010001f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Chen, Kaidong, Yining Fan, and Qijie Yan. "Metal–Support Interactions in Fe/ZrO2Catalysts for Hydrogenation of CO." Journal of Catalysis 167, no. 2 (1997): 573–75. http://dx.doi.org/10.1006/jcat.1997.1592.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Vayenas, Costas G. "Promotion, Electrochemical Promotion and Metal–Support Interactions: Their Common Features." Catalysis Letters 143, no. 11 (2013): 1085–97. http://dx.doi.org/10.1007/s10562-013-1128-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Tan, Kaiyang, Mudit Dixit, James Dean, and Giannis Mpourmpakis. "Predicting Metal–Support Interactions in Oxide-Supported Single-Atom Catalysts." Industrial & Engineering Chemistry Research 58, no. 44 (2019): 20236–46. http://dx.doi.org/10.1021/acs.iecr.9b04068.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Liu, Lichen, Chengyan Ge, Weixin Zou, Xianrui Gu, Fei Gao, and Lin Dong. "Crystal-plane-dependent metal–support interaction in Au/TiO2." Physical Chemistry Chemical Physics 17, no. 7 (2015): 5133–40. http://dx.doi.org/10.1039/c4cp05449k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Frey, H., A. Beck, X. Huang, J. A. van Bokhoven, and M. G. Willinger. "Dynamic interplay between metal nanoparticles and oxide support under redox conditions." Science 376, no. 6596 (2022): 982–87. http://dx.doi.org/10.1126/science.abm3371.

Texto completo
Resumen
The dynamic interactions between noble metal particles and reducible metal-oxide supports can depend on redox reactions with ambient gases. Transmission electron microscopy revealed that the strong metal-support interaction (SMSI)–induced encapsulation of platinum particles on titania observed under reducing conditions is lost once the system is exposed to a redox-reactive environment containing oxygen and hydrogen at a total pressure of ~1 bar. Destabilization of the metal–oxide interface and redox-mediated reconstructions of titania lead to particle dynamics and directed particle migration that depend on nanoparticle orientation. A static encapsulated SMSI state was reestablished when switching back to purely oxidizing conditions. This work highlights the difference between reactive and nonreactive states and demonstrates that manifestations of the metal-support interaction strongly depend on the chemical environment.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Wang, Fei, Jianzhun Jiang, and Bin Wang. "Recent In Situ/Operando Spectroscopy Studies of Heterogeneous Catalysis with Reducible Metal Oxides as Supports." Catalysts 9, no. 5 (2019): 477. http://dx.doi.org/10.3390/catal9050477.

Texto completo
Resumen
For heterogeneous catalysis, the metal catalysts supported on reducible metal oxides, especially CeO2 and TiO2, have long been a research focus because of their excellent catalytic performance in a variety of catalytic reactions. Detailed understanding of the promotion effect of reducible metal oxides on catalytic reactions is beneficial to the rational design of new catalysts. The important catalytic roles of reducible metal oxides are attributed to their intimate interactions with the supported metals (e.g., strong metal-support interaction, electronic metal-support interaction) and unique support structures (e.g., oxygen vacancy, reversible valence change, surface hydroxyl). However, the structures of the catalysts and reaction mechanisms are strongly affected by environmental conditions. For this reason, in situ/operando spectroscopy studies under working conditions are necessary to obtain accurate information about the structure-activity relationship. In this review, the recent applications of the in situ/operando spectroscopy methodology on metal catalysts with reducible metal oxides as supports are summarized.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía