Tesis sobre el tema "Milnor"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Milnor".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Ruiz, Camila Mariana. "Do número de Milnor ao número de Milnor de Lê". Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10082011-150046/.
Texto completoIn this work, we present a brief compendium about the topological study of J. Milnor fibers. We address the classic case, studied by Milnor, and the generalization presented by Lê D. T. for the case of germs of analytic functions defined on singular varieties. In both situations, the main results deal with germs of functions with isolated singularities
Ribeiro, Maico Felipe Silva. "Singular Milnor Fibrations". Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-06072018-115031/.
Texto completoNeste trabalho apresentamos os mais recentes desenvolvimentos na direção de estruturas de fibrações locais de singularidades analíticas. Usando técnicas e ferramentas da teoria de estratificação, provamos alguns teoremas estruturais no sentido estratificado, os quais serão chamados fibração singular de Milnor sobre o tubo e fibração de Milnor-Hamm sobre a esfera. Além disso, apresentamos algoritmos com o intuito de criar uma ampla variedade de exemplos e comparamos nossos resultados com os atuais encontrados na literatura. Nossos resultados generalizam todos os previamente existentes tanto no caso clássico, quanto no sentido estratificado.
Keating, Ailsa Macgregor. "Symplectic properties of Milnor fibres". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/90186.
Texto completo69
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 121-123).
We present two results relating to the symplectic geometry of the Milnor fibres of isolated affine hypersurface singularities. First, given two Lagrangian spheres in an exact symplectic manifold, we find conditions under which the Dehn twists about them generate a free non-abelian subgroup of the symplectic mapping class group. This extends a result of Ishida for Riemann surfaces. The proof generalises the categorical version of Seidel's long exact sequence to arbitrary powers of a fixed Dehn twist. We also show that the Milnor fibre of any isolated degenerate hypersurface singularity contains such pairs of spheres. In the second half of this thesis, we study exact Lagrangian tori in Milnor fibres. The Milnor fibre of any isolated hypersurface singularity contains many exact Lagrangian spheres: the vanishing cycles associated to a Morsification of the singularity. Moreover, for simple singularities, it is known that the only possible exact Lagrangians are spheres. We construct exact Lagrangian tori in the Milnor fibres of all non-simple singularities of real dimension four. This gives examples of Milnor fibres whose Fukaya categories are not generated by vanishing cycles. Also, this allows progress towards mirror symmetry for unimodal singularities, which are one level of complexity up from the simple ones.
by Ailsa Macgregor Keating.
Ph. D.
Kerz, Moritz. "Milnor K-theory of local rings". kostenfrei, 2008. http://www.opus-bayern.de/uni-regensburg/volltexte/2008/991/.
Texto completoFeld, Niels. "Faisceaux et modules de Milnor-Witt". Thesis, Université Grenoble Alpes, 2021. http://www.theses.fr/2021GRALM001.
Texto completoWe generalize Rost's theory of cycle modules using the Milnor-Witt K-theory instead of the classical Milnor K-theory. We obtain a (quadratic) setting to study general cycle complexes and their (co)homology groups.Moreover, we prove that the heart of Morel-Voevodsky stable homotopy category over a perfect field (equipped with its homotopy t-structure) is equivalent to the category of Milnor-Witt cycle modules.Finally, we explore a conjecture of Morel about the Bass-Tate transfers defined on the contraction of a homotopy sheaf and prove that the conjecture is true with rational coefficients. We also study the relations between (contracted) homotopy sheaves, sheaves with generalized transfers and MW-homotopy sheaves, and prove an equivalence of categories. As applications, we describe the essential image of the canonical functor that forgets MW-transfers and use theses results to discuss the conservativity conjecture in A1-homotopy due to Bachmann and Yakerson
Santana, Hellen Monção de Carvalho. "Número de Milnor associado a curvas reduzidas /". São José do Rio Preto, 2016. http://hdl.handle.net/11449/136361.
Texto completoBanca: Bruna Oréfice Okamoto
Banca: Parham Salehyan
Resumo: O objetivo deste trabalho é estudar curvas reduzidas. Associado a elas, Buchweitz e Greuel definem um número, chamado número de Milnor de curvas reduzidas, pois no caso de curvas planas este coincide com o número de Milnor definido por Milnor. Este número é obtido através de um importante objeto algébrico: o módulo dual de Grothendieck. Com o intuito de facilitar a obtenção deste número, mostraremos que ele está relacionado com outro número, chamado delta, mais fácil de ser calculado. Por fim, mostraremos que, de maneira análoga, Nuño-Ballesteros e Tomazella definem um número associado a germes de função finita definidos em curvas reduzidas. Este número está relacionado com o grau deste germe e com o número de Milnor da curva reduzida associada
Abstract: The aim of this work is to study reduced curves. Associate to them, Buchweitz and Greuel define a number, called Milnor number once that in the case of plane curves, this number coincides to the Milnor number defined by Milnor. This number is obtained through an important algebraic object: dual module of Grothendieck. In order to make it easier to obtain this number, we will prove that it is related to another number, called delta, easier to be computed. At last, we prove that, in the same way, Nuño-Ballesteros and Tomazella define a number associate to finite function germs defined over reduced curves. This number is related to the degree of this germ and to the Milnor number of the reduced curve associated to it
Mestre
Martins, Rafaella de Souza. "Sobre a topologia das fibrações de Milnor". Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-25072018-104835/.
Texto completoNeto, Aurelio Menegon. "Números de Milnor e obstrução de Euler". Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-14092007-101056/.
Texto completoIn this work we define the local Euler obstruction of a complex analytic singularity (X, \'x IND.0\'), denoted Eu(X, \'x IND.0\'), and the local Euler obstruction of a holomorphic function f defined on this space, with an isolated singularity at \'x IND. 0\', denoted \'Eu IND. f\' (X, \'x IND.0\'); and we present two formulas for their respective calculations. Next, using a geometric approach, we determine the relations between \'Eu IND.f\' (X, \'x IND.0\') and several generalizations of the Milnor number for functions on singular spaces
Santos, Raimundo Nonato Araújo dos. "Fibrações de Milnor de singularidades analíticas reais". Universidade de São Paulo, 2002. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-17062015-103449/.
Texto completoIn this work we study the Milnor\'s fibrations associated to real isolated singularities defined by map-germs f : Rn, 0 → R2, 0. The main result relates the existence of the Milnor\'s fibration with the (c)-regularity of the family of hypersurfaces with isolated singularity obtained by projecting f into the family L-θ of all lines through the origin in the plane R2sup. We also study families of germs of analytic functions with isolated singularities. The aim is to get sufficient condition for the topological triviality of the families and the equivalente of the Milnor fibrations associated to them.
Guerrero, Vejarano Darwin Emerson [UNESP]. "Sobre o teorema de fibração de Milnor". Universidade Estadual Paulista (UNESP), 2014. http://hdl.handle.net/11449/122106.
Texto completoConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
A fibração de Milnor aparece como a principal ferramenta no estudo local da topologia das singularidades analíticas reais e complexas. Neste trabalho estudaremos o Teorema de Fibração de Milnor e o surpreendente comportamento topológico das Fibras de Milnor. Para tais objetivos, usaremos algumas ferramentas da Geometria Algébrica, Análise Complexa em várias variáeis e um pouco da Teoria de Morse
The Milnor bration appears as the main tool in the topological local study of real and complex analytic singularities. In this work we study the famous Milnor Fibration Theorem, and the surprising topological behavior of the Milnor bres. To reach these objectives we use some tools of classical Algebraic Geometry, Complex Analysis of several variables and also some aspects of Morse Theory
Santana, Hellen Monção de Carvalho [UNESP]. "Número de Milnor associado a curvas reduzidas". Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/136361.
Texto completoApproved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-03-22T17:36:33Z (GMT) No. of bitstreams: 1 santana_hmc_me_sjrp.pdf: 33709454 bytes, checksum: b55274e623607677efb4f7d385bf4e3e (MD5)
Made available in DSpace on 2016-03-22T17:36:33Z (GMT). No. of bitstreams: 1 santana_hmc_me_sjrp.pdf: 33709454 bytes, checksum: b55274e623607677efb4f7d385bf4e3e (MD5) Previous issue date: 2016-03-07
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
O objetivo deste trabalho é estudar curvas reduzidas. Associado a elas, Buchweitz e Greuel definem um número, chamado número de Milnor de curvas reduzidas, pois no caso de curvas planas este coincide com o número de Milnor definido por Milnor. Este número é obtido através de um importante objeto algébrico: o módulo dual de Grothendieck. Com o intuito de facilitar a obtenção deste número, mostraremos que ele está relacionado com outro número, chamado delta, mais fácil de ser calculado. Por fim, mostraremos que, de maneira análoga, Nuño-Ballesteros e Tomazella definem um número associado a germes de função finita definidos em curvas reduzidas. Este número está relacionado com o grau deste germe e com o número de Milnor da curva reduzida associada.
The aim of this work is to study reduced curves. Associate to them, Buchweitz and Greuel define a number, called Milnor number once that in the case of plane curves, this number coincides to the Milnor number defined by Milnor. This number is obtained through an important algebraic object: dual module of Grothendieck. In order to make it easier to obtain this number, we will prove that it is related to another number, called delta, easier to be computed. At last, we prove that, in the same way, Nuño-Ballesteros and Tomazella define a number associate to finite function germs defined over reduced curves. This number is related to the degree of this germ and to the Milnor number of the reduced curve associated to it.
Guerrero, Vejarano Darwin Emerson. "Sobre o teorema de fibração de Milnor /". São José do Rio Preto, 2014. http://hdl.handle.net/11449/122106.
Texto completoBanca: Ana Claudia Nabarro
Banca: Luciana de Fátima Martins
Resumo: A fibração de Milnor aparece como a principal ferramenta no estudo local da topologia das singularidades analíticas reais e complexas. Neste trabalho estudaremos o Teorema de "Fibração" de Milnor e o surpreendente comportamento topológico das Fibras de Milnor. Para tais objetivos, usaremos algumas ferramentas da Geometria Algébrica, Análise Complexa em várias variáeis e um pouco da Teoria de Morse
Abstract: The Milnor bration appears as the main tool in the topological local study of real and complex analytic singularities. In this work we study the famous Milnor Fibration Theorem, and the surprising topological behavior of the Milnor bres. To reach these objectives we use some tools of classical Algebraic Geometry, Complex Analysis of several variables and also some aspects of Morse Theory
Mestre
AUDOUBERT, BENOIT. "Filtration polaire de la fibre de milnor". Nantes, 2001. http://www.theses.fr/2001NANT2016.
Texto completoOréfice, Bruna. "O número de Milnor de uma singularidade isolada". Universidade Federal de São Carlos, 2011. https://repositorio.ufscar.br/handle/ufscar/5823.
Texto completoFinanciadora de Estudos e Projetos
Given (X; 0) C (CN; 0) a weighted homogeneous germ of hypersurface with isolated singularity and f : (CN; 0) - C a germ of function finitely determined with respect to X, we show that UBR(f;X) = U(f) + U(X; f), where U(f) and U(X; f) denote the Milnor numbers of f and of the fiber X \ f1(0), respectively, and UBR(f;X) is the Bruce-Roberts number of f with respect to X. We show that the logarithmic characteristic subvariety, LC(X), is Cohen-Macaulay and we get relations between the Bruce-Roberts number and the Euler obstruction. Given F : (CN; 0) ! Mm;n(C) a holomorphic function germ, let (X; 0) be the isolated determinantal singularity given by X = F-1(Ms m;n(C)) where Ms m;n(C) is the set of the complex matrices with rank less then s, with s an integer number between 0 and minfm; ng such that N < (m - s + 2)(n - s + 2), we will define the vanishing Euler characteristic of (X; 0) and the Milnor number of a holomorphic function germ with an isolated singularity at X, f : (X; 0) - C.
Dados (X; 0) C (CN; 0) um germe de hipersuperfície quase homogêneo com singularidade isolada e f : (CN, 0) - C um germe de função finitamente determinado com respeito a X, mostramos que UBR(f;X) = U(f) + U(X; f), onde U(f) e U(X; f) denotam o número de Milnor de f e da fibra X \ f-1(0), respectivamente, e _BR(f;X) é o número de Bruce-Roberts de f com respeito a X. Mostramos que a variedade logarítmica característica LC(X) é Cohen-Macaulay e obtemos relações entre o número de Bruce-Roberts e a obstrução de Euler. Dado F : (CN; 0) ! Mm;n(C) um germe de função holomorfa, seja (X; 0) a singularidade determinantal isolada dada por X = F-1(Ms m;n(C)) onde Ms m;n(C) é o conjunto das matrizes complexas com posto menor que s, com s um número inteiro entre 0 e minfm; ng tal que N < (m-s+2)(n-s+2), definimos a característica de Euler evanescente de (X; 0) e o número de Milnor de um germe de função holomorfa com uma singularidade isolada em X, f : (X; 0) - C.
Spohr, Cristina. "Poliedro de Newton e o número de Milnor". Universidade Federal de São Carlos, 2006. https://repositorio.ufscar.br/handle/ufscar/5917.
Texto completoFinanciadora de Estudos e Projetos
In this work, we study the relation between Milnor's number and the Newton's number of a formal series. The former is always greater than or equal to the latter and equality occurs whan the formal series f has non-degenerate newtonian principal part at the origin.
Neste trabalho, estudamos a relação que existe entre o número de Milnor de uma série formal com o número de Newton. O número de Milnor de uma série formal é sempre maior ou igual ao número de Newton e a igualdade entre os números é obtida sempre que a série formal f possui parte principal Newton não-degenerada na origem.
Zuber, Hugues. "Variétés caractéristiques et non formalité des fibres de Milnor". Phd thesis, Université de Nice Sophia-Antipolis, 2009. http://tel.archives-ouvertes.fr/tel-00440281.
Texto completoYokura, Shoji y yokura@sci kagoshima-u. ac jp. "Verdier--Riemann--Roch for Chern Class and Milnor Class". ESI preprints, 2000. ftp://ftp.esi.ac.at/pub/Preprints/esi933.ps.
Texto completoCouture, Olivier. "Fibres de Milnor dans les familles à un paramètre". Dijon, 1996. http://www.theses.fr/1996DIJOS017.
Texto completoWilliams, Kristopher John. "The Milnor fiber associated to an arrangement of hyperplanes". Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/1277.
Texto completoSampaio, Breno Rafael Pinheiro. "Sobre o nÃmero de Milnor de germes de funÃÃes holomorfas". Universidade Federal do CearÃ, 2013. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13475.
Texto completoIn early work on the number of Milnor, it is defined as the dimension of the nth homology group of a Milnor fiber. This work will check some other equivalences, with the aim of showing that the number of Milnor can be written as the demension of a vector C-space that comes from the ratio of the germ ring of holomorphic functions and its Jacobian.
Sampaio, Breno Rafael Pinheiro. "Sobre o número de Milnor de germes de funções holomorfas". reponame:Repositório Institucional da UFC, 2015. http://www.repositorio.ufc.br/handle/riufc/10594.
Texto completoSubmitted by Rocilda Sales (rocilda@ufc.br) on 2015-02-10T15:55:26Z No. of bitstreams: 1 2015_dis_brpsampaio.pdf: 9011044 bytes, checksum: 79ea4e2b63403426b3e68d3c52b699d8 (MD5)
Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2015-02-10T15:58:10Z (GMT) No. of bitstreams: 1 2015_dis_brpsampaio.pdf: 9011044 bytes, checksum: 79ea4e2b63403426b3e68d3c52b699d8 (MD5)
Made available in DSpace on 2015-02-10T15:58:10Z (GMT). No. of bitstreams: 1 2015_dis_brpsampaio.pdf: 9011044 bytes, checksum: 79ea4e2b63403426b3e68d3c52b699d8 (MD5) Previous issue date: 2015
In early work on the number of Milnor, it is defined as the dimension of the nth homology group of a Milnor fiber. This work will check some other equivalences, with the aim of showing that the number of Milnor can be written as the demension of a vector C-space that comes from the ratio of the germ ring of holomorphic functions and its Jacobian.
Nos trabalhos iniciais sobre o número de Milnor, ele é definido como a dimensão do n-ésimo grupo de homologia de uma fibra de Milnor. Esse trabalho irá verificar algumas outras equivalências, com o objetivo de mostrar que o número de Milnor pode ser escrito como a dimenção de um C-espaço vetorial que vem do quociente entre o anel de germes de funções holomorfas e de seu jacobiano.
Geandier, Françoise. "Polynômes de Bernstein et déformations à nombre de Milnor constant". Nice, 1989. http://www.theses.fr/1989NICE4278.
Texto completoLauber, Marianne. "Nombres de Lelong et nombres de Milnor d'une singularité isolée". Grenoble 1, 1993. http://www.theses.fr/1993GRE10028.
Texto completoNguyen, Dinh Huu. "On [rho]-generic splitting varieties for Milnor K-symbols mod [rho]". Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1905631291&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Texto completoZanchetta, Michelle Ferreira. "Números de Lê e classes de Milnor de hipersuperfícies analíticas complexas". Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-15042010-161340/.
Texto completoThis work is divided into two distinct parts. In the first part we characterize the Lê numbers of polynomials that are products of Pham- Brieskorn polynomials of the same type that we call Pham-Brieskorn arrangements, obtaining formulas to these numbers only using the number of variables, weights and degree of homogeneity of these polynomials. In the second part we are dedicated to establishing relationships between Lê numbers, which is a local concept, and the Milnor classes, which are global objects that provide information about the geometry and topology of complex analytic hypersurfaces. In a general context, using the hypothesis of specialization we relate the top dimensional Milnor class of a hypersurface Z in a compact manifold M with a sum given in terms of the last Lê number associated to each stratum of a Whitney estratification of Z (with connected strata) that are contained in singular set. Moreover, we obtain a characterization of the Milnor class of minimum dimension via the Lê numbers without using the hypothesis of specialization. This class coincides with the Milnor number of Parusinski that, as the Lê numbers, it is also a generalization of the Milnor number
García, Barroso Evelia. "Courbes polaires et courbure des fibres de milnor des courbes planes". Paris 7, 2000. http://www.theses.fr/2000PA077089.
Texto completoScully, Stephen. "Quasilinear forms, Milnor K-theory and function fields of hypersurfaces in positive characteristic". Thesis, University of Nottingham, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597111.
Texto completoHohlenwerger, Maria Amelia de Pinho Barbosa. "Novos exemplos de NS-pares e de fibrações de Milnor reais não-triviais". Universidade de São Paulo, 2014. http://www.repositorio.ufrb.edu.br/handle/123456789/952.
Texto completoIn this work, we focus on the study of the topology of the Milnor fibration associated with a polynomial map germ f : (Rn; 0) ! (Rp; 0) with an isolated singularity at the origin. The first result is an extension of the characterization of trivial map germs in the pairs of dimensions (n; p) when n p = 3: An initial characterization was presented by Church and Lamotke in 1975. The second result is a characterization of NS-pairs (S5;K2); using the topology of configuration spaces. As a consequence of this characterization, we show the existence of real polynomial map germs in the pairs of dimensions (6; 3) with an isolated singularity at the origin such that its Milnor fibers are not diffeomorphic to a disc. The existence of such examples ends a non-triviality problem posed by Milnor in 1968 and furthermore, it allows us to show a new result about the topology of the real Milnor fibers in the pairs of dimensions (2n; n) and (2n + 1; n); n > 3: This result ensure the existence of polynomial map germs (Rn; 0) ! (Rp; 0); n > p > 2; with an isolated singularity at the origin such that its Milnor fibers has the homotopy type of a bouquet of a positive number of spheres.
Khélif, Anatole. "Generalisation du theoreme de bass-milnor-serre au cas d'anneaux d'entiers non-standards". Paris 7, 1990. http://www.theses.fr/1990PA077052.
Texto completoMonteiro, Amanda. "Estudo de polinômios quase homogêneos via formas de Seifert /". São José do Rio Preto, 2019. http://hdl.handle.net/11449/180974.
Texto completoCoorientador: Évelin Meneguesso Barbaresco
Banca: Nivaldo de Goes Grulha Junior
Banca: Maria Gorete Carreira Andrade
Resumo: Dado um polinômio quase homogêneo com singularidade isolada na origem existe associado um polinômio que depende apenas de seus pesos. Motivados por um resultado que garante que dados dois polinômios quase homogêneos com singularidade isolada na origem, eles têm os mesmos pesos se, e somente se, os seus polinômios associados são iguais, fizemos um estudo destes polinômios através das chamadas Formas de Seifert, que são formas sobre o grupo de homologia da fibra de Milnor associadas ao polinômio inicial, definido pelo linking number de dois ciclos. Desenvolvemos a teoria necessária para mostrar que dados dois polinômios quase homogêneos com singularidade isolada na origem, se suas Formas de Seifert forem equivalentes sobre os números reais, então seus polinômios associados são congruentes de uma certa maneira. Ressaltamos que a recíproca deste resultado também é válida e, portanto, existe uma condição necessária e suficiente para que esses polinômios tenham Formas de Seifert reais equivalentes em termos de seus pesos
Abstract: Given a weighted homogeneous polynomials with isolated singularity at the origin there is a polynomial associated that depends only on its weights. Motivated by a result that ensures that given two weighted homogeneous polynomials with isolated singularity at the origin, they have the same weights if, and only if, their associated polynomials are equal, we did a study of these polynomials through the so-called Seifert Forms, which are forms on the homology group of Milnor fiber associated to the initial polynomial, defined by the linking number of two cycles. We develop the necessary theory to show that given two weighted homogeneous polynomials with isolated singularity at the origin, if their Seifert Forms are equivalent on real numbers, then their associated polynomials are congruent in a certain way. We note that the converse of this result is also valid and, therefore, there is a necessary and sufficient condition for these polynomials to have equivalent real Seifert Forms in terms of their weights
Mestre
Vial, Charles. "Operations in Milnor K-theory and coniveau filtrations and finite dimensionality for pure motives". Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611566.
Texto completoPontigo, Herrera Jessie Diana. "Problème de centre tangentiel et problème de monodromie pour certains Hamiltoniens non-génériques". Thesis, Dijon, 2016. http://www.theses.fr/2016DIJOS001/document.
Texto completoIn the generic case Yu. S. Ilyashenko gave a solution of the tangential center problem and the monodromy problem. However, a solution for all non-generic cases is not known. In this thesis we study a family of non-generic Hamiltonians, whose Hamiltonian is a product of real polynomials of degree equal or bigger than 1. We study this family with the idea that a good understanding of this Hamiltonian model could help us to understand other non-generic cases later. In this family the genericity assumption of transversality at infinity fails and the coincidence of the critical values for different critical points is allowed. We consider some geometric conditions on the Hamiltonians of this family that we call good divide of the real projective plane and good multiplicity at infinity. These conditions help us to compute the orbit under monodromy of vanishing cycles. We give a solution of the monodromy problem of two sub-families in this family. One of them satisfying that all the center critical points are at different critical levels, and the other satisfying that the Hamiltonian is invariant under the reflection with respect to the y-axis. Using the solution of the monodromy problem we also provide a solution of the tangential center problem for those families
Barbosa, Grazielle Feliciani. "Topologia de singularidades e o estudo de seus invariantes". Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-08052008-135109/.
Texto completoSome new relations between A-invariants of equidimensional corank-1 map germs f :\'C POT.n\', 0 \' \'ARROW\' \'C POT.n\', 0 are described. The main local result states that the alternating sum ofthe Milnor numbers of the closures of the Ai sets in the source of f is equal to the local multiplicity of f minus n + 1. And there are corresponding formulas for the s-local stable types A(\'k IND.1\' ,...,\'k IND.s\'). The realations provide simplified (or weaker) conditions for the A-finiteness of f and for the topological A-triviality of deformations of f. We also classify the A-simple germs f : \'C POT.2\', 0 \'ARROW\' \'C POT.5\', 0 for multiplicities 1, 2, and 3
Szawlowski, Adrian [Verfasser], Viktor [Akademischer Betreuer] Pidstrygach y Thomas [Akademischer Betreuer] Schick. "The Geometry of the Milnor Number / Adrian Szawlowski. Gutachter: Viktor Pidstrygach ; Thomas Schick. Betreuer: Viktor Pidstrygach". Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2012. http://d-nb.info/1043514619/34.
Texto completoHuarcaya, Jorge Alberto Coripaco. "Poliedros de Newton e singularidades de polinômios". Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10082011-140945/.
Texto completoIn this work, we study the relation between the Milnor number of a polynomial cômodo ie. the sum of Milnor numbers of isolated singular points of polynomial, with the Newton number. This number is always lower than or equal to the Newton number and equality between the numbers is obtained when the polynomial has non-degenerate newtonian principal part at the infinity
Bailet, Pauline. "Arrangements d'hyperplans". Phd thesis, Université Nice Sophia Antipolis, 2014. http://tel.archives-ouvertes.fr/tel-01059809.
Texto completoDutertre, Nicolas. "Sur le calcul de la caracteristique d'euler-poincare d'ensembles semi-algebriques et de la fibre de milnor reelle". Rennes 1, 1998. http://www.theses.fr/1998REN10133.
Texto completoAment, Daiane Alice Henrique. "Invariantes de germes de aplicações". Universidade Federal de São Carlos, 2017. https://repositorio.ufscar.br/handle/ufscar/8976.
Texto completoApproved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-08-09T18:34:10Z (GMT) No. of bitstreams: 1 TeseDAHA.pdf: 605987 bytes, checksum: 218da6f6f0b14c9296bc76440e616467 (MD5)
Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-08-09T18:34:17Z (GMT) No. of bitstreams: 1 TeseDAHA.pdf: 605987 bytes, checksum: 218da6f6f0b14c9296bc76440e616467 (MD5)
Made available in DSpace on 2017-08-09T18:34:26Z (GMT). No. of bitstreams: 1 TeseDAHA.pdf: 605987 bytes, checksum: 218da6f6f0b14c9296bc76440e616467 (MD5) Previous issue date: 2017-04-19
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
In this work, we show relations between invariants of map germs. First, we consider an analytic function germ f : (X, 0) —(C, 0) on an isolated determinantal singularity and we present a relation between the Euler obstruction of f and the determinantal Milnor number of f. In the particular case where (X, 0) is an isolated complete intersection singularity, we obtain a simple way to calculate the Euler obstruction of f as the difference between the dimension of two algebras. After, we work with map germs f : (X, 0) —— (C2, 0), where (X, 0) is a plane curve with isolated singularity. We introduce the image Milnor number to these map germs and we present a positive answer to the Mond’s conjecture in this context. The Mond’s conjecture proposes an inequality between two other invariants, the A^-codimension and the image Milnor number, in the case of map germs f : (Cn, 0) —(Cn+1, 0) when the dimensions (n,n + 1) is in Mather’s nice dimensions. The conjecture is true for n = 1, 2, and for the cases n > 3 is an open problem.
Neste trabalho, mostramos relações entre invariantes de germes de aplicações. Primeiro, consideramos um germe de funçao analítica f : (X, 0)^(C, 0) sobre uma singularidade determinantal isolada e apresentamos uma relaçao entre a obstrução de Euler de f e o número de Milnor determinantal de f. No caso particular em que (X, 0) e uma interseçao completa com singularidade isolada, obtemos um modo simples de calcular a obstrucao de Euler de f como a diferenca entre dimensães de duas algebras. Depois, trabalhamos com germes de aplicacoes f : (X, 0)^(C2, 0), onde (X, 0) e uma curva plana com singularidade isolada. Introduzimos o número de Milnor da imagem para estes germes de aplicacães e apresentamos uma resposta positiva para a conjectura de Mond neste contexto. A conjectura de Mond propoe uma desigualdade entre outros dois invariantes, a A^-codimensao e o numero de Milnor da imagem, para o caso de germes de aplicacoes f : (Cn, 0)^(Cn+1,0) quando as dimensoes (n,n + 1) estao nas boas dimensoes de Mather. A conjectura e verdadeira para n = 1, 2, e para os casos n > 3 e um problema em aberto.
Orgogozo, Fabrice. "Groupe fondamental premier à p, nombre de Milnor des singularités isolées, motifs de dimension inférieure ou égale à 1". Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00004093.
Texto completopour le groupe fondamental modéré sont également discutés.
Au deuxième chapitre, on déduit de la formule du conducteur, conjecturée par S. Bloch, celle de P. Deligne exprimant, dans le cas d'une singularité isolée, la dimension totale des cycles évanescents en fonction du nombre de Milnor.
En particulier, la formule de Deligne est établie en dimension relative un.
Dans le troisième chapitre, on compare les 1-isomotifs de P. Deligne sur un corps avec la théorie de V. Voevodsky en dimension inférieure à 1.
Orgogozo, Fabrice. "Groupe fondamental premier à p, nombres de Milnor des singularités isolées, motifs de dimension inférieure ou égale à 1". Paris 6, 2003. https://tel.archives-ouvertes.fr/tel-00004093v2.
Texto completoLuchesi, Vanda Maria. "Invariantes de germes de aplicações de C^2 em C^3". Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-04072005-122826/.
Texto completoLet f:(C^2,0) to (C^3,0) be a holomorphic map-germ with corank 1 and f_t a stable perturbation of f. The singular points of f_t are either cross-caps, double points or triple points. The number of cross-caps and the number of triple points of f_t and the Milnor number of the double points curve of f_t are invariants of the germs f. In this work we study formulas to get these invariants and in the case of quasi-homogeneous germs we relate these invariants with the A_e-codimension of f.
Curmi, Octave. "Topologie des lissages de singularités non-isolées de surfaces complexes". Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I030/document.
Texto completoThis thesis is dedicated to the study of the topology of smoothings of non-isolated singularities of complex surfaces. The question is to describe the topology of themanifold, called Milnor fiber, which appears during this process of smoothing. Consideringthe great difficulty of a description of the whole of this topology, many researches havefocused on the study of the boundary of the Milnor fiber. In the case of isolated singularities,it is known since the work of Mumford (1961) that this boundary is a graph manifold,isomorphic to the link of the singularity.Different results (Michel & Pichon 2003, 2014, Némethi & Szilárd 2012) have then provedthat, in the case of reduced non-isolated singularities, the boundary of the Milnor fiber isagain a graph manifold, while restraining to the case of a smooth total space of smoothing.Fernández de Bobadilla & Menegon-Neto (2014) have widened the context, consideringnon-reduced surfaces, and allowing the total space to have an isolated singularity. In thiswork, we pursue the extension of this result to a larger context, allowing the total spaceto present non-isolated singularities, while restraining ourselves to the study of reducedsurface singularities. Our proof is inspired by the one of Némethi and Szilard, and allows usfurthermore to provide a method for the computation of this manifold. This makes possiblethe actual computation of a large number of examples, representing a step forward in thequest for the comprehension of the manifolds that can actually appear as boundaries ofMilnor fibers.We apply in particular the method to Newton non-degenerate singularities defined on3-dimensional toric germs. This is a generalization of a theorem of Oka (1986), expressingthe boundary of the Milnor fiber in terms of the Newton polyhedron of the singularity
Forey, Arthur. "Invariants motiviques dans les corps valués". Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066557/document.
Texto completoThis thesis is devoted to define and study some motivic invariants associated to semialgebraic sets in valued fields. They are boolean combinations of sets defined by valuative inequalities. Our main tool is the theory of motivic integration, which is a kind of measure theory with values in the Grothendieck group of varieties defined over the residue field. In the first part, we define the notion of motivic local density. It is a valuative analog of complex Lelong number, Kurdyka-Raby real density and p-adic density of Cluckers- Comte-Loeser. It is a metric invariant with values in a localization of the Grothendieck group of varieties. Our main result is that it can be computed on the tangent cone with motivic multiplicities. We also establish an analog of the local Cauchy-Crofton formula. We finally show that the density of a germ of plane curve defined over the residue field is equal to the sum of the inverses of the multiplicities of the formal branches of the curve. The goal of the second part is to define a ring morphism from the Grothendieck group of semi-algebraic sets defined over a valued field K to the Grothendieck group of Ayoub’s categoryof rigid analytic motives over K. We show that it extends the morphism sending the class of an algebraic variety to the class of its cohomological motive with compact support. This gives a notion of virtual cohomological motive with compact support for rigid analytic varieties. We also show a duality theorem allowing us to compare the cohomological motive of the analytic Milnor fiber with the motivic Milnor fiber
Joint, Marie-Emmanuelle. "Extensions d'algèbres de Hopf primitivement engendrées". Angers, 2004. http://www.theses.fr/2004ANGE0005.
Texto completoThe notion of Hopf algebra pla,ys an important part in mathematics and physics. In algebraic topology, the fundamental notion of loop space, leads us to graded connected Hopf agebras. The work begun in 1965 by J. ~Zilnor and J. Moore and extended bv those of D. Anick and S. Halperin, showed the interest of the notion of primitivelv ~Hopf algebra. The structure theorem proved by Y. Felix, S. Halperin and J-C. Thomas characterizes those algebras by mean central extension of Hopf algebras. The subject of this the5is is the classification of extensions of primitively generated Hopf algebras. In particular. We develop an explicit computation for the extension classes using the Campbell-Haussdorf formula. We illustrate with some purely naturally topological exemples the algebraic results that we have proved
Souza, Taciana Oliveira. "Teoremas de (H,G)-coincidências para variedades e classificação global de singularidades isoladas em dimensões (6,3)". Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10062013-161959/.
Texto completoThis work consists of two parts. In the first part, we obtain some generalizations of the classical Borsuk-Ulam Theorem in terms of (H,G)-coincidences. In the second part, we extend the characterization of trivial map germs, in codimension 3, by the Milnor fibrations started by Church and Lamotke in [11]. We use this characterization in the global classification of isolated singularities in dimensions (6, 3)
Santos, Duilio Ferreira. "Elementos da teoria algébrica das formas quadráticas e de seus anéis graduados". Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-22062016-104927/.
Texto completoIn this work I try to provide a self-contained presentation on the concepts of algebraic theory of quadratic forms and on the graded rings that have emerged in the development of this theory. I started trying to clarify the meaning of \"equivalence\"between the various meanings of the concept of quadratic form. After the presentation of geometrical ingredients and results, we make an extract of the theory of Witt rings, a concept that originated the modern algebraic theory of quadratic forms. It is provided the key elements for the formulation of cohomology theories, focusing on the development of profinite cohomology theory and, especially, on galoisian cohomology. Are described the functors K0, K1 and K2 of classical K-theory and also the Milnor K-theory, which is more appropriate to formulate questions about quadratic forms. The dissertation is finished with the presentation of some concepts of the Theory of Special Groups, a first-order encoding of algebraic theory of quadratic forms, and with an example its importance by providing an extract of proof by Dickmann-Miraglia of the Marshalls conjecture on signatures, which relies heavily on this theory.
Nakajima, Evandro Alves. "Campos de vetores em variedades singulares". Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11112013-151324/.
Texto completoIn this work we study some indices of vector fields on regular manifolds, and on manifolds with isolated singularity. The main result is the Poincare-Hopf Theorem, which connects the Euler characteristic with the Poincare-Hopf index of the field. For complete intersections with isolated singularities, we also study some variations of this theorem, which connects the Euler characteristic with the Schwartz index, the GVS index and the Milnor number of the generic fiber
Abdallah, Nancy. "Cohomologie des courbes planes algébriques". Phd thesis, Université Nice Sophia Antipolis, 2014. http://tel.archives-ouvertes.fr/tel-01064511.
Texto completoClutha, Mahana. "Bounding Betti numbers of sets definable in o-minimal structures over the reals". Thesis, University of Bath, 2011. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.547627.
Texto completoSiesquén, Nancy Carolina Chachapoyas. "Invariantes de variedades determinantais". Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-13022015-100258/.
Texto completo