Índice
Literatura académica sobre el tema "Missing observations (Statistics) Sampling (Statistics) Multiple imputation (Statistics)"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Missing observations (Statistics) Sampling (Statistics) Multiple imputation (Statistics)".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Missing observations (Statistics) Sampling (Statistics) Multiple imputation (Statistics)"
Liu, Gang y Jukka-Pekka Onnela. "Bidirectional imputation of spatial GPS trajectories with missingness using sparse online Gaussian Process". Journal of the American Medical Informatics Association 28, n.º 8 (8 de junio de 2021): 1777–84. http://dx.doi.org/10.1093/jamia/ocab069.
Texto completoSiswantining, Titin, Muhammad Ihsan, Saskya Mary Soemartojo, Devvi Sarwinda, Herley Shaori Al-Ash y Ika Marta Sari. "MULTIPLE IMPUTATION FOR ORDINARY COUNT DATA BY NORMAL DISTRIBUTION APPROXIMATION". MEDIA STATISTIKA 14, n.º 1 (24 de junio de 2021): 68–78. http://dx.doi.org/10.14710/medstat.14.1.68-78.
Texto completoSrivastava, Muni S. y Mohammad Dolatabadi. "Multiple imputation and other resampling schemes for imputing missing observations". Journal of Multivariate Analysis 100, n.º 9 (octubre de 2009): 1919–37. http://dx.doi.org/10.1016/j.jmva.2009.06.003.
Texto completoLewis, Taylor, Elizabeth Goldberg, Nathaniel Schenker, Vladislav Beresovsky, Susan Schappert, Sandra Decker, Nancy Sonnenfeld y Iris Shimizu. "The Relative Impacts of Design Effects and Multiple Imputation on Variance Estimates: A Case Study with the 2008 National Ambulatory Medical Care Survey". Journal of Official Statistics 30, n.º 1 (1 de marzo de 2014): 147–61. http://dx.doi.org/10.2478/jos-2014-0008.
Texto completoJavadi, Sara, Abbas Bahrampour, Mohammad Mehdi Saber, Behshid Garrusi y Mohammad Reza Baneshi. "Evaluation of Four Multiple Imputation Methods for Handling Missing Binary Outcome Data in the Presence of an Interaction between a Dummy and a Continuous Variable". Journal of Probability and Statistics 2021 (17 de mayo de 2021): 1–14. http://dx.doi.org/10.1155/2021/6668822.
Texto completoKovtun, N. V. y A. N. Ya Fataliieva. "New Trends in Evidence-based Statistics: Data Imputation Problems". Statistics of Ukraine 87, n.º 4 (12 de marzo de 2020): 4–13. http://dx.doi.org/10.31767/su.4(87)2019.04.01.
Texto completoLu, Kaifeng. "Number of imputations needed to stabilize estimated treatment difference in longitudinal data analysis". Statistical Methods in Medical Research 26, n.º 2 (10 de octubre de 2014): 674–90. http://dx.doi.org/10.1177/0962280214554439.
Texto completoHughes, RA, JAC Sterne y K. Tilling. "Comparison of imputation variance estimators". Statistical Methods in Medical Research 25, n.º 6 (11 de julio de 2016): 2541–57. http://dx.doi.org/10.1177/0962280214526216.
Texto completoNi, Daiheng y John D. Leonard. "Markov Chain Monte Carlo Multiple Imputation Using Bayesian Networks for Incomplete Intelligent Transportation Systems Data". Transportation Research Record: Journal of the Transportation Research Board 1935, n.º 1 (enero de 2005): 57–67. http://dx.doi.org/10.1177/0361198105193500107.
Texto completoFu, Yingpeng, Hongjian Liao y Longlong Lv. "A Comparative Study of Various Methods for Handling Missing Data in UNSODA". Agriculture 11, n.º 8 (30 de julio de 2021): 727. http://dx.doi.org/10.3390/agriculture11080727.
Texto completoTesis sobre el tema "Missing observations (Statistics) Sampling (Statistics) Multiple imputation (Statistics)"
Kosler, Joseph Stephen. "Multiple comparisons using multiple imputation under a two-way mixed effects interaction model". Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1150482904.
Texto completoGuo, Xu. "Checking the adequacy of regression models with complex data structure". HKBU Institutional Repository, 2014. https://repository.hkbu.edu.hk/etd_oa/90.
Texto completoAlemdar, Meltem. "A Monte Carlo study the impact of missing data in cross-classification random effects models /". Atlanta, Ga. : Georgia State University, 2008. http://digitalarchive.gsu.edu/eps_diss/34/.
Texto completoTitle from title page (Digital Archive@GSU, viewed July 20, 2010) Carolyn F. Furlow, committee chair; Philo A. Hutcheson, Phillip E. Gagne, Sheryl A. Gowen, committee members. Includes bibliographical references (p. 96-100).
Merkle, Edgar C. "Bayesian estimation of factor analysis models with incomplete data". Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1126895149.
Texto completoTitle from first page of PDF file. Document formatted into pages; contains xi, 106 p.; also includes graphics. Includes bibliographical references (p. 103-106). Available online via OhioLINK's ETD Center
Deng, Wei. "Multiple imputation for marginal and mixed models in longitudinal data with informative missingness". Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1126890027.
Texto completoTitle from first page of PDF file. Document formatted into pages; contains xiii, 108 p.; also includes graphics. Includes bibliographical references (p. 104-108). Available online via OhioLINK's ETD Center
Kinney, Satkartar K. "Model Selection and Multivariate Inference Using Data Multiply Imputed for Disclosure Limitation and Nonresponse". Diss., 2007. http://hdl.handle.net/10161/437.
Texto completoAmer, Safaa R. "Neural network imputation : a new fashion or a good tool". Thesis, 2004. http://hdl.handle.net/1957/29926.
Texto completoGraduation date: 2005
Hassan, Ali Satty Ali. "Comparative approaches to handling missing data, with particular focus on multiple imputation for both cross-sectional and longitudinal models". Thesis, 2012. http://hdl.handle.net/10413/9119.
Texto completoThesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.
Oh, Sohae. "Multiple Imputation on Missing Values in Time Series Data". Thesis, 2015. http://hdl.handle.net/10161/10447.
Texto completoFinancial stock market data, for various reasons, frequently contain missing values. One reason for this is that, because the markets close for holidays, daily stock prices are not always observed. This creates gaps in information, making it difficult to predict the following day’s stock prices. In this situation, information during the holiday can be “borrowed” from other countries’ stock market, since global stock prices tend to show similar movements and are in fact highly correlated. The main goal of this study is to combine stock index data from various markets around the world and develop an algorithm to impute the missing values in individual stock index using “information-sharing” between different time series. To develop imputation algorithm that accommodate time series-specific features, we take multiple imputation approach using dynamic linear model for time-series and panel data. This algorithm assumes ignorable missing data mechanism, as which missingness due to holiday. The posterior distributions of parameters, including missing values, is simulated using Monte Carlo Markov Chain (MCMC) methods and estimates from sets of draws are then combined using Rubin’s combination rule, rendering final inference of the data set. Specifically, we use the Gibbs sampler and Forward Filtering and Backward Sampling (FFBS) to simulate joint posterior distribution and posterior predictive distribution of latent variables and other parameters. A simulation study is conducted to check the validity and the performance of the algorithm using two error-based measurements: Root Mean Square Error (RMSE), and Normalized Root Mean Square Error (NRMSE). We compared the overall trend of imputed time series with complete data set, and inspected the in-sample predictability of the algorithm using Last Value Carried Forward (LVCF) method as a bench mark. The algorithm is applied to real stock price index data from US, Japan, Hong Kong, UK and Germany. From both of the simulation and the application, we concluded that the imputation algorithm performs well enough to achieve our original goal, predicting the stock price for the opening price after a holiday, outperforming the benchmark method. We believe this multiple imputation algorithm can be used in many applications that deal with time series with missing values such as financial and economic data and biomedical data.
Thesis
Libros sobre el tema "Missing observations (Statistics) Sampling (Statistics) Multiple imputation (Statistics)"
Stata multiple-imputation reference manual: Release 12. College Station, Tex: Stata Press, 2011.
Buscar texto completoLP, StataCorp. Stata multiple-imputation reference manual: Release 11. College Station, Tex: Stata Press, 2009.
Buscar texto completoSchreuder, Hans T. Data estimation and prediction for natural resources public data. [Fort Collins, Colo.?]: U.S. Dept. of Agriculture, Forest Service, Rocky Mountain Research Station, 1998.
Buscar texto completo(Statistician), Shao Jun, ed. Statistical methods for handling incomplete data. Boca Raton: CRC Press, Taylor & Francis Group, 2014.
Buscar texto completoArmknecht, Paul A. Price imputation and other techniques for dealing with missing observations, seasonality and quality change in price indices. [Washington, D.C.]: International Monetary Fund, Statistics Department, 1999.
Buscar texto completoSelection Models For Nonignorable Missing Data (Anwendungsorientierte Statistik, Bd. 8). Morehouse Publishing, 2005.
Buscar texto completoM, Reich Robin y Rocky Mountain Research Station (Fort Collins, Colo.), eds. Data estimation and prediction for natural resources public data. [Fort Collins, Colo.?]: U.S. Dept. of Agriculture, Forest Service, Rocky Mountain Research Station, 1998.
Buscar texto completoLP, StataCorp, ed. Stata multiple-imputation reference manual: Release 11. College Station, Tex: Stata Press, 2009.
Buscar texto completoFehlende Daten in Additiven Modellen (Anwendungsorientierte Statistik). Peter Lang Publishing, 2003.
Buscar texto completo