Tesis sobre el tema "Model Predictve Control"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Model Predictve Control".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Lu, Yaohui. "Scheduling quasi-min-max model predictve control". Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/11692.
Texto completoHosseinkhan-Boucher, Rémy. "On Learning-Based Control of Dynamical Systems". Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPASG029.
Texto completoEnvironmental needs are driving renewed research interest in fluid flow control to reduce energy consumption and emissions in various applications such as aeronautics and automotive industries. Flow control strategies can optimise the system in real time, taking advantage of sensor measurements and physical models. These strategies aim at manipulating the behaviour of a system to reach a desired state (textit{e.g.}, stability, performance, energy consumption). Meanwhile, the development of data-driven control approaches in concurrent areas such as games and robotics has opened new perspectives for flow control. However, the integration of learning-based control in fluid dynamics comes with multiple challenges, including the robustness of the control strategy, the sample efficiency of the learning algorithm, and the presence of delays of any nature in the system. Thus, this thesis aims to study and develop learning-based control strategies with respect to these challenges where two main classes of data-driven control strategies are considered: Reinforcement Learning (RL) and Learning-based Model Predictive Control (LB-MPC). Multiple contributions are made in this context. First, an extended development on the connection between the fields of (continuous-time) Stochastic Control and (discrete-time) Markov Decision Process is provided to bridge the gap between the two approaches. Second, empirical evidence on the regularisation properties of the Maximum Entropy Reinforcement Learning algorithm is presented through statistical learning concepts to further understand the robustness feature of the Maximum Entropy approach. Third, the notion of temporal abstraction is used to improve the sample efficiency of a Learning-based Model Predictive Control algorithm driven by an Information Theoretic sampling rule. Lastly, neural differential models are introduced through the concept of Neural Delay Differential Equations to model continuous-time systems with delays for Model Predictive Control applications. The different studies are developed with numerical simulations applied on minimalistic systems from Dynamical Systems and Control theories to illustrate the theoretical results. The training experiments of the last part are also conducted on 2D fluid flow simulations
Bacic, Marko. "Model predictive control". Thesis, University of Oxford, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.400060.
Texto completoBorgesen, Jørgen Frenken. "Efficient optimization for Model Predictive Control in reservoir models". Thesis, Norwegian University of Science and Technology, Department of Engineering Cybernetics, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9959.
Texto completoThe purpose of this thesis was to study the use of adjoint methods for gradient calculations in Model Predictive Control (MPC) applications. The goal was to find and test efficient optimization methods to use in MPC on oil reservoir models. Handling output constraints in the optimization problem has been studied closer since they deteriorate the efficiency of the MPC applications greatly. Adjoint- and finite difference approaches for gradient calculations was tested on reservoir models to determine there efficiency on this particular type of problem. Techniques for reducing the number of output constraints was also utilized to decrease the computation time further. The results of this study shows us that adjoint methods can decrease the computation time for reservoir simulations greatly. Combining the adjoint methods with techniques that reduces the number of output constraints can reduce the computation time even more. Adjoint methods require some more work in the modeling process, but the simulation time can be greatly reduced. The principal conclusion is that more specialized optimization algorithms can reduce the simulation time for reservoir models.
Hanger, Martin Bøgseth. "Model Predictive Control Allocation". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for teknisk kybernetikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-13308.
Texto completoQi, Kent Zhihua. "Dual-model predictive control". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq21621.pdf.
Texto completoSriniwas, Ganti Ravi. "Nonlinear model predictive control". Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/10267.
Texto completoCouchman, Paul. "Stochastic model predictive control". Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442384.
Texto completoWu, Xingjian. "Stochastic model predictive control". Thesis, University of Oxford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.497157.
Texto completoGormandy, Brent Anthony. "Fuzzy model predictive control". Thesis, University of Strathclyde, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248858.
Texto completoBuerger, Johannes Albert. "Fast model predictive control". Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:6e296415-f02c-4bc2-b171-3bee80fc081a.
Texto completoNg, Desmond Han Tien. "Stochastic model predictive control". Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:b56df5ea-10ee-428f-aeb9-1479ce9a7b5f.
Texto completoSchaich, Rainer Manuel. "Robust model predictive control". Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:94e75a62-a801-47e1-8cb8-668e8309d477.
Texto completoTruong, Quan y trunongluongquan@yahoo com au. "Continuous-time Model Predictive Control". RMIT University. Electrical and Computer Engineering, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20090813.163701.
Texto completoRosdal, David. "Missilstyrning med Model Predictive Control". Thesis, Linköping University, Department of Electrical Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2748.
Texto completoThis thesis has been conducted at Saab Bofors Dynamics AB. The purpose was to investigate if a non-linear missile model could be stabilized when the optimal control signal is computed considering constraints on the control input. This is particularly interesting because the missile is controlled with rudders that have physical bounds. This strategy is called Model Predictive Control. Simulations are conducted to compare this strategy with others; firstly simulations with step responses and secondly simulations when the missile is supposed to hit a moving target. The latter is performed to show that the missile can be stabilized in its whole area of operation. The simulations show that the controller indeed can stabilize the missile for the given scenarios. However, this control strategy does not show any obvious improvements in comparison with alternative ones.
Bell, Geoffrey Laurence. "Robust model predictive control design". Thesis, Imperial College London, 2000. http://hdl.handle.net/10044/1/7450.
Texto completoTownsend, Shane Martin Joseph. "Non-linear model predictive control". Thesis, Queen's University Belfast, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301061.
Texto completoHeise, Sharon Ann. "Multivariable constrained Model Predictive Control". Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361703.
Texto completoRichards, Arthur George 1977. "Robust constrained model predictive control". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/28914.
Texto completoIncludes bibliographical references (p. 203-209).
(cont.) multiple Uninhabited Aerial Vehicles (UAVs) demonstrate that the new DMPC algorithm offers significant computational improvement compared to its centralized counterpart. The controllers developed in this thesis are demonstrated throughout in simulated examples related to vehicle control. Also, some of the controllers have been implemented on vehicle testbeds to verify their operation. The tools developed in this thesis improve the applicability of MPC to problems involving uncertainty and high complexity, for example, the control of a team of cooperating UAVs.
This thesis extends Model Predictive Control (MPC) for constrained linear systems subject to uncertainty, including persistent disturbances, estimation error and the effects of delay. Previous work has shown that feasibility and constraint satisfaction can be guaranteed by tightening the constraints in a suitable, monotonic sequence. This thesis extends that work in several ways, including more flexible constraint tightening, applied within the prediction horizon, and more general terminal constraints, applied to ensure feasible evolution beyond the horizon. These modifications reduce the conservatism associated with the constraint tightening approach. Modifications to account for estimation error, enabling output feedback control, are presented, and we show that the effects of time delay can be handled in a similar manner. A further extension combines robust MPC with a novel uncertainty estimation algorithm, providing an adaptive MPC that adjusts the optimization constraints to suit the level of uncertainty detected. This adaptive control replaces the need for accurate a priori knowledge of uncertainty bounds. An approximate algorithm is developed for the prediction of the closed-loop performance using the new robust MPC formulation, enabling rapid trade studies on the effect of controller parameters. The constraint tightening concept is applied to develop a novel algorithm for Decentralized MPC (DMPC) for teams of cooperating subsystems with coupled constraints. The centralized MPC optimization is divided into smaller subproblems, each solving for the future actions of a single subsystem. Each subproblem is solved only once per time step, without iteration, and is guaranteed to be feasible. Simulation examples involving
by Arthur George Richards.
Ph.D.
Sha'Aban, Yusuf. "Regulatory level model predictive control". Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/regulatory-level-model-predictive-control(1cca6fc1-8473-4191-8edd-06ddb0884040).html.
Texto completoTowhidkhah, Farzad. "Model predictive impedance control, a model for joint movement control". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1996. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq24019.pdf.
Texto completoTarragona, Roig Joan. "Smart control techniques for thermal energy storage systems". Doctoral thesis, Universitat de Lleida, 2021. http://hdl.handle.net/10803/671420.
Texto completoAumentar el uso de energía procedente de fuentes renovables es importante en la lucha contra el cambio climático. No obstante, su implantación plantea retos importantes debidos a la falta de continuidad en su generación y al desajuste que existe con los perfiles de consumo. La presente tesis doctoral se enmarca en dos propuestas para incrementar el rendimiento de los paneles fotovoltaicos en el ámbito de los sistemas de calefacción para edificios. Por un lado, el sistema integra un tanque de almacenaje de energía térmica, que permite almacenar la energía generada por los paneles durante el día, a fin de poderla consumir a las horas con más demanda. Por otro lado, el sistema también cuenta con una estrategia de control predictivo, que permite pronosticar las condiciones meteorológicas y las demandas de calefacción futuras, para ajustar el funcionamiento de todo el conjunto de elementos, considerando esta información. El sistema propuesto demostró ser efectivo en distintos tipos de climas y viviendas.
To increase the use of energy that comes from renewables is important to fight against climate change. However, their deployment leads to significant challenges due to the intermittence in their generation and the mismatch between energy demand and supply. In that sense, this PhD thesis is framed in two proposals to increase the performance of photovoltaic panels in heating systems integrated in the building sector. On the one hand, the system considers a thermal energy storage tank, which allows to store the energy produced by the panels during the solar hours, in order to consume it along the peak demand periods. On the other hand, the system also takes into account a model predictive control strategy, which enables to forecast weather conditions and future heating demands, to adjust the operation of all the elements. The proposed system demonstrated a good and effective behaviour in different climate conditions and buildings.
Simon, Daniel. "Model Predictive Control in Flight Control Design : Stability and Reference Tracking". Licentiate thesis, Linköpings universitet, Reglerteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-103742.
Texto completoThe series name "Linköping studies in science and technology. Licentiate Thesis" is incorrect. The correct series name is "Linköping studies in science and technology. Thesis".
Megías, Jiménez David. "Robustness aspects of Model Predictive Control". Doctoral thesis, Universitat Autònoma de Barcelona, 2000. http://hdl.handle.net/10803/32173.
Texto completoEl Control Predictiu Basat en Models (Model, Model-based o Receding-horizon Predictive Control; MPC o RHPC) és una estratègia de control madura i de gran èxit, que ha assolit l'acceptació de les comunitats acadèmica i industrial. La base d'aquest tipus de lleis de control, la capacitat de les quals per treballar amb dinàmiques complexes s'ha documentat en la literatura, és realitzar prediccions del sistema a controlar mitjançant un model. A partir de les prediccions, es calcula un perfil de controls per tal de minimitzar un funció de cost definida en termes de les prediccions i dels controls futurs. Després de les primeres formulacions es van detectar las carències dels controladors predictius per satisfer determinades propietats essencials, com garantir l'estabilitat del sistema nominal en llaç tancat. A més, era ben conegut que les discrepàncies existents entre el model i el procés, denominades incertesa del sistema, podien afectar severament el rendiment. Calia, per tant, abordar el problema de la robustesa. En aquesta tesi es revisa i s'investiguen els problemes de l'estabilitat nominal i la robustesa. En particular, la satisfacció de les especificacions de restriccions en presència de diverses fonts d'incertesa és un objectiu principal dels mètodes desenvolupats al llarg d'aquesta recerca. En primer lloc, s'ha fet una revisió dels controladors que asseguren estabilitat nominal, com el CRHPC i el GPC∞, i s'han suggerit controladors equivalents en norma 1. A continuació, s'ha estudiat la robustesa d'aquestes estratègies en absència de restriccions i s'ha conclòs que l'aproximació d'horitzons infinits condueix, habitualment, a millors resultats pel que fa al rendiment i a la robustesa per a valors típics dels paràmetres de sintonia. Seguidament s'ha tractat el problema de la robustesa en presència de restriccions i s'han formulat controladors min-max, tant en norma 1 com en norma 2, basats en el concepte d'incertesa global. Per a aquests mètodes, s'ha proposat un algorisme d'actualització de les bandes que permet modificar les fites de la incertesa en línia. Tot i que ambdues formulacions proporcionen resultats semblants, que superen els mètodes clàssics de robustesa quan s'especifiquen restriccions, els controladors en norma 1 són més eficients des del punt de vista del temps de còmput, atès que el problema d'optimització es pot resoldre fent servir programació lineal. Finalment, s'han proposat nous controladors basats en un últim avanç de l'aproximació min-max que incorpora la noció que la realimentació és present en la implementació d'horitzó mòbil dels controladors predictius. Aquestes tècniques, anomenades feedback min-max MPC, permeten de superar alguns dels desavantatges de la formulació min-max estàndard.
El Control Predictivo Basado en Modelos (Model, Model-based o Receding-horizon Predictive Control; MPC o RHPC) es una estrategia de control madura y de gran éxito, que ha conseguido la aceptación de las comunidades académica e industrial. La base de este tipo de leyes de control, cuya capacidad para manejar dinámicas complejas se ha documentado en la literatura, es realizar predicciones del sistema a controlar por medio de un modelo. A partir de las predicciones, se calcula un perfil de controles para minimizar una función de coste definida en términos de las predicciones y de los controles futuros. Tras las primeras formulaciones se detectaron las carencias de los controladores predictivos para satisfacer determinadas propiedades esenciales, como garantizar la estabilidad del sistema nominal en lazo cerrado. Además, era bien sabido que las discrepancias existentes entre el modelo y el proceso, denominadas incertidumbre del sistema, podían afectar severamente al rendimiento. El problema de la robustez debía, por tanto, ser abordado. En esta tesis se revisan e investigan los problemas de estabilidad nominal y robustez. En particular, la satisfacción de las especificaciones de restricciones en presencia de varias fuentes de incertidumbre es un objetivo principal de los métodos desarrollados a lo largo de esta investigación. En primer lugar, se han revisado los controladores que aseguran estabilidad nominal, como el CRHPC y el GPC∞ y se han propuesto controladores equivalentes en norma 1. A continuación se ha estudiado la robustez de estas estrategias en ausencia de restricciones y se ha concluido que la aproximación de horizontes infinitos conduce, habitualmente, a mejores resultados en lo referente al rendimiento y a la robustez para valores típicos de los parámetros de sintonía. Seguidamente, se ha tratado el problema de la robustez en presencia de restricciones, y se han formulado controladores min-max, tanto en norma 1como en norma 2, basados en el concepto de incertidumbre global. Para estos métodos, se ha sugerido un algoritmo de actualización de las bandas que permite modificar las cotas de la incertidumbre en línea. Aunque ambas formulaciones proporcionan resultados similares, que superan al enfoque clásico de la robustez cuando se especifican restricciones, los controladores en norma 1 son más eficientes desde el punto de vista de tiempo de cómputo, puesto que el problema de optimización se puede resolver usando programación lineal. Finalmente, se han propuesto otros controladores basados en un último avance de la aproximación min-max que incorpora la noción de que la realimentación está presente en la implementación de horizonte móvil de los controladores predictivos. Estas técnicas, denominadas feedback min-max MPC, permiten superar algunas de las desventajas de la formulación min-max estándar.
Ringset, Ruben Køste. "Efficient optimization in Model Predictive Control". Thesis, Norwegian University of Science and Technology, Department of Engineering Cybernetics, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9098.
Texto completoBarsk, Karl-Johan. "Model Predictive Control of a Tricopter". Thesis, Linköpings universitet, Reglerteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-79066.
Texto completoAsadi, Fatemeh. "Self-organized distributed model predictive control". Thesis, University of Bristol, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.720820.
Texto completoKhosravi, Sara. "Constrained model predictive control of hypnosis". Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/56230.
Texto completoApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Curinga, Florian. "Autonomous racing using model predictive control". Thesis, KTH, Reglerteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-222801.
Texto completoAutonoma fordon förväntas få en betydande inverkan på världen och därigenom elimineraden mänskliga faktorn på en av de farligaste platserna: vägar. Faktum är att dödsfall ären av de största källorna till mänsklig dödlighet och många länder i världen. Det förväntasatt autonoma fordon kommer att bidra dramatiskt för att uppnå det. Dessutom använderman kontroller för att optimera både beteende och kommunikationshastighet.För att minimera vägskador är ett tillvägagångssätt att utforma styrenheter som skullehantera bilen vid sina gränser för hantering, genom att integrera komplex dynamik, såsomvidhäftningsförlust, är det möjligt att förhindra att bilen lämnar vägen. En praktisk inställningför att utvärdera denna typ av kontroller är ett racing sammanhang: En styrenhetstyr en bil för att slutföra ett spår så snabbt som möjligt utan att lämna vägen och genomatt bränna bilen till dess gränser för hantering.I denna avhandling designar vi en kontroller för ett autonomt fordon med målet attdriva det från A till B så fort som möjligt. Detta är den främsta motivationen i racingapplikationer.Kontrollern ska styra bilen med målet att minimera racingtiden.Denna styrenhet utformades inom ramen för Model Predictive Controller (MPC), där vianvände begreppet vägjusterad modell. I motsats till standard mpc tekniker använder viobjektivfunktionen för att maximera framstegen längs referensvägen genom att integreraen linjär modell av fordonsprogressionen längs mittlinjen. Kombinerat med linjär fordonsmodelloch begränsningar, ett optimeringsproblem som ger fordonet framtida styr- ochgasvärden att applicera formuleras och lösas med linjär programmering i ett onlinemönsterunder loppet. Vi visar effektiviteten hos vår controller i simulering, där den designade regulatornuppvisar typiska racerförare beteenden och strategier när du styr ett fordon längsett visst spår. Vi konfronterar oss slutligen med liknande kontrollanter från litteraturenoch härleder dess styrka och svagheter jämfört med dem.
Cheng, Qifeng. "Robust & stochastic model predictive control". Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:89da4934-9de7-4142-958e-513065189518.
Texto completoHartley, Edward Nicholas. "Model predictive control for spacecraft rendezvous". Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609090.
Texto completoLarsen, Oscar. "Autonomous Overtaking Using Model Predictive Control". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-293819.
Texto completoUnder de senaste åren har forskare världen över försökt utveckla fullt autonoma fordon. Ett av problemen som behöver lösas är hur man navigerar i en dynamisk värld med ständigt förändrande variabler. Detta projekt startades för att titta närmare på en aspekt av att planera en rutt; att köra om ett mänskligt styrt fordon. Model Predictive Control (MPC) har historiskt sett blivit använt i system med långsammare dynamik, men med framsteg inom datorers beräkningskraft kan det nu användas i system med snabbare dynamik. I detta projekt simulerades självkörande fordon, styrda av MPC, i Python. Fordonsmodellen som används var kinematic bicycle model. Begränsningar sattes på det omkörande fordonet så att de två fordonen inte kolliderar. Resultaten visar att en omkörning, som håller avstånd till det andra fordonet samt följer trafikregler, är möjligt i vissa scenarion.
Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
Noorian, Farzad. "Risk Management using Model Predictive Control". Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/14282.
Texto completoHuang, Yang y S3110949@student rmit edu au. "Model Predictive Control of Magnetic Bearing System". RMIT University. Electrical and Computer Engineering, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080430.152045.
Texto completoMarín, Lahoz Juan. "Development of a predictive model of impulse control disorder in parkinson’s disease using clinical, neuropsichological, genetic and neurophysiological data as risk markers". Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/669347.
Texto completoImpulse control disorders (ICD) are a common complication of Parkinson’s disease (PD) treatment, particularly of dopamine agonist (DA) use. ICD in PD have been studied for two decades. Nonetheless, prospective evidence is still scarce and predictive models are lacking. This thesis consists of four works addressing these gaps. In the first work we evaluated the association between impulsivity and incident ICD. We did not confirm the suspected association although we found a significant association between impulsivity and ICD severity (p=0.001). The lack of association between impulsivity and ICD presence was confirmed longitudinally in the fourth work. The second work was a longitudinal prospective survival study to evaluate whether the association between depression and ICD was causal. We found that depressed PD patients had approximately double risk of developing ICD (p<0.001). This association was specific and independent from DA use and other potential confounders. Besides, patients with refractory depression had an even higher risk (p=0.001). The third was a case-control study nested in a longitudinal prospective study. We studied brain metabolism via 18 FDG PET. We compared patients with new onset ICD with matched patients free of ICD from the same cohort. ICD patients showed higher metabolism in widespread cortical areas (p<0.05 FWE corrected). The results were the same using voxelwise analysis and intracortical analysis. We also showed that there were no structural differences using cortical thickness and subcortical segmentation. Using a group of matched healthy controls, we found that the higher metabolism found in ICD patients should be regarded as preservation because no cortical metabolic differences were found between PD‑ICD patients and healthy controls, while PD‑nonICD patients showed hypometabolism when compared with healthy controls. The fourth study targeted markers that could differentiate PD patients at high risk of ICD and those at low risk. Particularly we targeted the feedback related negativity (FRN) a neurophysiological marker of reward processing. We found this marker to be different in patients who developed ICD within the subsequent three years compared with those who did not (p=0.001). Furthermore, we developed two models for ICD prediction: one used only clinical data and the other also included the baseline FRN. The model including the FRN performed significantly better (p=0.003). Patients identified using the FRN as high risk had a risk ten times higher for the next three years than those identified as low risk. In conclusion, we found evidence that backs depression as a risk factor for ICD in PD, evidence of brain metabolic preservation among PD patients with ICD, evidence that supports the role of reward processing for ICD development and evidence that suggests that impulsivity should be discarded as a risk factor for ICD. Lastly, we showed that the development of ICD can be predicted in PD patients and therefore, probably can be avoided.
Munoz, Carpintero Diego Alejandro. "Strategies in robust and stochastic model predictive control". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:2f6bce71-f91f-4d5a-998f-295eff5b089a.
Texto completoNejati, Fard Razieh. "Finite Control Set Model Predictive Control in Power Converters". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elkraftteknikk, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-23084.
Texto completoAtić, Nedz̆ad. "Model predictive control design for load frequency control problem". Morgantown, W. Va. : [West Virginia University Libraries], 2003. http://etd.wvu.edu/templates/showETD.cfm?recnum=3192.
Texto completoTitle from document title page. Document formatted into pages; contains vii, 68 p. : ill. Includes abstract. Includes bibliographical references (p. 66-68).
Kestner, Brian. "Model predictive control (MPC) algorithm for tip-jet reaction drive systems". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31802.
Texto completoCommittee Chair: Mavris, Dimitri; Committee Member: German, Brian; Committee Member: Healy, Tim; Committee Member: Rosson, Randy; Committee Member: Tai, Jimmy. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Schön, Tomas. "Identification for Predictive Control : A Multiple Model Approach". Thesis, Linköping University, Department of Electrical Engineering, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1050.
Texto completoPredictive control relies on predictions of the future behaviour of the system to be controlled. These predictions are calculated from a model of this system, thus making the model the cornerstone of the predictive controller. Furthermore predictive control is the only advanced control methodology that has managed to become widely used in the industry. The necessity of good models in the predictive control context can thus be motivated both from the very nature of predictive control and from its widespread use in industry.
This thesis is concerned with examining the use of multiple models in the predictive controller. In order to do this the standard predictive control formulation has been extended to incorporate the use of multiple models. The most general case of this new formulation allows the use of an individual model for each prediction horizon.
The models are estimated using measurements of the input and output sequences from the true system. When using this data to find a good model of the system it is important to remember the intended purpose of the model. In this case the model is going to be used in a predictive controller and the most important feature of the models is to deliver good k-step ahead predictions. The identification algorithms used to estimate the models thus strives for estimating models good at calculating these predictions.
Finally this thesis presents some complete simulations of these ideas showing the potential of using multiple models in the predictive control framework.
Rice, Michael J. "Numerical and computational aspects of predictive control". Thesis, Loughborough University, 1999. https://dspace.lboro.ac.uk/2134/27111.
Texto completoJúnior, José Genario de Oliveira. "Model predictive control applied to A 2-DOF helicopter". Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/3/3139/tde-11042018-082532/.
Texto completoEste trabalho apresenta uma aplicação de controle preditivo embarcado em um helicóptero de bancada com dois graus de liberdade. A modelagem matemática é apresentada, junto com uma análise do modelo linear obtido. São obtidas duas representações de modelos de espaço de estados considerando a entrada incremental, que serão usadas posteriormente para a formulação do controlador. Então, é definida a técnica de controle utilizada, juntamente com a inclusão das restrições físicas da planta na formulação do problema. Após isto, é feita uma discussão sobre qual solver para a programação quadrática utilizar, junto com algumas alternativas ao solver escolhido, bem como algumas considerações sobre a aplicação embarcada. Finalmente, são apresentados os resultados da identificação de sistemas aplicadas ao protótipo, bem como os resultados experimentais obtidos.
Shekhar, Rohan Chandra. "Variable horizon model predictive control : robustness and optimality". Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/244210.
Texto completoOverloop, Peter-Jules van. "Model predictive control on open water systems /". Amsterdam : IOS Press, 2006. http://opac.nebis.ch/cgi-bin/showAbstract.pl?u20=9781586036386.
Texto completoDave, Kedar Himanshu. "Inferential model predictive control using statistical tools". College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/2585.
Texto completoThesis research directed by: Chemical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Fannemel, Åsmund Våge. "Dynamic Positioning by Nonlinear Model Predictive Control". Thesis, Norwegian University of Science and Technology, Department of Engineering Cybernetics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-8921.
Texto completoThis thesis discusses the theoretical aspects of the unscented Kalman filter (UKF) and nonlinear model predictive control (NMPC) and try to evaluate their practical value in a dynamic positioning (DP) system. A nonlinear horizontal vessel model is used as the basis for performing state, disturbance, and parameter estimation, and attempts at controling the vessel using NMPC are made. It is shown that the extended Kalman filter (EKF), which is much used in various navigation applications including DP, is outperformed both theoretically and practically in simulations by the UKF. Much of which is due to the UKF's improved approximation of the estimated system's true stochastic properties. An attempt to estimate the current from the hydrodynamical damping forces have been applied and shown to be working when the vessel is not subjected to other slowly-varying drift forces. It is implemented a dual estimation approach to try to estimate hydrodynamic damping, which is a very real problem for actual vessels and DP systems. A theoretical evaluation of NMPC is performed and it is concluded that NMPC schemes could fulfill a need in vessel control and DP. Its combination of model based control, optimization approach to achieving performance and predictive properties are indeed useful also for DP. It is found that NMPC could be a step towards a unified control approach combining low and high speed reference tracking, station-keeping and several other control operations which today are handled by separate control approaches. NMPC provides the control designer with an exceptional amount of freedom when quantifying the performance, that it is impossible not to find some use for NMPC.
Wang, Jiaying. "Model Predictive Control of Power Electronics Converter". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elkraftteknikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18835.
Texto completoKristoffersson, Ida. "Model Predictive Control of a Turbocharged Engine". Thesis, KTH, Reglerteknik, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-107508.
Texto completoGabrielsson, Fredrik. "Model Predictive Control of Skeboå Water system". Thesis, KTH, Reglerteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-98868.
Texto completoLundh, Joachim. "Model Predictive Control for Active Magnetic Bearings". Thesis, Linköpings universitet, Reglerteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-81325.
Texto completoDet här examensarbetet diskuterar möjligheten att positionsreglera en rotor som leviteras på aktiva magnetlager. Reglerstrategin som används är modellbaserad prediktionsreglering vilket är en online-metod där ett optimeringsproblem löses i varje sampel. Detta gör att regulatorn blir mycket beräkningskrävande. Samplingstiden för systemet är mycket kort för att fånga dynamiken hos rotorn. Det betyder att regulatorn inte ges mycket tid att lösa optimeringsproblemet. Olika metoder för att lösa QP-problem betraktas för att se om det är möjligt att köra regulatorn i realtid. Dessutom diskuteras hur valet av prediktionshorisont, reglerhorisont och straff på sluttillståndet påverkar regleringen. Simuleringar som visar karakteristiken av dessa val har utförts.