Siga este enlace para ver otros tipos de publicaciones sobre el tema: Model Predictve Control.

Artículos de revistas sobre el tema "Model Predictve Control"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Model Predictve Control".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Gwon, Jun, Jong-Seok Kim, Young-Seok Lee, Oluleke Babayomi y Ki-Bum Park. "A Model-Free Predictive Control for IPMSM Drive Based on Finite Control Set". TRANSACTIONS OF KOREAN INSTITUTE OF POWER ELECTRONICS 30, n.º 2 (30 de abril de 2025): 165–72. https://doi.org/10.6113/tkpe.2025.30.2.165.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Wieber, Pierre-Brice. "Model Predictive Control for Biped Walking Motion Generation". Journal of the Robotics Society of Japan 32, n.º 6 (2014): 503–7. http://dx.doi.org/10.7210/jrsj.32.503.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

白家納, 白家納 y 黃崇能 Pachara Opattrakarnkul. "以深度學習模式估測控制之駕駛輔助系統的研發". 理工研究國際期刊 12, n.º 1 (abril de 2022): 015–24. http://dx.doi.org/10.53106/222344892022041201002.

Texto completo
Resumen
<p>Adaptive cruise control (ACC) systems are designed to provide longitudinal assistance to enhance safety and driving comfort by adjusting vehicle velocity to maintain a safe distance between the host vehicle and the preceding vehicle. Generally, using model predictive control (MPC) in ACC systems provides high responsiveness and lower discomfort by solving real-time constrained optimization problems but results in computational load. This paper presents an architecture of deep learning based on model predictive control in ACC systems to avoid real-time optimization problems required by MPC, which in turn, reduces computational load. The learning dataset is acquired from the simulation data of the input/output of the MPC controller. We designed the proposed deep learning controller using long short-term memory networks (LSTMs) and simulated it in MATLAB/Simulink using the vehicle’s characteristics from the advanced vehicle simulator (ADVISOR). Finally, the safety and driving comfort are compared with the PID-based control to demonstrate the performance of the proposed deep-learning architecture.</p> <p>&nbsp;</p>
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Qin Shuo, 秦硕. "精密透镜系统的模型预测热控方法". Laser & Optoelectronics Progress 59, n.º 17 (2022): 1722006. http://dx.doi.org/10.3788/lop202259.1722006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

SZABOLCSI, Róbert. "MODEL PREDICTIVE CONTROL APPLIED IN UAV FLIGHT PATH TRACKING MISSIONS". Review of the Air Force Academy 17, n.º 1 (24 de mayo de 2019): 49–62. http://dx.doi.org/10.19062/1842-9238.2019.17.1.7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

G.S.S.S.S.V., Krishna Mohan. "Auto-tuning Smith-predictive Control of Delayed Processes based on Model Reference Adaptive Controller". Journal of Advanced Research in Dynamical and Control Systems 12, SP4 (31 de marzo de 2020): 1224–30. http://dx.doi.org/10.5373/jardcs/v12sp4/20201597.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

G P, Athira y Riya Mary Francis. "Control of Totally Refluxed Reactive Distillation Column Using Model Predictive Controller". International Journal of Scientific Engineering and Research 3, n.º 8 (27 de agosto de 2015): 31–35. https://doi.org/10.70729/ijser15385.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Muske, Kenneth R. y James B. Rawlings. "Model predictive control with linear models". AIChE Journal 39, n.º 2 (febrero de 1993): 262–87. http://dx.doi.org/10.1002/aic.690390208.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Shamim, Nimat, Subrina Sultana Noureen, Argenis Bilbao, Anitha Sarah Subburaj y Stephen Bayne. "A Comparative Study of Vector Control and Model Predictive Control Technique for Grid Connected Battery System". International Journal of Research and Engineering 4, n.º 12 (5 de enero de 2018): 287–95. http://dx.doi.org/10.21276/ijre.2018.5.1.1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Rosolia, Ugo, Xiaojing Zhang y Francesco Borrelli. "Data-Driven Predictive Control for Autonomous Systems". Annual Review of Control, Robotics, and Autonomous Systems 1, n.º 1 (28 de mayo de 2018): 259–86. http://dx.doi.org/10.1146/annurev-control-060117-105215.

Texto completo
Resumen
In autonomous systems, the ability to make forecasts and cope with uncertain predictions is synonymous with intelligence. Model predictive control (MPC) is an established control methodology that systematically uses forecasts to compute real-time optimal control decisions. In MPC, at each time step an optimization problem is solved over a moving horizon. The objective is to find a control policy that minimizes a predicted performance index while satisfying operating constraints. Uncertainty in MPC is handled by optimizing over multiple uncertain forecasts. In this case, performance index and operating constraints take the form of functions defined over a probability space, and the resulting technique is called stochastic MPC. Our research over the past 10 years has focused on predictive control design methods that systematically handle uncertain forecasts in autonomous and semiautonomous systems. In the first part of this article, we present an overview of the approach we use, its main advantages, and its challenges. In the second part, we present our most recent results on data-driven predictive control. We show how to use data to efficiently formulate stochastic MPC problems and autonomously improve performance in repetitive tasks. The proposed framework is able to handle a large set of predicted scenarios in real time and learn from historical data.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Sharma, Ravindra y Chandrakant Sharma. "Mitigating Nonlinear Harmonics in Diesel Electrical Ship Network by Model Predictive Control". International Journal of Science and Research (IJSR) 13, n.º 10 (5 de octubre de 2024): 510–15. http://dx.doi.org/10.21275/sr241005223632.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Tran, Ngoc Son, Khac Lai Lai y Phuong Nam Dao. "A Novel Model Predictive Control for an Autonomous Four-Wheel Independent Vehicle". International Journal of Mechanical Engineering and Robotics Research 13, n.º 5 (2024): 509–15. http://dx.doi.org/10.18178/ijmerr.13.5.509-515.

Texto completo
Resumen
This work is centered on developing a novel Model Predictive Control (MPC) for Four-Wheel Independent (FWID) vehicles to achieve trajectory tracking effectiveness, which is difficult to satisfy due to the changing the optimization solution after each time period. By using linearization technique for FWID model and eliminating the term of dynamic uncertainty in the tracking error model, the nominal linear Discrete Time System (DTS) is achieved to develop the proposed MPC strategy, which leverages the Luenberger observer to obtain the predictive model and extends for obtaining the Output feedback MPC scheme. On the other hand, the appropriate optimization problem is given at each time instant to guarantee the stability of the closed loop system under the designed MPC law without the consideration of terminal region as well as terminal controller, which have been considered in the previous researches. The unification between the optimization problem in MPC scheme and the tracking problem is validated by the Lyapunov function-based analysis with the inequality estimations. The efficiency of the proposed MPC law for FWID vehicles is clarified through a simulation study.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Shamraev, A. D. y S. A. Kolyubin. "Bioinspired and Energy-Efficient Convex Model Predictive Control for a Quadruped Robot". Nelineinaya Dinamika 18, n.º 5 (2022): 0. http://dx.doi.org/10.20537/nd221214.

Texto completo
Resumen
Animal running has been studied for a long time, but until now robots cannot repeat the same movements with energy efficiency close to animals. There are many controllers for controlling the movement of four-legged robots. One of the most popular is the convex MPC. This paper presents a bioinspirational approach to increasing the energy efficiency of the state-of-the-art convex MPC controller. This approach is to set a reference trajectory for the convex MPC in the form of an SLIP model, which describes the movements of animals when running. Adding an SLIP trajectory increases the energy efficiency of the Pronk gait by 15 percent over a range of speed from 0.75 m/s to 1.75 m/s.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Hewing, Lukas, Kim P. Wabersich, Marcel Menner y Melanie N. Zeilinger. "Learning-Based Model Predictive Control: Toward Safe Learning in Control". Annual Review of Control, Robotics, and Autonomous Systems 3, n.º 1 (3 de mayo de 2020): 269–96. http://dx.doi.org/10.1146/annurev-control-090419-075625.

Texto completo
Resumen
Recent successes in the field of machine learning, as well as the availability of increased sensing and computational capabilities in modern control systems, have led to a growing interest in learning and data-driven control techniques. Model predictive control (MPC), as the prime methodology for constrained control, offers a significant opportunity to exploit the abundance of data in a reliable manner, particularly while taking safety constraints into account. This review aims at summarizing and categorizing previous research on learning-based MPC, i.e., the integration or combination of MPC with learning methods, for which we consider three main categories. Most of the research addresses learning for automatic improvement of the prediction model from recorded data. There is, however, also an increasing interest in techniques to infer the parameterization of the MPC controller, i.e., the cost and constraints, that lead to the best closed-loop performance. Finally, we discuss concepts that leverage MPC to augment learning-based controllers with constraint satisfaction properties.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Norquay, Sandra J., Ahmet Palazoglu y JoséA Romagnoli. "Model predictive control based on Wiener models". Chemical Engineering Science 53, n.º 1 (enero de 1998): 75–84. http://dx.doi.org/10.1016/s0009-2509(97)00195-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Fruzzetti, K. P., A. Palazoğlu y K. A. McDonald. "Nolinear model predictive control using Hammerstein models". Journal of Process Control 7, n.º 1 (febrero de 1997): 31–41. http://dx.doi.org/10.1016/s0959-1524(97)80001-b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Ding, Baocang, Marcin T. Cychowski, Yugeng Xi, Wenjian Cai y Biao Huang. "Model Predictive Control". Journal of Control Science and Engineering 2012 (2012): 1–2. http://dx.doi.org/10.1155/2012/240898.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

van den Boom, J. J. "Model predictive control". Control Engineering Practice 10, n.º 9 (septiembre de 2002): 1038–39. http://dx.doi.org/10.1016/s0967-0661(02)00061-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Alamir, Mazen y Frank Allgöwer. "Model Predictive Control". International Journal of Robust and Nonlinear Control 18, n.º 8 (2008): 799. http://dx.doi.org/10.1002/rnc.1266.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Ulum, Zaiful. "Model Predictive Control Based Kalman Filter for Active Suspension Design of Light Rail Vehicles". Journal of Advanced Research in Dynamical and Control Systems 51, SP3 (28 de febrero de 2020): 261–67. http://dx.doi.org/10.5373/jardcs/v12sp3/20201261.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Choi, Yoonsuk, Wonwoo Lee y Jinwoo Yoo. "A Variable Horizon Model Predictive Control Based on Curvature Properties of Vehicle Driving Path". Transaction of the Korean Society of Automotive Engineers 29, n.º 12 (2 de diciembre de 2021): 1147–59. http://dx.doi.org/10.7467/ksae.2021.29.12.1147.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Yan Kuan, 闫宽, 张聪 Zhang Cong, 陈绪兵 Chen Xubing, 李明超 Li Mingchao, 方杰 Fang Jie y 叶冬 Ye Dong. "激光软钎焊系统中半导体激光器温度模型预测控制设计". Acta Optica Sinica 44, n.º 14 (2024): 1414001. http://dx.doi.org/10.3788/aos240578.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Fauvel, Clément, Kritchai Witheephanich, Alan McGibney, Susan Rea y Suzanne Lesecq. "Generating Models for Model Predictive Control in Buildings". Proceedings 2, n.º 15 (23 de agosto de 2018): 1137. http://dx.doi.org/10.3390/proceedings2151137.

Texto completo
Resumen
There are strong policy drivers for the promotion of energy efficiency in buildings. In the literature, Model Predictive Control (MPC) is seen as a promising solution to deal with the energy management problem in buildings. Model identification is the primary task involved in the design of MPC control and defining the good level of complexity for the thermal dynamic model is a critical question. This paper focuses on the development of reliable models that can be used to support the deployment of (Distributive (Di)) MPC application.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Hovd, M., J. H. Lee y M. Morari. "Truncated step response models for model predictive control". Journal of Process Control 3, n.º 2 (mayo de 1993): 67–73. http://dx.doi.org/10.1016/0959-1524(93)80002-s.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Pannocchia, Gabriele y James B. Rawlings. "Disturbance models for offset-free model-predictive control". AIChE Journal 49, n.º 2 (febrero de 2003): 426–37. http://dx.doi.org/10.1002/aic.690490213.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Safdar, Rahmat Ullah, Muwahida Liaquat, Syed M. Tahir Zaidi y Muhammad Usman Akram. "Model Predictive Control: Taking the Idea of Artificial Pancreas a Step forward for Diabetes Management". International Journal of Pharma Medicine and Biological Sciences 10, n.º 4 (octubre de 2021): 142–47. http://dx.doi.org/10.18178/ijpmbs.10.4.142-147.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

S. Guedes, Felipe, Nady Rocha, Alvaro M. Maciel y Alfeu Joãozinho Sguarezi Filho. "Finite-Set Model Predictive Direct Power Control for DFIG with Reduced Number of Voltage Vectors". Eletrônica de Potência 28, n.º 01 (23 de marzo de 2023): 1–11. http://dx.doi.org/10.18618/rep.2023.1.0025.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Lyu, Zehao, Xiang Wu, Jie Gao y Guojun Tan. "An Improved Finite-Control-Set Model Predictive Current Control for IPMSM under Model Parameter Mismatches". Energies 14, n.º 19 (4 de octubre de 2021): 6342. http://dx.doi.org/10.3390/en14196342.

Texto completo
Resumen
The control performance of the finite control set model predictive current control (FCS-MPCC) for the interior permanent magnet synchronous machine (IPMSM) depends on the accuracy of the mathematical model. A novel robust model predictive current control method based on error compensation is proposed in order to reduce the parameter sensitivity and improve the current control robustness. In this method, the equivalent parameters are obtained from the known voltage and current information at the past time and the error between the predicted current and the actual current at the present time, which is utilized in the two-step prediction process to compensate the parameter mismatch error. Finally, the optimal voltage vector is selected by the cost function. The proposed method is compared with the traditional model predictive current control method through experiments. The experimental results show the effectiveness of the proposed method.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Carron, Andrea y Melanie N. Zeilinger. "Model Predictive Coverage Control". IFAC-PapersOnLine 53, n.º 2 (2020): 6107–12. http://dx.doi.org/10.1016/j.ifacol.2020.12.1686.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Mårtensson, Karl y Andreas Wernrud. "Dynamic Model Predictive Control". IFAC Proceedings Volumes 41, n.º 2 (2008): 13182–87. http://dx.doi.org/10.3182/20080706-5-kr-1001.02233.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Gawthrop, P. J. y L. Wang. "Intermittent model predictive control". Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 221, n.º 7 (noviembre de 2007): 1007–18. http://dx.doi.org/10.1243/09596518jsce417.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Ohshima, Masahiro. "III. Model Predictive Control". IEEJ Transactions on Electronics, Information and Systems 116, n.º 10 (1996): 1089–93. http://dx.doi.org/10.1541/ieejeiss1987.116.10_1089.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

LING, Keck-Voon, Jan MACIEJOWSKI y WU Bing-Fang. "MULTIPLEXED MODEL PREDICTIVE CONTROL". IFAC Proceedings Volumes 38, n.º 1 (2005): 574–79. http://dx.doi.org/10.3182/20050703-6-cz-1902.00496.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

PATWARDHAN, ASHUTOSH A., JAMES B. RAWLINGS y THOMAS F. EDGAR. "NONLINEAR MODEL PREDICTIVE CONTROL". Chemical Engineering Communications 87, n.º 1 (enero de 1990): 123–41. http://dx.doi.org/10.1080/00986449008940687.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Bravo, J. M., C. G. Varet y E. F. Camacho. "Interval Model Predictive Control". IFAC Proceedings Volumes 33, n.º 6 (mayo de 2000): 57–62. http://dx.doi.org/10.1016/s1474-6670(17)35448-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Arulalan, Gomatam R. y Pradeep B. Deshpande. "Simplified model predictive control". Industrial & Engineering Chemistry Research 26, n.º 2 (febrero de 1987): 347–56. http://dx.doi.org/10.1021/ie00062a029.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Yeo, Yeong K. y Dennis C. Williams. "Bilinear model predictive control". Industrial & Engineering Chemistry Research 26, n.º 11 (noviembre de 1987): 2267–74. http://dx.doi.org/10.1021/ie00071a017.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Edgar, T. F., J. P. Gong, H. H. Lou y Y. L. Huang. "Fuzzy model predictive control". IEEE Transactions on Fuzzy Systems 8, n.º 6 (2000): 665–78. http://dx.doi.org/10.1109/91.890326.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Leva, Alberto, Federico Mattia Benzi, Virna Magagnotti y Giulia Vismara. "Sporadic Model Predictive Control". IFAC-PapersOnLine 50, n.º 1 (julio de 2017): 4887–92. http://dx.doi.org/10.1016/j.ifacol.2017.08.740.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Bemporad, Alberto y David Muñoz de la Peña. "Multiobjective model predictive control". Automatica 45, n.º 12 (diciembre de 2009): 2823–30. http://dx.doi.org/10.1016/j.automatica.2009.09.032.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Ling, Keck Voon, Jan Maciejowski, Arthur Richards y Bing Fang Wu. "Multiplexed model predictive control". Automatica 48, n.º 2 (febrero de 2012): 396–401. http://dx.doi.org/10.1016/j.automatica.2011.11.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Carrasco, Diego S. y Graham C. Goodwin. "Feedforward model predictive control". Annual Reviews in Control 35, n.º 2 (diciembre de 2011): 199–206. http://dx.doi.org/10.1016/j.arcontrol.2011.10.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Camacho, Eduardo F. y Carlos Bordons. "Distributed model predictive control". Optimal Control Applications and Methods 36, n.º 3 (20 de marzo de 2015): 269–71. http://dx.doi.org/10.1002/oca.2167.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Bakhtadze, N., A. Chereshko, D. Elpashev, I. Yadykin, R. Sabitov y G. Smirnova. "Associative Model Predictive Control". IFAC-PapersOnLine 56, n.º 2 (2023): 7330–34. http://dx.doi.org/10.1016/j.ifacol.2023.10.346.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Yang, Yuanqing y Baocang Ding. "Model predictive control for LPV models with maximal stabilizable model range". Asian Journal of Control 22, n.º 5 (25 de marzo de 2019): 1940–50. http://dx.doi.org/10.1002/asjc.2070.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Cymbalák, Dávid, Ondrej Kainz y František Jakab. "Extended Object Tracking and Stream Control Model Based on Predictive Evaluation Metric of Multiple-Angled Streams". International Journal of Computer Theory and Engineering 7, n.º 5 (octubre de 2015): 343–48. http://dx.doi.org/10.7763/ijcte.2015.v7.983.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Schimperna, Irene y Lalo Magni. "Recurrent Equilibrium Network models for Nonlinear Model Predictive Control". IFAC-PapersOnLine 58, n.º 18 (2024): 226–31. http://dx.doi.org/10.1016/j.ifacol.2024.09.035.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Roubos, J. A., S. Mollov, R. Babuška y H. B. Verbruggen. "Fuzzy model-based predictive control using Takagi–Sugeno models". International Journal of Approximate Reasoning 22, n.º 1-2 (septiembre de 1999): 3–30. http://dx.doi.org/10.1016/s0888-613x(99)00020-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Jung, Marvin, Paulo Renato da Costa Mendes, Magnus Önnheim y Emil Gustavsson. "Model Predictive Control when utilizing LSTM as dynamic models". Engineering Applications of Artificial Intelligence 123 (agosto de 2023): 106226. http://dx.doi.org/10.1016/j.engappai.2023.106226.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Henriksson, Erik, Daniel E. Quevedo, Henrik Sandberg y Karl Henrik Johansson. "Self-Triggered Model Predictive Control for Network Scheduling and Control1". IFAC Proceedings Volumes 45, n.º 15 (2012): 432–38. http://dx.doi.org/10.3182/20120710-4-sg-2026.00132.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía