Literatura académica sobre el tema "Myosin Myocardium"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Myosin Myocardium".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Myosin Myocardium"
Buttrick, P., C. Perla, A. Malhotra, D. Geenen, M. Lahorra y J. Scheuer. "Effects of chronic dobutamine on cardiac mechanics and biochemistry after myocardial infarction in rats". American Journal of Physiology-Heart and Circulatory Physiology 260, n.º 2 (1 de febrero de 1991): H473—H479. http://dx.doi.org/10.1152/ajpheart.1991.260.2.h473.
Texto completoLarue, Catherine, Charles Calzolari, Jocelyne Léger, Jean Léger y Bernard Pau. "Immunoradiometric assay of myosin heavy chain fragments in plasma for investigation of myocardial infarction". Clinical Chemistry 37, n.º 1 (1 de enero de 1991): 78–82. http://dx.doi.org/10.1093/clinchem/37.1.78.
Texto completoLocher, Matthew R., Maria V. Razumova, Julian E. Stelzer, Holly S. Norman y Richard L. Moss. "Effects of low-level α-myosin heavy chain expression on contractile kinetics in porcine myocardium". American Journal of Physiology-Heart and Circulatory Physiology 300, n.º 3 (marzo de 2011): H869—H878. http://dx.doi.org/10.1152/ajpheart.00452.2010.
Texto completoSuematsu, Nobuhiro, Shinji Satoh, Shintaro Kinugawa, Hiroyuki Tsutsui, Shunji Hayashidani, Ryo Nakamura, Kensuke Egashira, Naoki Makino y Akira Takeshita. "α1-Adrenoceptor-Gq-RhoA signaling is upregulated to increase myofibrillar Ca2+ sensitivity in failing hearts". American Journal of Physiology-Heart and Circulatory Physiology 281, n.º 2 (1 de agosto de 2001): H637—H646. http://dx.doi.org/10.1152/ajpheart.2001.281.2.h637.
Texto completoKhalina, Yana, Sergey Udaltsov y Zoya A. Podlubnaya. "Ischemic myocardium: Behavior of myosin light chains". Journal of Molecular and Cellular Cardiology 34, n.º 6 (junio de 2002): A84. http://dx.doi.org/10.1016/s0022-2828(02)91028-x.
Texto completoGregorich, Zachery R., Jitandrakumar R. Patel, Wenxuan Cai, Ziqing Lin, Rachel Heurer, Daniel P. Fitzsimons, Richard L. Moss y Ying Ge. "Deletion of Enigma Homologue from the Z-disc slows tension development kinetics in mouse myocardium". Journal of General Physiology 151, n.º 5 (14 de enero de 2019): 670–79. http://dx.doi.org/10.1085/jgp.201812214.
Texto completoToepfer, Christopher N., Markus B. Sikkel, Valentina Caorsi, Anupama Vydyanath, Iratxe Torre, O'Neal Copeland, Alexander R. Lyon et al. "A post-MI power struggle: adaptations in cardiac power occur at the sarcomere level alongside MyBP-C and RLC phosphorylation". American Journal of Physiology-Heart and Circulatory Physiology 311, n.º 2 (1 de agosto de 2016): H465—H475. http://dx.doi.org/10.1152/ajpheart.00899.2015.
Texto completoPatel, Jitandrakumar R., Daniel P. Fitzsimons, Scott H. Buck, Mariappan Muthuchamy, David F. Wieczorek y Richard L. Moss. "PKA accelerates rate of force development in murine skinned myocardium expressing α- or β-tropomyosin". American Journal of Physiology-Heart and Circulatory Physiology 280, n.º 6 (1 de junio de 2001): H2732—H2739. http://dx.doi.org/10.1152/ajpheart.2001.280.6.h2732.
Texto completoMa, Weikang, Marcus Henze, Robert L. Anderson, Henry Gong, Fiona L. Wong, Carlos L. del Rio y Thomas Irving. "The Super-Relaxed State and Length Dependent Activation in Porcine Myocardium". Circulation Research 129, n.º 6 (3 de septiembre de 2021): 617–30. http://dx.doi.org/10.1161/circresaha.120.318647.
Texto completoBing, O. H., N. L. Hague, C. L. Perreault, C. H. Conrad, W. W. Brooks, S. Sen y J. P. Morgan. "Thyroid hormone effects on intracellular calcium and inotropic responses of rat ventricular myocardium". American Journal of Physiology-Heart and Circulatory Physiology 267, n.º 3 (1 de septiembre de 1994): H1112—H1121. http://dx.doi.org/10.1152/ajpheart.1994.267.3.h1112.
Texto completoTesis sobre el tema "Myosin Myocardium"
O'Neill, Stephen Charles. "Myosin and electrophysiological heterogeneity in cardiac muscle". Thesis, Connect to e-thesis, 1987. http://theses.gla.ac.uk/1012/.
Texto completoUys, Gerrida Mathilda. "Investigations of the role of myomegalin in the phosphorylation of cardiac myosin binding protein C". Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5460.
Texto completoBibliography
ENGLISH ABSTRACT: Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac muscle disorder worldwide. The disease is characterized by extreme variability in the amount of hypertrophy that develops in different patients in response to sarcomeric protein-encoding gene mutations. The underlying defect in HCM is altered contractility of the sarcomere, primarily due to a defective sarcomere. Although numerous disease-causing genes have been identified for HCM, the factors that modify the amount of hypertrophy that develops in a given person are still unknown, it can be hypothesized that molecules that affect contractility can act as modifiers of the hypertrophic signal, and therefore influence the development of hypertrophy. Cardiac contractility is regulated by dynamic phosphorylation of proteins within the sarcomere by kinases such as cAMP-activated protein kinase A (PKA). Because speed and energy efficiency of cardiac muscle contraction has to be regulated in order to match the body’s needs, PKA is anchored close to its targets by A-kinase anchoring proteins (AKAPs) to enable spatio-temporal control of phosphorylation. Cardiac myosin binding protein-C (cMyBPC) and cardiac troponin I (cTNI) are HCM-causing sarcomeric proteins which regulate contractility in response to PKA phosphorylation. In a previous study, our laboratory identified a phosphodiesterase 4D-interacting protein as ligand of the N-terminal of cMyBPC via a yeast-two-hybrid (Y2H) cardiac library screen. This protein is also known in the literature as myomegalin (MMGL) isoform 4. Because phosphodiesterases and PKA are sometimes anchored by the same anchoring protein (AKAP), we hypothesized that MMGL isoform 4 acts as an AKAP by anchoring PKA to the phosphorylatable N-terminal of cMyBPC, and tested this by direct protein-protein interaction analyses in a yeast-based system. The MMGL cDNA was cloned into a bait vector, which was directly assessed for interaction with two distinct PKA regulatory-subunit preys. We further investigated the function of MMGL itself by using the Y2H bait to screen a cardiac cDNA library for novel MMGL interactors. All the prey clones identified via these Y2H analyses were subsequently sequenced to determine their identity. Based on their identities and subcellular localization, all putative Y2H MMGL-prey interactions were further assessed by additional, separate biochemical techniques viz. in vivo co-immunoprecipitation and in vivo 3D co-localization. The interactions between MMGL and its known PKA-phosphorylatable sarcomeric ligands were also investigated under conditions of β-adrenergic stress, by quantitatively measuring levels of co-localization before and upon addition of the β-adrenergic agonist isoproterenol. Furthermore, in order to evaluate the role of MMGL in cMyBPC phosphorylation, we assessed the expression of the different phosphorylation isoforms of cMyBPC, with and without β-adrenergic stimulation, in the context of siRNA-mediated MMGL knockdown. We further hypothesized that MMGL and PKA may serve as modifiers of the hypertrophic phenotype. This was tested by conducting a single nucleotide polymorphism (SNP) genotyping study of the genes encoding MMGL and the regulatory subunits of PKA viz. PDE4DIP, PRKAR1A and PRKAR2A, respectively, and comparing genotypic data with clinical phenotypic traits in a family-based association study. A panel of 353 individuals, including genetically and clinically affected as well as unaffected HCM individuals, was identified. All these individuals were screened for the presence or absence of all three South African HCM founder mutations, and blood was collected and DNA extracted. Genotypes at multiple SNPs in each gene were determined by subjecting the DNA samples to TaqMan® allelic discrimination technology. Statistical analysis using quantitative transmission disequilibrium testing (QTDT) was done in order to establish whether the difference in genotype in these three genes might have an effect on HCM phenotype. Our results showed that MMGL interacted with both PKA regulatory subunits as well as with other cardiac proteins that are PKA targets, including the sarcomeric protein cTNI. It was confirmed that two regulatory subunits of PKA (PRKAR1A and PRKAR2A), cardiac ankyrin repeat protein (CARP), copper metabolism gene MURR1 domain 4 (COMMD4), α-enolase (ENO1), β-enolase (ENO3) and cTNI are novel interactors of MMGL. In order to classify a protein as an AKAP, interaction with one of PKA’s regulatory subunits are prerequisite; MMGL showed interaction with both, confirming our hypothesis of MMGL being an AKAP, moreover, classifying it as a novel dual-specific sarcomeric AKAP. The identities of the AKAPs involved in the phosphorylation of cMyBPC and cTNI had been unknown; our results indicate that MMGL is the AKAP involved in the phosphorylation of both these PKA targets. We also showed that quantitatively more interaction occurs between MMGL and its sarcomeric ligands cMyBPC and cTNI under β-adrenergic stress. This implicates that under elevated cAMP levels, PKA is dynamically recruited by MMGL to the PKA targets cMyBPC and cTNI, presumably to mediate cardiac stress responses and leading to increased cardiac contractility. Furthermore, siRNA-mediated knockdown of MMGL lead to a reduction of cMyBPC levels under conditions of β-adrenergic stress, indicating that MMGL-assisted phosphorylation is requisite for protection of cMyBPC against proteolytic cleavage. The SNP modifier study indicated that one variant in PDE4DIP (rs1664005) showed strong association with numerous clinical hypertrophy traits, including maximal interventricular septum thickness, as well as a number of other composite score traits. Two variants in PRKAR1A (rs11651687 and rs3785906) also showed strong association with some of these clinical hypertrophy traits. These results therefore suggest that variants in these two genes may act as modifiers of the HCM phenotype. In conclusion, this study ascribes a novel function to MMGL isoform 4: it meets all criteria for classification as an AKAP and appears to be involved in the phosphorylation of cMyBPC as well as cTNI; hence MMGL is likely to be an important component in the regulation of cardiac contractility, and by extension, in the development of hypertrophy. This has further implications for understanding the patho-aetiology of mutations in cMyBPC and cTNI, and raises the question of whether MMGL might itself be considered a candidate HCM-causing factor.
AFRIKAANSE OPSOMMING: Hipertrofiese kardiomiopatie (HKM) is die mees algemeenste oorerflike hartspier siekte wêreldwyd. Die siekte word gekenmerk deur die uiterste variasie in die hoeveelheid hipertrofie wat in verskillende pasiënte ontwikkel as gevolg van sarkomeriese proteïen-koderende mutasies. Die onderliggende gebrek in HKM is geaffekteerde kontraktiliteit van die sarkomeer, hoofsaaklik as gevolg van ‘n gebrekkige sarkomeer. Alhoewel daar verskeie siekte-veroorsakende gene vir HKM geïdentifiseer is, bly die faktore wat die hoeveelheid hipertrofie in ‘n gegewe persoon modifiseer, onbekend. Daar kan dus gehipotiseer word dat molekules wat kontraktiliteit beïnvloed as modifiseerders van die hipertrofiese sein kan optree, en dus die ontwikkeling van hipertrofie beïnvloed. Hartspier kontraktiliteit word gereguleer deur die dinamiese fosforilasie van proteïene binne die sarkomeer deur kinases soos bv. cAMP-geaktiveerde proteïen kinase A (PKA). Die spoed en energie doeltreffendheid van hartspier kontraksie moet gereguleer word om by die liggaam se behoeftes aan te pas; dus word PKA naby sy teikens deur A-kinase anker proteïene (AKAPs) geanker om sodoende die beheer van fosforilasie beide in die korrekte area sowel as tydsduur te reguleer. Kardiale miosien-bindingsproteïen C (cMyBPC), asook kardiale troponien I (cTNI), is beide HKM-veroorsakende sarkomeriese proteïene wat kontraktiliteit beheer deur middel van fosforilasie deur PKA. In ‘n vorige studie in ons laboratorium is ‘n fosfodiesterase 4D-interaksie proteïen as bindingsgenoot van die N-terminaal van cMyBPC geïdentifiseer deur middel van ‘n gis-twee-hibried (G2H) kardiale biblioteek sifting. In die literatuur staan dié proteïen ook bekend as miomegalin (MMGL) isovorm 4. Fosfodiesterases en PKA word soms deur dieselfde anker proteïen (AKAP) geanker, dus het ons hipotiseer dat MMGL isovorm 4 ook as AKAP kan optree deur PKA aan die fosforileerbare N-terminaal van cMyBPC te anker. Die hipotese is getoets deur middel van direkte proteïen-proteïen interaksie analises in ‘n gis-gebaseerde sisteem. Die MMGL cDNA was in ‘n jag-plasmied gekloneer, wat toe direk ge-evalueer is vir interaksie met twee verskillende PKA regulatoriese-subeenheid prooi-plasmiede. Die funksie van MMGL self is verder ondersoek deur die G2H jag-plasmied te gebruik om ‘n kardiale cDNA biblioteek te sif, sodoende om nuwe MMGL bindingsgenote te identifiseer. Alle prooi klone wat deur dié G2H analises geïdentifiseer is, was daarna onderworpe aan DNA-volgorde bepaling om hul identiteit vas te stel. Afhangende van hul identiteite en subsellulêre lokalisering, is alle moontlike G2H MMGL-prooi interaksies verder ge-evalueer deur bykomende, afsonderlike biochemiese tegnieke viz. in vivo ko-immunopresipitasie asook in vivo 3D ko-lokalisering. Die interaksie tussen MMGL en sy bekende PKA-gefosforileerde sarkomeriese bindingsgenote was ook ondersoek onder kondisies van β-adrenergiese stres, deur kwantitatief die vlakke van ko-lokalisering te meet voor en na byvoeging van die β-adrenergiese agonis isoproterenol. Om verder die rol van MMGL in cMyBPC fosforilasie te ondersoek, het ons die uitdrukking van die verskillende fosforilasie isovorms van cMyBPC, met en sonder β-adrenergiese stimulasie, in die konteks van siRNA-bemiddelde MMGL uitklop, bepaal. Ons het verder hipotiseer dat MMGL en PKA as modifiseerders van die hipertrofiese fenotipe mag dien. Dit is getoets deur ‘n enkel nukleotied polimorfisme (SNP) genotiperings studie van die gene wat kodeer vir MMGL en die regulatoriese subeenhede van PKA, viz. PDE4DIP, PRKAR1A en PRKAR2A, en daarna dié genotipiese data met kliniese fenotipiese data te vergelyk in ‘n familie-gebaseerde assosiasie studie. ‘n Paneel van 353 individue wat genetiese en klinies geaffekteerde, sowel as ongeaffekteerde HKM individue insluit, was geidentifiseerd. Alle individue was ondersoek vir die aanwesigheid of afwesigheid van al drie Suid-Afrikaanse HKM stigter mutasies; bloedmonsters is gekollekteer en DNA uitgetrek. Die genotipes van veelvoudige SNPs in elke geen was bepaal deur die DNA monsters aan TaqMan® alleliese diskriminasie tegnologie met behulp van die ABI TaqMan® Validated SNP Genotyping Assays sisteem te analiseer. Statistiese analises deur middel van kwantitatiewe transmissie disekwilibrium toetse (QTDT) was gedoen om te bepaal of die verskil in genotipe in hierdie drie gene ‘n effek op HKM fenotipe het. Ons resultate het gewys dat MMGL interaksie toon met beide PKA regulatoriese subeenhede, sowel as met ander kardiale proteïene wat ook PKA teikens is, insluitende die sarkomeriese proteïen cTNI. Dit is bevestig dat die twee regulatoriese subeenhede van PKA (PRKAR1A en PRKAR2A), kardiale ankyrin herhaal proteïen (CARP), koper metabolisme geen MURR1 domein 4 (COMMD4), α-enolase (ENO1), β-enolase (ENO3) en cTNI almal nuwe bindingsgenote van MMGL is. ‘n Proteïen moet interaksie met een van die regulatoriese subeenhede van PKA toon om as AKAP geklassifiseer te word; MMGL het interaksie met beide getoon, wat ons hipotese bevestig dat MMGL ‘n AKAP is, asook dat MMGL as ‘n nuwe dubbel-spesifieke sarkomeriese AKAP geklassifiseer kan word. Die identiteite van die AKAPs wat betrokke is in die fosforilasie van cMyBPC en cTNI was onbekend tot nou; ons resultate wys dat MMGL die AKAP is wat betrokke is in die fosforilasie van beide hierdie PKA teikens. Ons wys ook dat daar kwantitatief meer interaksie plaasvind tussen MMGL en sy sarkomeriese bindingsgenote cMyBPC en cTNI onder kondisies van β-adrenergiese stres. Dit impliseer dat PKA dinamies verwerf word deur MMGL, onder verhoogde vlakke van cAMP, tot by die PKA teikens cMyBPC en cTNI, moontlik om kardiale stres-response te bemiddel en dus te lei na verhoogde spierkontraksie. Verder het siRNA-bemiddelde uitklop van MMGL gelei na ‘n vermindering van cMyBPC vlakke onder kondisies van β-adrenergiese stres. Dit dui aan dat fosforilasie deur middel van MMGL-bystand ‘n voorvereiste is vir beskerming van cMyBPC teen proteolise. Die SNP modifiseerder studie het gewys dat een variant in PDE4DIP (rs1664005) sterk assosiasie toon met verskeie kliniese hipertrofie kenmerke, insluitende maksimale interventrikulêre septum diktheid, sowel as ander van die saamgestelde telling kenmerke. Twee variante in PRKAR1A (rs11651687 en rs3785906) het ook sterk assosiasie getoon met verskeie van die kliniese hipertropfie kenmerke. Hierdie resultate dui dus daarop dat variante in hierdie twee gene as modifiseerders van die HKM fenotipe mag optree. In samevatting skryf hierdie studie ‘n nuwe funksie aan MMGL isovorm 4 toe: dit voldoen aan alle vereistes om as AKAP geklassifiseer te word en dit blyk of dit betrokke is in die fosforilasie van cMyBPC en cTNI; dus is MMGL waarskynlik ‘n belangrike komponent in die regulasie van hartspier sametrekking, en dus met uitbreiding, in die ontwikkeling van hipertrofie. Dit hou verdere implikasies in om die siekte-oorsaak van mutasies in cMyBPC en cTNI te verstaan, en stel die vraag of MMGL self as ‘n kandidaat HKM-veroorsakende geen kan beskou word.
Medical Research Council
University of Stellenbosch
Prof Paul van Helden
Braz-Ruivo, Luis. "An investigation for latent parvovirus DNA in the myocardium and serum antibodies against myosin and laminin in dogs with dilated cardiomyopathy". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0007/NQ43249.pdf.
Texto completoKreutziger, Kareen L. "Investigating the molecular mechanisms of cooperative tension generation in skeletal and cardiac muscle by altering acto-myosin interactions and engineering troponin C calcium binding kinetics /". Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/8060.
Texto completoRazvadauskaite, Giedre. "Survival and differentiation of implanted skeletal myoblasts in the native and in the cryoinjured myocardium". Link to electronic thesis, 2003. http://www.wpi.edu/Pubs/ETD/Available/etd-0106103-155714.
Texto completoKeywords: myoblasts; dexamethasone; infarction; cryoinjury; desmin; myosin heavy chain; differentiation. Includes bibliographical references (p. 54-59).
Korte, F. Steven. "Thick filament regulation of myocardial contraction". Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4383.
Texto completoThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Vita. "August 2006" Includes bibliographical references.
Lima, Aline Regina Ruiz [UNESP]. "Estudo do músculo diafragma em ratos com insuficiência cardíaca crônica: composição das miosinas e expressão dos fatores de regulação miogênica". Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/92159.
Texto completoCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Estudos clínicos e experimentais têm sugerido que anormalidades da musculatura esquelética podem colaborar para a ocorrência precoce de dispnéia e fadiga em pacientes com insuficiência cardíaca crônica. Em músculos periféricos e respiratórios, frequentemente observa-se modificação na composição das cadeias pesadas da miosina (MyHC) na insuficiência cardíaca. Os mecanismos e vias intracelulares de sinalização responsáveis pela alteração das MyHCs ainda não estão completamente definidos. Na insuficiência cardíaca direita induzida por monocrotalina, foi verificado que a expressão dos fatores de regulação miogênica está associada a alterações no fenótipo das MyHC. Recentemente, foi verificado que o fator de necrose tumoral-alfa (TNF-α) pode modular a expressão de proteínas miofibrilares. Não identificamos estudos que avaliaram o papel dos fatores de regulação miogênica e a influência do TNF-α na composição das MyHCs no músculo diafragma durante a insuficiência cardíaca. O objetivo deste estudo é determinar se modificações nas isoformas das MyHCs são selacionadas a alterações na expressão gênica dos fatores de regulação miogênica no músculo diafragma de ratos com infarto do miocárdio, com e sem insuficiência cardíaca. Adicionalmente, verificamos se as concentrações séricas de TNF-α e de IL-6 estão relacionadas a alterações das MyHCs e da expressão gênica dos fatores de regulação miogênica. Insuficiência cardíaca foi induzida pro infarto do miocárdio. Seis meses após a cirurgia, foram constituídos três grupos de animais: Sham (n=10), IM/IC- (animais infartados com disfunção ventricular e sem insuficiência cardíaca, n=10) e IM/IC+ (animais infartados com insuficiência cardíaca, n=10). As estruturas cardíacas e a função ventricular foram avaliadas por ecocardiograma...
Several clinial and experimental studies have suggested that skeletal muscle abnormalities can contribute to early fatigue and dyspnea in heart failure patients. Changes of myosin heavy chain (MyHC) isoforms have been frequently observed in peripheral and respiratory muscles during heart failure. Pathophysiological mechanisms and intracellular signaling pathways involved on MyHCs alterations are not completely defined. In monocrotaline-induced right heart failure, it was observed that the expression of myogenic regulatory factors is associated with MyHCs phenotype changes. Tumoral necrosis factor-alpha (TNF-α) has been recently described to modulate skeletal myofibril proteins. We did not find studies evaluating the influence of myogenic regulatory factors and TNF-α serum concentration on diaphragm MyHC isoforms during heart failure. In this study we tested the hypothesis that diaphragm MyHC isoforms changes are related to myogenic regulatory factors gene expression in chronic heart failure. Additionally, we measured TNF-α and interleukin-6 serum levels to examine their correlation with both MyHC isoforms and myogenic regulatory factors gene expression. A coronary ligation nodel was employed to induce heart failure. Six months after the surgical procedure, three groups of rats were studied: Sham (n=10), infarcted rats without heart failure (MI/HF-, n=10), and infarcted rats with heart failure (MI/HF+, n=10). Cardiac structures and ventricular function were assessed by transthoracic echocardiogram. MyHC isoforms were analyzed by protein electrophoresis. Muscle fiber cross-sectional area was measured in hematoxilin-eosin stained sections and in sections submitted to NADH-TR reaction. Myogenic regulatory factors miogenin, MyoD, and MRF4 gene expression was evaluated by real time RT-PCR; TNF-α and interleukin-6 serum levels werre quantified by... (Complete abstract click electronic access below)
Cliquet, Florence. "Immunonéphélémétrie à supports microparticulaires : dosages de marqueurs de nécrose myocardique : étude des interactions non spécifiques". Nancy 1, 1992. http://docnum.univ-lorraine.fr/public/SCD_T_1992_0407_CLIQUET.pdf.
Texto completoLima, Aline Regina Ruiz. "Estudo do músculo diafragma em ratos com insuficiência cardíaca crônica : composição das miosinas e expressão dos fatores de regulação miogênica /". Botucatu : [s.n.], 2010. http://hdl.handle.net/11449/92159.
Texto completoAbstract: Several clinial and experimental studies have suggested that skeletal muscle abnormalities can contribute to early fatigue and dyspnea in heart failure patients. Changes of myosin heavy chain (MyHC) isoforms have been frequently observed in peripheral and respiratory muscles during heart failure. Pathophysiological mechanisms and intracellular signaling pathways involved on MyHCs alterations are not completely defined. In monocrotaline-induced right heart failure, it was observed that the expression of myogenic regulatory factors is associated with MyHCs phenotype changes. Tumoral necrosis factor-alpha (TNF-α) has been recently described to modulate skeletal myofibril proteins. We did not find studies evaluating the influence of myogenic regulatory factors and TNF-α serum concentration on diaphragm MyHC isoforms during heart failure. In this study we tested the hypothesis that diaphragm MyHC isoforms changes are related to myogenic regulatory factors gene expression in chronic heart failure. Additionally, we measured TNF-α and interleukin-6 serum levels to examine their correlation with both MyHC isoforms and myogenic regulatory factors gene expression. A coronary ligation nodel was employed to induce heart failure. Six months after the surgical procedure, three groups of rats were studied: Sham (n=10), infarcted rats without heart failure (MI/HF-, n=10), and infarcted rats with heart failure (MI/HF+, n=10). Cardiac structures and ventricular function were assessed by transthoracic echocardiogram. MyHC isoforms were analyzed by protein electrophoresis. Muscle fiber cross-sectional area was measured in hematoxilin-eosin stained sections and in sections submitted to NADH-TR reaction. Myogenic regulatory factors miogenin, MyoD, and MRF4 gene expression was evaluated by real time RT-PCR; TNF-α and interleukin-6 serum levels werre quantified by... (Complete abstract click electronic access below)
Orientador: Marina Politi Okoshi
Coorientador: Katashi Okoshi
Banca: Márcia Koike
Banca: Paula Schmidt Azevedo Gaiolla
Mestre
Addisu, Anteneh. "Natriuretic peptides as a humoral link between the heart and the gastrointestinal system". [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002406.
Texto completoLibros sobre el tema "Myosin Myocardium"
¹¹¹Indium-labeled antimyosin monoclonal antibody. Glenview, Ill: Physicians & Scientists Pub. Co., 1992.
Buscar texto completoMcCully, James Donald *. Myocardial cell gene regulation during the aging and cardiomyopathic disease processes: characterization of a Syrian hamster myosin heavy chain gene. 1989.
Buscar texto completoEbashi, Setsuro y Iwao Ohtsuki. Regulatory Mechanisms of Striated Muscle Contraction. Springer, 2008.
Buscar texto completo1922-, Ebashi Setsurō y Ohtsuki Iwao, eds. Regulatory mechanisms of striated muscle contraction. Tokyo: Springer, 2007.
Buscar texto completoRegulatory mechanisms of striated muscle contraction. Tokyo: Springer, 2007.
Buscar texto completo(Editor), Setsuro Ebashi y Iwao Ohtsuki (Editor), eds. Regulatory Mechanisms of Striated Muscle Contraction (Advances in Experimental Medicine and Biology). Springer, 2007.
Buscar texto completoCapítulos de libros sobre el tema "Myosin Myocardium"
Gupta, Mahesh P., Madhu Gupta, Evelyn Dizon y Radovan Zak. "Sympathetic control of cardiac myosin heavy chain gene expression". En Biochemistry of Signal Transduction in Myocardium, 117–24. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1275-8_15.
Texto completovan der Velden, J., Z. Papp, N. M. Boontje, R. Zaremba, J. W. de Jong, P. M. L. Janssen, G. Hasenfuss y G. J. M. Stienen. "Myosin Light Chain Composition in Non-Failing Donor and End-Stage Failing Human Ventricular Myocardium". En Advances in Experimental Medicine and Biology, 3–15. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9029-7_1.
Texto completoBachinsky, Victor, Oleh Ya Vanchulyak, Alexander G. Ushenko, Yurii A. Ushenko, Alexander V. Dubolazov, Alexander Bykov, Benjamin Hogan y Igor Meglinski. "Diagnosis of Acute Coronary Insufficiency by the Method of Mueller Matrix Analysis of Myosin Myocardium Networks". En Multi-parameter Mueller Matrix Microscopy for the Expert Assessment of Acute Myocardium Ischemia, 53–87. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1450-7_3.
Texto completoRupp, Heinz y R. Jacob. "Correlation between total catecholamine content and redistribution of myosin isoenzymes in pressure loaded ventricular myocardium of the spontaneously hypertensive rat". En Controversial issues in cardiac pathophysiology, 147–55. Heidelberg: Steinkopff, 1986. http://dx.doi.org/10.1007/978-3-662-11374-5_15.
Texto completoRupp, H., R. Jacob y N. S. Dhalla. "Signal Transduction in Myocardial Hypertrophy and Myosin Expression". En Developments in Cardiovascular Medicine, 135–54. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-1513-1_9.
Texto completoZhang, Mei Luo, Samer Elkassem, Allen W. Davidoff, Kaoru Saito y Henk E. D. J. ter Keurs. "Losartan inhibits myosin isoform shift after myocardial infarction in rats". En Biochemistry of Hypertrophy and Heart Failure, 111–17. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9238-3_16.
Texto completoIvanov, Georgi, Stylian Stoeff, Radko Pelov y Milka Metodieva. "Electrophoretic Mobility of Myosin-Treated Lymphocytes from Patients with Myocardial Infarction". En Electromagnetic Fields and Biomembranes, 273–75. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4615-9507-6_47.
Texto completoDillmann, Wolfgang H. "Diabetes Mellitus and Hypothyroidism Induce Changes in Myosin Isoenzyme Distribution in the Rat Heart — Do Alterations in Fuel Flux Mediate These Changes?" En Myocardial and Skeletal Muscle Bioenergetics, 469–79. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5107-8_35.
Texto completoKissling, G. y H. Rupp. "The influence of myosin isoenzyme pattern on increase in myocardial oxygen consumption induced by catecholamines". En Controversial issues in cardiac pathophysiology, 103–15. Heidelberg: Steinkopff, 1986. http://dx.doi.org/10.1007/978-3-662-11374-5_11.
Texto completoTakeda, N., T. Ohkubo, T. Hatanaka, A. Takeda, I. Nakamura y M. Nagano. "Myocardial contractility and left ventricular myosin isoenzyme pattern in cardiac hypertrophy due to chronic volume overload". En Cardiac Energetics, 215–21. Heidelberg: Steinkopff, 1987. http://dx.doi.org/10.1007/978-3-662-11289-2_21.
Texto completoActas de conferencias sobre el tema "Myosin Myocardium"
Kaier, Thomas, Carsten Stengaard, Jack Marjot, Jacob Thorsted Sørensen, Bashir Alaour, Stavroula Stavropoulou-Tatla, Christian Juhl Terkelsen et al. "148 Cardiac myosin-binding protein C to diagnose acute myocardial infarction in the pre-hospital setting, using multi-factorial nomograms". En British Cardiovascular Society Annual Conference ‘Digital Health Revolution’ 3–5 June 2019. BMJ Publishing Group Ltd and British Cardiovascular Society, 2019. http://dx.doi.org/10.1136/heartjnl-2019-bcs.145.
Texto completoJi, SY, ZQ Cheng y NL Stephens. "The Role of Myocardin and Elk-1 in Regulation of Smooth Muscle Type Myosin Light Chain Kinase Expression in Airway Smooth Muscle." En American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a2058.
Texto completoInformes sobre el tema "Myosin Myocardium"
Zhang, John Q. Post-Myocardial Infarction and Exercise Training on Myosin Heavy Chain and Cardiac Function. Science Repository, abril de 2019. http://dx.doi.org/10.31487/j.jicoa.2019.01.08.
Texto completo