Tesis sobre el tema "Nanofluidik"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Nanofluidik".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Strobl, Christoph. "Mikro- und Nanofluidik auf piezoelektrischen Substraten". Diss., lmu, 2005. http://nbn-resolving.de/urn:nbn:de:bvb:19-37272.
Texto completoHenrich, Björn. "Partikelbasierte Simulationsmethoden in Pulvertechnologie und Nanofluidik". [S.l. : s.n.], 2007.
Buscar texto completoStöckle, Silke. "Thin liquid films with nanoparticles and rod-like ions as models for nanofluidics". Phd thesis, Universität Potsdam, 2010. http://opus.kobv.de/ubp/volltexte/2010/4637/.
Texto completoMit dem Heranwachsen der Nanotechnologie in den vergangenen zehn Jahren hat sich die Nanofluidik als Forschungsbereich etabliert und erfährt wachsende Aufmerksamkeit in der Wissenschaft, sowie auch in der Industrie. Im biomedizinischen Bereich, wo intrazelluläre Prozesse häufig komplexer, nanofluidischer Natur sind, wird sich vermehrt für ein detailliertes Verständnis von nanofluidischen Prozessen interessiert, z.B. für den Einfluss von Kolloiden verschiedenster Form oder elektrischer Ladung auf die Kanäle und auf das Fließverhalten oder die Auswirkungen der Einengung von Flüssigkeiten und Kolloiden in Nanometer Geometrien. In der vorliegenden Arbeit werden dünne flüssige Filme, hinsichtlich ihrer Funktion als nanofluidische Modelle untersucht. Im ersten Teil der Arbeit wurde die Fließgeschwindigkeit des Fluids aus dem dünnen Film, abhängig von der Konzentration der filmstabilisierenden Tensidmoleküle n – Dodecyl β – D – Maltoside ( β – C₁₂G₂) bei einer konstanten Elektrolytkonzentration von 0.2 mM NaCl untersucht. Mit einem theoretischen Modell konnte das Dünnungsverhalten nachgezeichnet werden. Es wurde eine kritische Tensidkonzentration gefunden, unter der die Oberflächen lateral mobil sind und über der sie sich wie fest verhalten. Dadurch konnten wir Aufschluss darüber erlangen, wie die Oberfläche des Films unter verschiedenen Bedingungen geschaffen ist, und das in Bezug zur Verteilungsdichte der Moleküle an den Oberflächen setzen. Im weiteren wurden komplexere, nanofluidische Systeme untersucht, wobei zum einen ~ 1 nm lange, stäbchenförmige, multivalent geladene Spermidin - Moleküle die punktförmigen Elektrolyte ersetzten. Es konnte eine deutliche Veränderung der Stabilität zwischen Filmen mit und ohne Stäbchen festgestellt werden. Die Filme, mit NaCl, blieben länger in dem metastabilen „Common Film“ (CF) Zustand als die Filme, die eine vergleichbare Konzentration von Spermidin Stäbchen beinhalteten. Die Ergebnisse deuteten auf eine zusätzliche Anziehungskraft durch Brückenbildung zwischen zwei geladenen Oberflächen durch gegensätzlich geladene Stäbchenförmige Moleküle hin. Es konnte gezeigt werden, dass dieser Effekt weder ein Ergebnis von spezifischer Ionenadsorption an die Filmoberfläche war, noch ein Unterschied in den Gleichgewichtszuständen von den Dicken der CFs und der Newton Black Films (NBFs) hervorrief, was auf die korrekte Annahme der Ionenstärke in der Lösung schließen ließ. Auch in Versuchen mit ebenfalls trivalenten Ionen YCl3 wurde festgestellt, dass kein vergleichbarer Überbrückungseffekt auftritt. Die Ergebnisse wurden mit theoretischen Simulationen verglichen und es wurde eine quantitative Übereinstimmung gefunden bezüglich der Größe des Systeminternen Energiegewinns durch den Überbrückungseffekt. Desweiteren wurde das Fließverhalten von Fluiden mit Kolloiden eingeengt in Nanometer Geometrien untersucht. Für zwei verschiedene Arten von Nanopartikeln (Fe3O4 stabilisiert mit Oleinsäure und polymerstabilisierte Goldpartikel) wurde eine Verlangsamung der Fließgeschwindigkeit festgestellt. Mit einem theoretischen Modell konnte das Fließverhalten nur für enorm erhöhte Viskositätswerte des Fluids erklärt werden. Die Viskositätserhöhung wurde mit Partikelaggregaten, die den Ausfluss behindern, erklärt und diskutiert, unter der Annahme eines nicht - Newtonischen Fließverhaltens der Dispersionen. Gleichermaßen wurde die strukturelle Anordnung der Partikel in den Filmen hinsichtlich ihrer vertikalen und lateralen Verteilung untersucht. In dieser Arbeit werden vorläufige Ergebnisse präsentiert, die noch weiteren Studien bedürfen. Mit Neutronenreflexion sollte die Anordnung der Partikel orthogonal zur Oberfläche im Film analysiert werden. Eine qualitative Analyse lässt schließen, dass bei einer höheren Konzentration von Partikeln in Lösung, sich auch eine erhöhte Konzentration von Partikeln im dünnen Film befindet. Leider konnten die Daten nicht hinsichtlich der Lage der Partikel analysiert werden. Zum ersten Mal wurden dünne flüssige Filme mit Kleinwinkelröntgenstreuung unter streifendem Einfall (GISAXS) analysiert. Mit Hilfe dieser Methode sollte eine laterale Anordnung der Partikel im Film untersucht werden. Es konnten erfolgreiche Messungen durchgeführt werden und mit Hilfe der rechnergestützten Analyse konnte eine Aussage gemacht werden, dass ~ 6 nm große Teilchen in ~ 43 nm Abstand sich im Film befinden. Die Aussage bezüglich der kleinen Teilchen könnte sich auf einzelne, kleinere Partikel beziehen, allerdings könnten auch die 43 nm eine relevante Strukturgröße darstellen, da es in der Dispersion gehäuft Aggregate mit dem Durchmesser in dem Größenbereich vorliegen. Zusammenfassend können sich mit dieser Arbeit die dünnen flüssigen Filme als eine wichtige Kernmethode der Untersuchung von nanofluidischen Prozessen, wie sie häufig in der Natur vorkommen, behaupten.
Mutlu, Yavuz Selim [Verfasser]. "Entwicklung einer Fluid-Drossel aus porösen Keramiken zur Einstellung von Volumenströmen in der Nanofluidik / Yavuz Selim Mutlu". Lübeck : Zentrale Hochschulbibliothek Lübeck, 2015. http://d-nb.info/1075025184/34.
Texto completoHaddad, Oriana. "Convection naturelle nanofluidique en cavité hémisphérique inclinée : approches numérique et expérimentale". Thesis, Paris 10, 2018. http://www.theses.fr/2018PA100091.
Texto completoThis numerical and experimental thesis deals with natural convective heat transfer that occurs in a hemispherical cavity in steady state. The enclosure is filled with water or ZnO / water nanofluid. The volume fraction varies between 0% (pure water) and 10%. The coupola of the cavity is kept at a cold temperature. This work corresponds to the field of electronics and the cooling of different actives composants. Three active heating sources are studied: the first one is plane and circular (the disc) and the followings, centered on the disc with the same surface, are cubical and hemispherical. The tilted angle varies between 0 (dome facing upwards) and 180° (dome facing downwards) with respect to the horizontal plane. Heat sources generate important heat fluxes leading to high Rayleigh numbers values. Numerical approach is done by means of the volume control method based on the SIMPLE algorithm and using monophasic model. For each active source, the convective heat transfer is analyzed and quantified by means of a correlation of the Nusselt-Rayleig-Prandtl-tilt angle type. Experimentally, the heat sources are built step by step and the average convective heat transfer coefficient is calculated. The comparison measures-correlations questions on the cooling nanofluid’s efficiency
Chen, Pin. "Amélioration de l'évaporation des gouttes à l'aide de nanoparticules et d'alcools". Thesis, Valenciennes, 2018. http://www.theses.fr/2018VALE0009/document.
Texto completoIn recent years, increasing requirement in high efficient heat dissipation for micro-electronics, spacecraft, nuclear reactors etc., encourage the development of next generation heat exchanger. Heat pipe is one of potential effective cooling equipments and most of mass and heat transfer take place at micro-region near triple phase (solid, liquid, vapor) contact line of working fluid, which is essential to thermal performance improvement of heat pipe. This study focuses on the evaporation process of sessile droplets of two novel working fluids (binary solution and nanofluid), which possess similar micro-region to that in heat pipe. Concentration gradient induced Marangoni flow and exceptional thermal conductivity are expected to significantly enhance evaporation rate of alcohol-water mixture and graphene nanofluid, respectively. A combination of acoustic and infrared techniques is developed to track alcohol concentration variation during evaporation of 1-butanol and ethanol aqueous droplets. According to observation of evaporation behavior at different substrate temperature, a series of empirical equations is suggested to predict evaporation rate of 1-butanol-water binary solution droplet considering thermal and solutal Marangoni effect. In addition, the effect of PEGylation, nanoparticle concentration and substrate temperature on drop evaporation of graphene nanofluid are investigated by microscopic, optical and infrared methods. Experimental results and thermodynamic analysis can contribute to the full understanding of involved mechanism concerning evaporation performance of graphene nanofluid
Cabral, Francismara Pires. "Estudo da ebulição convectiva de nanofluidos no interior de microcanais". Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/18/18147/tde-16092013-163829/.
Texto completoThe present work aims the theoretical study of convective boiling of nanofluids in small diameter channels (called microchannel). It discusses an analysis of the literature on convective boiling of conventional fluids in microchannels which presents criteria for the transition between conventional and microchannels and the flow patterns observed in small diameter channels. Methods for predicting the transport properties of nanofluids were compiled from the literature and experimental studies of forced convection, nucleate boiling and convective boiling of nanofluids were discussed. A method for predicting the heat transfer coefficient of nanofluids in microchannels during convective boiling was proposed based on conventional models from literature adjusted to nanofluids. The conventional models fitting was performed by regression analysis of experimental data for nucleate boiling and forced convection of nanofluids compiled from the literature and by critical analysis of dimensionless numbers which enable to capture the influence of nanoparticles on heat transfer process. In general the proposed method in this work presents reasonable agreement with independent experimental data regarding the increase in heat transfer coefficient with increasing nanoparticles volume fraction. However the scarcity of experimental studies on the convective boiling of nanofluids, especially in microchannels, precluded further analysis of the proposed method.
Rueda, García Daniel. "Development of novel electroactive nanofluids for flow cells". Doctoral thesis, Universitat de Barcelona, 2020. http://hdl.handle.net/10803/670918.
Texto completoLas celdas de flujo van camino de convertirse en una pieza clave para el almacenamiento de energía eléctrica (EES) gracias a su idoneidad como dispositivos de nivelación de carga, contribuyendo así al desarrollo de una red inteligente que pueda compensar la intermitencia de las fuentes de energía renovables. Hasta hace poco, las celdas de flujo se habían limitado a las baterías de flujo redox (RFB), donde el almacenamiento de energía está dado por las reacciones redox de los iones disueltos. Muy recientemente, se han propuesto nuevos tipos de electrodos líquidos basados en un mecanismo de almacenamiento capacitivo (condensadores de flujo electroquímicos o EFC). Nuestro grupo ha sido uno de los laboratorios pioneros en este tipo de nuevas celdas de flujo basadas en nanofluidos electroactivos. La presente Tesis ha tenido como objetivo aprovechar la actividad de especies electroactivas bien conocidas (quinonas, grafeno, polioxometalatos, LiFePO4) en nuevos nanofluidos electroactivos. Una parte importante de nuestra estrategia ha sido el diseño de formulaciones y sistemas híbridos que pudieran combinar mecanismos de almacenamiento faradaico (redox) y capacitivo (doble capa) para mejorar el rendimiento de las celdas de flujo resultantes. En la introducción de esta tesis se ha realizado una revisión y perspectiva ampliadas de las tecnologías de celdas de flujo electroquímicas y sus posibles líneas de evolución. Con esto se presentan el estado del arte, los problemas a resolver y las diferentes soluciones propuestas para estas tecnologías. Además, también mostramos nuestro punto de vista y perspectivas para estas tecnologías y el almacenamiento de energía eléctrica en general. Por ello esta parte constituye la parte principal de la introducción y una parte fundamental de esta tesis para entender los objetivos, motivaciones y el trabajo realizado. En el capítulo 4 se estudiaron los fundamentos electroquímicos de las quinonas en electrolitos orgánicos con sal de litio. Los mecanismos electroquímicos de las quinonas se han descrito ampliamente en la bibliografía pero en medios acuosos. En este trabajo, los estudiamos en un electrolito orgánico en un intento de aprovechar la mayor solubilidad y las ventanas de potencial más amplias disponibles en este medio. Encontramos y describimos en detalle varios problemas que impiden el funcionamiento reversible de las quinonas en los electrolitos orgánicos con Li+ que, a su vez, impiden su uso en celdas de flujo en esas condiciones. En el capítulo 5 se describe la síntesis, caracterización y rendimiento electroquímico de materiales híbridos basados en óxido de grafeno reducido (rGO) y polioxometalatos dispersos en un electrolito acuoso (H2SO4) para producir un nanofluido. Estos nanofluidos presentan baja viscosidad y muestran una respuesta electroquímica ultrarrápida e hibrida, con contribución tanto capacitiva del rGO como faradaica de los polioxometalatos. Demostrando así su funcionamiento como fluidos de almacenamiento de energía con plena carga y descarga de todo el material sólido disperso. El sexto capítulo presenta un nuevo tipo de nanofluido basado en rGO. En lugar de usar tensioactivos convencionales como en el capítulo descrito anteriormente, disolvimos una molécula aromática capaz de estabilizar el rGO en un electrolito acuoso mediante interacciones de tipo π-π. Con este enfoque logramos un gran aumento en la estabilidad del nanofluido. Además, este nuevo nanofluido también mostró una gran capacidad de transferencia de carga, como lo demuestra el hecho de que permite que se produzca actividad redox de nanopartículas de LiFePO4 (sin recubrimento conductor) simplemente dispersas en el nanofluido. Por lo tanto, gracias a la presencia de rGO en el nanofluido, los electrones podrían alcanzar las nanopartículas dispersas y, por lo tanto, cargarse y descargarse de manera efectiva y completa, algo que no es posible en nanofluidos que contienen solo nanopartículas de LiFePO4. La síntesis de grafeno también se ha estudiado en profundidad en esta tesis tal y como se puede ver en el capítulo 7, dado que el objetivo final es producir materiales que se puedan usar en aplicaciones reales, asegurarse de que los materiales con los que se trabaja se pueden producir en cantidades grandes, mediante métodos escalables y elementos abundantes es también importante. Como resultado, se ha desarrollado y patentado un nuevo método para la producción de grafeno por exfoliación electroquímica de grafito. En esta tesis se presenta la patente, un resumen de los resultados obtenidos y el estado del arte del método de exfoliación electroquímica de grafeno. En esta tesis hemos demostrado el potencial de los nanofluidos en el almacenamiento de energía electroquímica. A partir de los resultados mostrados aquí, podemos inducir conclusiones generales importantes sobre los efectos extendidos de pequeñas cantidades de sólidos en todo el volumen del nanofluido. Hemos demostrado que las dispersiones estables de rGO en agua pueden transferir la carga a través de todo el volumen de nanofluidos, lo que hace que todo el nanofluido actúe como un electrodo supercondensador que almacena la carga a través de un mecanismo capacitivo. De hecho, el nanofluido acuoso rGO mostró una transferencia de carga extremadamente rápida, pudiendo realizar ciclos a 10V·s-1. Gracias a esta rápida transferencia de carga, pudimos cargar y descargar por completo nanopartículas activas redox dispersas de LiFePO4 y detectar claramente picos redox incluso a 25 mV·s-1. Además, al dopar el rGO con especies redox activas moleculares como los polioxometalatos, desarrollamos sistemas híbridos con potencia y capacidad mejoradas con respecto al nanofluido rGO puro. Finalmente, demostramos que los nanofluidos de rGO acuosos pueden mejorar su estabilidad al disolver una molécula aromática (DABA) capaz de estabilizar rGO mediante interacciones π-π manteniendo su buena conductividad eléctrica. Todo esto ha sido posible manteniendo la viscosidad de los nanofluidos desarrollados muy cerca de los disolventes originales, lo que facilitará su aplicación final en dispositivos de flujo real. Por otro lado, la baja concentración de nanopartículas de grafeno podría ser una desventaja para la aplicación de estos materiales en dispositivos de alta densidad de energía. Por lo tanto, aumentar la carga de nanopartículas electroactivas es un objetivo importante. En resumen, hemos diseñado y preparado nanofluidos basados en grafeno pero también en híbridos de grafeno. Hemos mostrado en esta descripción general cómo estos novedosos materiales de nanofluidos pueden presentar rendimientos sobresalientes incluso en el caso de sistemas muy diluidos. Hemos demostrado efectos no lineales, que conducen a propiedades notables con pequeñas cantidades de grafeno dispersas en los nanofluidos. Por lo tanto, nuestro trabajo subraya el sólido potencial de estos sistemas para el almacenamiento de energía.
Haddad, Zoubida. "Instabilités thermoconvectives pour des fluides complexes". Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4778.
Texto completoThe controversy regarding the proposed mechanisms of the exceptionally enhanced thermal conductivity of nanofluids, as well as sharp increase of nanofluid viscosity suggest that systematic experiment with well dispersed and well characterized nanofluids are highly desired. Therefore, on the basis of this suggestion, thermal conductivity and viscosity of silica-water and titania-water nanofluids were measured. It was observed that the thermal conductivity of both nanofluids agrees well with the effective medium theory, i.e., Maxwell model, and does not show any enhancement due to effects associated with the proposed mechanisms of thermal energy transfer in nanofluids like Brownian motion or liquid layering. To support these results, the thermal conductivity of water based nanofluid containing carbon nanotubes was measured. It was found that that thermal conductivity of CNTs nanofluids agrees well with Maxwell model up to 1 vol.%. The inconsistencies in the reported thermal conductivity and dynamic viscosity from different research groups are found to be mainly due to the characterization of the nanofluid, including determination of colloidal stability and particle size, (i.e, aggregates size) within nanofluid. The influence of uncertainties due to adopting various formulas for the dynamic viscosity on natural convection heat transfer was investigated. It was observed that uncertainties in the predictive models for the effective thermal conductivity and dynamic viscosity of nanofluids, leads to erroneous evaluation of the convective heat transfer with nanofluids, and this acts as a brake on research in the area
Rodríguez-Laguna, María del Rocío. "Heat transfer fluids: From fundamental aspects of graphene nanofluids at room temperature to molten salts formulations for solar-thermal conversion". Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667803.
Texto completoHeat transfer fluids and nanofluids constitute an important element in the industry and their performance is key to the successful application in technologies that go from heat management and cooling to heat exchangers in thermal-solar energy and electricity generation. These industries demand heat transfer fluids with a wider liquid temperature range and better thermal performance than the conventional fluids. From low-temperature fluids to high-temperature molten salts, these fluids seem to benefit from the dispersion of solid nanoparticles, leading to nanofluids which frequently feature improved thermal conductivities and/or specific heats as compared with the bare fluids. However, there are some exceptions. Contradictory reports make it necessary to study these materials in greater depth than has been usual. Yet, the liquid nature of these materials poses a real challenge, both from the experimental point of view and from the conceptual framework. The work reported in this thesis has tackled two different challenges related to heat transfer fluids and nanofluids. In the first place, a careful and systematic study of thermal, morphological, rheological, stability, acoustic and vibrational properties of graphene-based nanofluids was carried out. We observed a huge increase of up to 48% in thermal conductivity and 18% in heat capacity of graphene-N,N-dimethylacetamide (DMAc) nanofluids. A significant enhancement was also observed in graphene-N,N-dimethylformamide (DMF) nanofluids of approximately 25% and 12% for thermal conductivity and heat capacity, respectively. The blue shift of several Raman bands (max. ~ 4 cm-1) with increasing graphene concentration in DMF and DMAc nanofluids suggested that graphene has the ability to affect solvent molecules at long-range, in terms of vibrational energy. In parallel, numerical simulations based on density functional theory (DFT) and molecular dynamics (MD) showed a parallel orientation of DMF towards graphene, favoring π–π stacking and contributing to the modification of the Raman spectra. Furthermore, a local order of DMF molecules around graphene was observed suggesting that both this special kind of interaction and the induced local order may contribute to the enhancement of the thermal properties of the fluid. Similar studies were also performed in graphene-N-methyl-2-pyrrolidinone nanofluids, however, no modification of the thermal conductivity or the Raman spectra was observed. All these observations together suggest that there is a correlation between the modification of the vibrational spectra and the increase in the thermal conductivity of the nanofluids. In light of these results, the mechanisms suggested in the literature to explain the enhancement of thermal conductivity in nanofluids were discussed and some of them were discarded. The second line of research focused on the development and characterization of novel molten salts formulations with low-melting temperature and high thermal stability. In this regard, two novel formulations of six components based on nitrates with a melting temperature of 60-75 °C and a thermal stability up to ~ 500 °C were synthesized. Moreover, the complexity of the samples led to establish a series of experimental methods which are proposed for the melting temperature detection of these materials as an alternative to conventional calorimetry. These methods are Raman spectroscopy, three-omega technique, and optical transmission.
Blancafort, Jorquera Miquel. "Theoretical reaction and relaxation dynamics in superfluid helium nanodroplets". Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/668116.
Texto completoLes nanogotes d’heli superfluid (HeNDs) són matrius inerts i nanoreactors ideals a baixa temperatura (0.37 K). Això ha atret l’atenció de químics doncs permeten realitzar espectroscopia d’altra resolució, estudiar la reactivitat i sintetitzar en condicions especials. L’estudi teòric de la dinàmica de processos en HeND ha estat possible tan sols fa cinc anys i, tot i el seu interès, n’hi ha molt pocs estudis. L’objectiu d’aquesta tesi és contribuir a la recerca en aquesta àrea. El Capítol 1 descriu les propietats de l’heli, la història de la superfluïdesa i les propietats i aplicacions de les HeNDs. La teoria del funcional de la densitat (DFT) i l’extensió de la mateixa depenent del temps (TDDFT), els principals funcionals per HeNDs i els mètodes numèrics es presenten al Capítol 2. Els següents capítols contenen els estudis originals d’aquesta tesi. En el Capítol 3 s’investiga la captura de Ne en una HeND on l’àtom es tracta clàssicament. El mecanisme, els intercanvis d’energia i moment angular i la formació de vòrtexs s’han analitzat àmpliament. Aquest és el primer anàlisi rigorós de la influència del moment angular en la captura i formació de vòrtexs. El Capítol 4 descriu la formació de Ne2/Ne-Ne en HeND tractant ambdós àtoms clàssicament. El mecanisme, bescanvis d’energia i moment angular i formació de vòrtexs també s’han estudiat. És el segon estudi sobre reaccions bimoleculars en HeNDs. Els Capítols 3 i 4 complementen i amplien dues investigacions del nostre grup on els àtoms es van tractar quànticament amb moment angular zero. En els propers dos capítols es consideren les relaxacions rotacional i vibracional utilitzant enfocs quàntics híbrids. El Capítol 5 correspon al primer estudi teòric de la relaxació rotacional de molècules en HeNDs, i s’han considerat varis isòtops de H2 i excitacions inicials i mides de nanogota. El Capítol 6 detalla la influència de la separació energètica vibracional, interacció molècula-heli i mida de nanogota en la relaxació vibracional en HeNDs, agafant com a referència el sistema I2@(4He)100. És el primer cop que s’examina l’efecte d’aquestes propietats clau. Els Capítols 7 i 8 presenten les principals conclusions i un resum en català, respectivament.
Las nanogotas de helio superfluido (HeNDs) son matrices inertes y nanoreactores ideales a baja temperatura (0.37 K). Esto ha atraído a los químicos pues posibilitan realizar espectroscopia de alta resolución, así como estudiar de la reactividad y síntesis en condiciones especiales. La dinámica teórica de procesos en HeND ha sido posible tan sólo hace cinco años y, a pesar de su interés, todavía hay muy pocos estudios. Esta tesis pretende contribuir a la investigación en esta área. El Capítulo 1 describe las propiedades del helio, la superfluidez y las propiedades y aplicaciones de las HeNDs. La teoría del funcional de la densidad (DFT) y su extensión dependiente del tiempo (TDDFT), los principales funcionales para HeNDs y los métodos numéricos se presentan en el Capítulo 2. Los siguientes capítulos contienen los estudios originales de esta tesis. En el Capítulo 3 se investiga la captura de Ne en una HeND donde el átomo se trata clásicamente. El mecanismo microscópico, intercambios de energía y momento angular y formación de vórtices se han analizado ampliamente. Este es el primer análisis detallado de la influencia del momento angular en la captura y la formación de vórtices. El Capítulo 4 describe la formación de Ne2/Ne-Ne en HeND tratando ambos átomos clásicamente. El mecanismo, intercambios de energía y momento angular y formación de vórtices también se han estudiado. Los Capítulos 3 y 4 complementan y amplían dos investigaciones de nuestro grupo donde los átomos se trataron cuánticamente con momento angular cero. En los dos capítulos siguientes se estudian las relajaciones rotacional y vibracional utilizando enfoques cuánticos híbridos. El Capítulo 5 corresponde al primer estudio teórico de la relajación rotacional de moléculas en HeNDs, y se han considerando varios isótopos de H2, excitaciones iniciales y tamaños de nanogota. El Capítulo 6 detalla la influencia de la separación energética, interacción molécula-helio y tamaño de nanogota en la relajación vibracional en HeND, habiéndose tomando como referencia el sistema I2@(4He)100. Es la primera vez que se examina el efecto de estas propiedades clave en la dinámica. Los Capítulos 7 y 8 presentan las principales conclusiones y un resumen en catalán, respectivamente.
Hamze, Samah. "Graphene based nanofluids : development, characterization and application for heat and energy systems". Thesis, Rennes 1, 2020. http://www.theses.fr/2020REN1S010.
Texto completoIn our daily lives, the heat and energy transfer forms the basis of many industrial processes. The gradual depletion of fossil fuels leads to improving and optimizing the efficiency of these exchanges through new processes. To this end, the idea of improving the thermal performance of fluids in heat exchangers has been proposed forward to reduce the energy consumed for heat exchange. This idea is based on the introduction of solid nanoparticles, which have much greater thermal properties than heat-transfer fluids in the latter, obtaining a nanofluid. This introduction has the effect of increasing the thermal conductivity of the fluid but on the other hand causes an unfavorable increase in its viscosity, which results in an increase in pumping power. So a compromise has to be made between the stability, thermal conductivity and viscosity of nanofluids. In this study, few layer graphene based nanofluids and a commercial fluid, Tyfocor® LS, were prepared in the weight concentration range 0.05-0.5% using three different surfactants. A complete study on these nanofluids is presented, including the synthesis of the graphene sheets, the preparation of the nanofluids and the study of their stability, as well as the experimental evaluation of their thermo-physical properties as a function of the graphene concentration, the type of surfactant used and the temperature in the range 283.15-323.15 K. Finally, on the basis of these results and through a qualitative approach, the potential application of nanofluids in energy systems is determined in order to select the best candidate. The results showed a good improvement of the thermal performance compared to the base fluids in the tested temperature range and especially the nanofluid of the Pluronic® P-123 surfactant series with a mass concentration of 0.25%
Velínská, Kamila. "Využití nanofluidního směšování pro přípravu liposomálních nosičů značených gadoliniem pro kontrastní zobrazování magnetickou resonancí (MRI)". Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2017. http://www.nusl.cz/ntk/nusl-316164.
Texto completoBachir, Gladés. "Contribution à l'étude de la convection naturelle dans les nanofluides en configuration de Rayleigh-Bénard". Toulouse 3, 2010. http://thesesups.ups-tlse.fr/1054/.
Texto completoNanofluid is a new kind of fluid suspension consisting of uniformly dispersed and suspended nanometer-sized (<100nm) particles in base fluid. These fluid composites have attracted much attention since anomalously thermal properties were reported during at last decade. The influence of nanoparticles (Al2O3, CuO, Cu, Ag and Au) dispersed in base fluid on conductive and convection heat transfer in Rayleigh-Bénard configuration is studied. Instead of using the expression commonly found in the literature for specific heat capacity and thermal expansion coefficient, we used two relations that are in agreement with the laws of thermodynamics. It is shown that adding nanoparticles in a fluid decrease the Rayleigh number of nanofluid compared to base fluid and delays the onset of convection. Contrary to what is argued by many authors, we prove that the presence of nanoparticles in base fluid can reduce heat transfer instead of increasing it. The heat transfer is more important in a nanofluid than in base fluid only in the conductive regime and for the highest values of Rayleigh number
Meng, Huaiyu. "CMOS nanofluidics". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120374.
Texto completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 217-226).
Diagnostic tests are essential to medical practice. In vitro diagnostics is a market worth US$ 40-45 billion. Diagnostic tests are usually conducted in centralized laboratories, equipped with expensive instrumentation and staffed with trained personnel. An important part of clinical diagnosis involves protein and DNA sensing. Significant effort is made to make protein and DNA sensing more accessible and affordable, through micro and nano-technologies. However, typical commercial and academic devices for molecular sensing suffered needs for external equipment, high cost and large form factors. In this work, we propose a self-contained point-of-care platform based on complementary metal oxide semiconductor (CMOS). CMOS platform has the capability of pattern features at the scale of nanometers. Important electronic functions in bio-sensing, such as amplifiers, counters and drivers are routinely implemented in CMOS. With the introduction of photonic and nanofluidic functionalities in this thesis, a CMOS chip can potentially perform biomolecular sensing without the aid of external equipment, hence becoming true lab-on-chip devices. This thesis presents the methods developed to introduce nanofluidic and photonic devices in commercial CMOS chips. We first introduce a method to fabricate nanofluidic channels in CMOS by using the transistor gate polysilicon as a sacrificial layer. A nanochannel with critical dimension of 100nm and length of 200 [mu]m is fabricated. Actuation and separation of bio-molecules in the nanochannel with electrophoresis is demonstrated. We then incorporate avalanche photodiodes (APD) in CMOS. Additionally, a packaging method is introduced to work with CMOS chips with size of a few square millimeters. With components mentioned above, clinical applications, such as gene mapping for virus identification and protein separation for cancer diagnosis and monitoring, could potentially run on a chip without external equipment.
by Huaiyu Meng.
Ph. D.
Gravelle, Simon. "Nanofluidics : a theoretical and numerical investigation of fluid transport in nanochannels". Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10238.
Texto completoThis thesis discusses various situations linked to transport at the nanoscale. The first chapter is an introduction to nanofluidics, containing a review of characteristic lengths, forces, or phenomena existing at the nanoscale. The second chapter is a study of the impact of geometry on the hydrodynamic permeability of a nanopore. This study, inspired by the shape of aquaporins, suggests a possible optimisation of permeability for bi-conical channels. The third chapter is a study of capillary filing inside subnanometric carbon channels which highlights the importance of the disjoining pressure induced by the fluid structuring inside the nanochannel. The fourth chapter is a study of nanofluidic diode, a component known to mimic the behaviour of semiconductor diode. The study highlights a strong coupling between water and ion dynamics which leads to a water flow rectification inside the diode. The fifth and last chapter is a study of the origin of commonly observed pink noise (1=f) in ionic current measurements through nanopores
Cunha, Alex Pereira da. "A method for measuring contact angle and influence of surface fluid parameters on the boiling heat transfer performance /". Ilha Solteira, 2019. http://hdl.handle.net/11449/183048.
Texto completoResumo: O avanço de novas tecnologias, associado à minimização dos custos de fabricação e instala-ção, constitui um grande desafio para a área de refrigeração, uma vez que a geração de calor tem aumentado gradativamente nos últimos anos. Assim, a busca de novos fluidos com pro-priedades térmicas superiores aos comumente usados tornou-se indispensável para melhorar a eficiência energética. Nas últimas décadas os nanofluidos - dispersões de partículas de escala nanométrica (1 a 100nm) em um fluido-base - têm atraído especial interesse não somente da comunidade acadêmica, mas também da indústria em áreas como: a microeletrônica, microflu-ídica, transporte, manufatura, assistência médica, entre outras. O melhor desempenho térmico e a vasta gama de aplicações fazem dos nanofluidos potenciais substitutos dos refrigerantes utilizados em diversos segmentos da engenharia. Dentro desse contexto, o presente trabalho teve como objetivos: o estudo teórico e experimental da influência das propriedades termofísi-cas e concentração de nanofluidos, bem como, das características geométricas da superfície aquecedora sobre o ângulo de contato e a molhabilidade. Também, atenção foi dada à prepa-ração e caracterização dos nanofluidos (Al2O3-água e Fe2O3-água), por meio da análise expe-rimental da condutividade térmica e da viscosidade dinâmica para diferentes concentrações; uma bancada experimental, para aquisição de imagens de gota séssil, foi construída a fim de viabilizar as análises de ângulo de conta... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: The advance of new technologies, associated to the minimization of manufacturing and installation costs, presents a great challenge for the refrigeration area, since the heat generation has increased in recent years. Thus, the search for new fluids with thermal properties higher than those commonly used has become indispensable to improve energy efficiency. In recent decades, nanofluids-dispersions of nanometer-scale particles (1 to 100 nm) in a base fluid - have attracted special interest not only from the academic community but also from industry in areas such as microelectronics, microfluidics, transport, manufacturing, medical assistance, among others. In this context, the present work had the following goals: the theoretical and experimental study of the influence of thermophysical properties and nanofluid concentration, as well as the geometric characteristics of the heating surface on the contact angle and wetta-bility. Attention was also given to the preparation and characterization of nanofluids (Al2O3-water and Fe2O3-water) by the experimental analysis of thermal conductivity and dynamic viscosity for different concentrations; an experimental apparatus for the acquisition of sessile droplet images was designed in order to analyze the contact angle and wettability; and a computational routine was developed to obtain the drop profile and the surface-fluid interaction for the different nanofluids and surfaces used. Based on database, it was possible to evaluate the pre... (Complete abstract click electronic access below)
Doutor
Moreira, Tiago Augusto. "Análise experimental da influência da adição de nanopartículas a água no coeficiente de transferência de calor para escoamentos monofásicos e ebulição convectiva em microcanais". Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/18/18147/tde-10032017-091729/.
Texto completoMicrochannels based heat exchangers were introduced as a solution to high heat flux removal in restrict spaces due to their high heat transfer coefficients compared to heat exchangers based on conventional channels. The high ratio of surface are per volume is an additional advantage to microchannels in relation to conventional channels. Beside the microchannels technology, the nanofluids also present itself as a technique with potential to increase the heat transfer coefficient. Nanofluids consist of a solution containing nanoparticles dispersed in a base fluid with the goal to improve its thermodynamic and transport properties. In this context, the objective of the present study is to evaluate the heat transfer coefficient for single-phase flow and convective boiling of aqueous nanofluids inside microchannels. Experiments were performed for channels with internal diameter of 1.1mm and 200 mm long for DI-water, nanofluids containing alumina- (nanoparticles diameters of 20-30 and 40-80 nm), silicon dioxide (nanoparticles diameters of 15 and 80 nm), and copper (nanoparticles diameter of 25 nm). These solutions were evaluated for volumetric concentrations of 0.001, 0.01 and 0.1%, mass velocities of 200, 400 and 600 kg/m2s and heat fluxes from 20 to 350 kW/m2. The analysis of the results revealed that the addition of nanoparticles to DI-water causes an increment in the Nusselt number for single phase flows, especially at the inlet of the tube. The results for flow boiling indicated that the effects of adding nanoparticles to the base fluid are related to the deposition on the heating surface of a nanoparticles porous layer due to the boiling process. The deposition of nanoparticles smaller than 30 nm promoted a reduction of the heat transfer coefficient compared to DI-water on a clean surface, and thermal instabilities were minimized. For the deposition of nanoparticles larger than 40 nm these parameters did not presented significant variations in comparison to DI-water. A combined analysis of the surfaces finishing and the criterion of Kandlikar et al. (1997) for bubble nucleation revealed that such behaviors are correlated to the effects of the surface texture associated to the boiling process on the density of active nucleation cavities.
Stout, John Michael. "Nanofluidic Applications of Silica Membranes". BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/7040.
Texto completoFilho, Erivelto dos Santos. "Avaliação da molhabilidade e das texturas de superfícies nanoestruturadas através da ebulição em piscina de nanofluidos". Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/18/18147/tde-25022019-220332/.
Texto completoThe present study concerns an investigation on the wettability and the surface texture behavior of flat aluminum and stainless steel plates covered with porous thin-films of nanoparticles obtained through pool boiling of nanofluids. Since the contact angle of the obtained surfaces is small and in many cases the deposited droplet exhibits a dynamic behavior, dynamic top-down analyses of spreading droplets were performed. Evaluations were performed of nanoparticles mass deposition on the sample, surface roughness and micro-structural with an SEM (Scanning Electron Microscopy). Experiments were performed for nanofluids containing nanoparticles of Al2O3 (10, 20-30 and 40-80 nm), Cu (25nm) and SiO2 (15 and 80 nm) for volumetric concentrations of 0.001, 0.01, 0.1 and 0.5% for pool boiling time set to 15, 30, 45 and 180 minutes over aluminum and stainless steel plates. As a final result of this study it was found that surface roughness and wettability increase with the deposition of the nanoparticles. In addition, the wettability increases with increasing of the surface area covered with clusters.
Hamblin, Mark Noble. "Thin Film Microfluidic and Nanofluidic Devices". BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2281.
Texto completoLe, Coguic Arnaud. "Gate potential control of nanofluidic devices". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33850.
Texto completoIncludes bibliographical references (p. 101-106).
The effect of an external gate potential control on the nanofluidic nanochannels was experimentally investigated in this work. Like in the field effect transistors (FET) in microelectronics, molecular transport in micro/nanofluidic channels can be controlled by applying external potentials on the wall of the fluidic channel. In nanofluidic devices, this type of control is expected to be more efficient due to its high surface to charge ratio. We focused on a nanofluidic concentrator to study this effect. We could increase or decrease the concentration rate of the device by increasing or decreasing the surface charge potential (-potential) on the walls of the nanochannels. An increased -potential enhances the electrokinetic effects caused by electrical double layer. Which in turn accelerates the creation of a charge polarization region and improves the concentration capabilities of the device. We also have demonstrated concentration polarization effect, caused by pressure-driven flow in the nanofluidic channel, and showed that this phenomena can also be modulated by changing the gate potential of the nanofluidic devices. The gate potential effect opens the door for closed-loop real-time control of nanofluidic concentrators.
by Arnaud Le Coguic.
S.M.
Chou, I.-Hsien. "Nanofluidic biosensing for beta-amyloid detection". [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-2439.
Texto completoWang, Mengyi S. M. Massachusetts Institute of Technology. "Multiscale computational modeling of nanofluidic transport". Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/128996.
Texto completoCataloged from student-submitted PDF of thesis.
Includes bibliographical references (pages 56-61).
Water scarcity is one of the largest global challenges, affecting two-thirds of the world population. Water desalination and purification technologies, such as novel membrane processes and materials, are in great demand to produce clean water from contaminated sources or the sea. However, the lack of fundamental understanding of structure-property-performance has hindered the advancement of these techniques. In this study, we address this critical knowledge gap by adapting multiscale computational modeling to better understand the mechanisms of intrinsic molecular interaction in nanofluidic applications. We performed ab initio molecular dynamics to study the nanoscale solvation behavior of selected ions on finite graphene models. The degree of charge transfer between ion and water, and the effect of defects on dynamics and solvation has been investigated. Furthermore, a quantum mechanics/molecular mechanics (QM/MM) model for the accurate description of free energy changes in ion adsorption process has been developed. Lastly, we combined classical molecular dynamics and density functional theory (DFT) to elucidate the dielectric-driven mechanism of ionization behavior in nanoporous polyamide films. We seek to utilize this knowledge for the design of next-generation membranes for separation and water purification.
by Mengyi Wang.
S.M.
S.M. Massachusetts Institute of Technology, Department of Materials Science and Engineering
Mebrouk, Ridha. "Étude paramétrique des échanges convectifs turbulents dans les configurations d’intérêt pratique". Thesis, Reims, 2017. http://www.theses.fr/2017REIMS036/document.
Texto completoThis thesis presents the results of two studies: the first concerns natural turbulent convection in a rectangular cavity heated from the bottom wall and filled with a nanofluid and the second relates to the investigation of conjugate heat transfer in a fin-and-tube heat exchanger.The cavity of the first study is tall and has a heat source embedded on its bottom wall, while its left, right and top walls are maintained at a relatively low temperature. The working fluid is a water based nanofluid having three nanoparticle types: alumina, copper and copper oxide. The influence of pertinent parameters such as the Rayleigh number, the type of nanofluid and solid volume fraction of nanoparticles on the cooling performance is studied. Steady forms of twodimensional Reynolds-Averaged-Navier-Stokes equations and conservation equations of mass and energy, coupled with the Boussinesq approximation, are solved by the volume control based on the discretisation method employing the SIMPLE algorithm for pressure-velocity coupling. Turbulence is modeled by using the standard k-epsilon model. The Rayleigh number, Ra, is varied from 2.49xE09 to 2.49xE11. The volume fractions of nanoparticles where varied too. Stream lines, isotherms, velocity profiles and temperature profiles are presented for various combinations of Ra, the type of nanofluid and solid volume fraction of nanoparticles. The results are reported in the form of average Nusselt number on the heated wall. It is shown that for all values of Ra, the average heat transfer rate from the heat source increases almost linearly and monotonically as the solid volume fraction increases. Finally the average heat transfer rate takes on values that decrease according to the ordering Cu, CuO and Al2O3.In the second study We determined the heat transfer and friction characteristics of a realistic fin-and-tube heat exchanger. The computations assume steady-state heat transfer and fluid flow. Nusselt number and friction factor characteristics of the heat exchanger are presented for various values of Reynolds numbers. The energy conservation and the heat conduction equations in 3 dimensions have been solved in the fluid and the solid respectivelyalong with the mass and momentum conservation equations in order to determine these characteristics. Both laminar and turbulent flow regimes are considered. The effect of turbulence modeling was investigated using three different models (the one equation Spalart-Allmaras turbulence model, the standard k-epsilon; model and the RSM model). The computations allowed the determination of the dynamic and thermal fields. Model validation was carried out by comparing the calculated friction factor f and Colburn j-factor to experimental results found in the literature. The plotted results showed a qualitatively good agreement between numerical results and experimental data. The results obtained also showed that the simplest of the three turbulence models tested(i.e. Spalart-Allmaras) gives the closest values to the experimental data
Mondragón, Cazorla Rosa. "Estudio de la cinética de secado de gotas de nanofluidos, y caracterización microestructural y mecánica de los gránulos obtenidos". Doctoral thesis, Universitat Jaume I, 2013. http://hdl.handle.net/10803/664050.
Texto completoThe spray drying process is present in numerous industrial applications. A field of special interest, in which said process is used, is the obtaining of nanostructured granules from nano-sized raw materials. In this work, a study of the drying process of nanofluid droplets has been carried out in an acoustic levitator. The study has been extended to the drying of suspension droplets containing mixtures of nanoparticles and microparticles. The influence of the variables of interest on the kinetics of drying, the packing of the particles inside the granule, its internal microstructure and its mechanical resistance has been analyzed and modeled. Finally, the results obtained in the drying of individual droplets in the acoustic levitator have been validated at pilot plant scale by spray drying of different suspensions.
Motta, Franciane de Campos. "Caracterização da condutividade térmica, viscosidade dinâmica e ângulo de contato para nanofluidos baseados em partículas de alumina-gama em água". Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/18/18147/tde-20062012-161828/.
Texto completoThe present study concerns the characterization of thermodynamic and transport properties of nanofluids based on alumina nanoparticles in deionized water. Stable suspensions were obtained using an ultrasonic homogenizer (Sonicator). The following properties were measured: i) thermal conductivity using the linear probe method, ii) dynamic viscosity through a cone-plate rheometer iii) contact angle, based on photographic of nanofluid drops on a flat surface and image processing through a program based on LabVIEW. The methods and experimental procedures were validated by performing measurements properties of pure fluids with well known characteristics. Besides the experimental study, it was performed a comprehensive literature review on thermal conductivity and dynamic viscosity of nanofluids. Experimental results were compared against the data from the literature and the respective predictive methods developed for suspensions of nanofluids and micro solid particles in liquid. Generally speaking, the nanofluid thermal conductivity and dynamic viscosity measured in the present study were higher than the empirical values from the literature and the values given by predictive methods. However, it should be highlighted that although for different compositions of nanofluids behaviors similar to the one observed in this study are also reported in the literature. In case of contact angle, it was found that its value decreases with increasing the nanoparticle volumetric concentration. Such results is coincident with literature reports according to which the nanofluid wettability, given in terms of the contact angle, increases with increasing the nanoparticle concentration.
Kiyomura, Igor Seicho [UNESP]. "Efeito das superfícies nano e micro estruturadas sobre a ebulição nucleada". Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/143876.
Texto completoApproved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-09-14T19:13:44Z (GMT) No. of bitstreams: 1 kiyomura_is_me_ilha.pdf: 3224196 bytes, checksum: d71f4ad45145d3dc7f441a0090d3b373 (MD5)
Made available in DSpace on 2016-09-14T19:13:44Z (GMT). No. of bitstreams: 1 kiyomura_is_me_ilha.pdf: 3224196 bytes, checksum: d71f4ad45145d3dc7f441a0090d3b373 (MD5) Previous issue date: 2016-07-29
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Nas últimas décadas surgiu a necessidade de dissipar maiores quantidades de energia térmica, fato que acarretou no aumento do número de estudos em ebulição nucleada e convectiva com o objetivo de produzir trocadores de calor cada vez mais eficientes e compactos. A busca de produtos cada vez mais eficientes e compactos e a procura de novas técnicas para melhorar a transferência de calor, garantindo a integridade física do equipamento, continuam crescendo e a tendência é que continuará assim nos próximos anos. Uma das técnicas que está sendo amplamente pesquisada na comunidade cientifica é o uso de nanofluidos. Os nanofluidos foram desenvolvidos com o intuito de melhorar a condutividade e a difusividade térmica em relação aos fluidos tradicionais. Muitos experimentos com nanofluidos têm sido desenvolvidos nos últimos anos, mas ainda existem muitas divergências a respeito do efeito desses fluidos sobre o fenômeno de ebulição. Dentro deste contexto, o presente trabalho tem como objetivo a análise teórico-experimental do efeito de superfícies nanoestruturadas e da concentração do nanofluido, a ser depositado sobre a superfície aquecedora, sobre o coeficiente de transferência de calor em regime de ebulição nucleada. Para tanto, testes foram realizados para fluxos de calor que correspondem ao regime de ebulição nucleada da água deionizada, à temperatura de saturação (Tsat = 99 °C) e à pressão atmosférica (patm = 98 kPa), sobre superfícies aquecedoras de cobre com diferentes rugosidades. As superfícies nanoestruturadas foram produzidas por deposição de nanopartículas de maguemita, por meio do processo de ebulição da solução Fe2O3-água deionizada para diferentes concentrações mássicas previamente estabelecidas. As superfícies foram submetidas a ensaios metalográficos, de molhabilidade e de rugosidade permitindo a avaliação das modificações estruturais, topográficas e químicas das superfícies, antes e após os testes no regime de ebulição nucleada. Os resultados para o coeficiente de transferência de calor foram relacionados com as características geométricas e morfológicas das superfícies de teste, levando em consideração os aspectos relacionados à interação fluido/superfície, como, o ângulo de contato e a molhabilidade.
In the last decade, the necessity to dissipate large quantities of heat energy increased, thus leading to an increase on the number of studies in nucleate pool boiling and flow boiling with the aim of producing more compact and efficient heat exchangers. The search for increasingly efficient and compact products and for new techniques to improve the heat transfer, ensuring the physical integrity of the equipment, keep growing and it will remain so in the next years. One of the techniques being widely researched in the scientific community is the use of nanofluids. The nanofluids have been developed in order to improve the thermal conductivity and diffusivity compared to traditional fluids. Although many experiments with nanofluids have been developed in recent years, there are still many differences related to the effects of these fluids on the pool boiling phenomenon. In this context, this work aims to analyze the effects of nanostructured surfaces and different nanofluid concentrations, which are deposited on the heating surface, on the heat transfer coefficient during the nucleate boiling regime. Therefore, tests were performed to heat fluxes values corresponding to the nucleate boiling regime for deionized water, at saturation temperature (Tsat = 99 °C) and atmospheric pressure (patm = 98 kPa), on copper heating surfaces with different roughness values. The nanostructured surfaces were produced by maghemite nanoparticle deposition, which is achieved by boiling selected mass concentrations of a Fe2O3-deionized water nanofluid. Prior and after each boiling test, the characteristics of the test surfaces were evaluated by applying the metallographic, wettability and surface roughness tests. The results for the heat transfer coefficient were related to the geometrical and morphological characteristics of the test surfaces, taking into account the aspects of the flu-id/surface interaction such as, the contact angle and wettability.
FAPESP: 2014/07949-9
Kiyomura, Igor Seicho. "Efeito das superfícies nano e micro estruturadas sobre a ebulição nucleada /". Ilha Solteira, 2016. http://hdl.handle.net/11449/143876.
Texto completoResumo: Nas últimas décadas surgiu a necessidade de dissipar maiores quantidades de energiatérmica, fato que acarretou no aumento do número de estudos em ebulição nucleada e convectivacom o objetivo de produzir trocadores de calor cada vez mais eficientes e compactos. Abusca de produtos cada vez mais eficientes e compactos e a procura de novas técnicas paramelhorar a transferência de calor, garantindo a integridade física do equipamento, continuamcrescendo e a tendência é que continuará assim nos próximos anos. Uma das técnicas que estásendo amplamente pesquisada na comunidade cientifica é o uso de nanofluidos. Os nanofluidosforam desenvolvidos com o intuito de melhorar a condutividade e a difusividade térmicaem relação aos fluidos tradicionais. Muitos experimentos com nanofluidos têm sido desenvolvidosnos últimos anos, mas ainda existem muitas divergências a respeito do efeito dessesfluidos sobre o fenômeno de ebulição. Dentro deste contexto, o presente trabalho tem comoobjetivo a análise teórico-experimental do efeito de superfícies nanoestruturadas e da concentraçãodo nanofluido, a ser depositado sobre a superfície aquecedora, sobre o coeficiente detransferência de calor em regime de ebulição nucleada. Para tanto, testes foram realizadospara fluxos de calor que correspondem ao regime de ebulição nucleada da água deionizada, àtemperatura de saturação (Tsat = 99 °C) e à pressão atmosférica (patm = 98 kPa), sobre superfíciesaquecedoras de cobre com dif... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: In the last decade, the necessity to dissipate large quantities of heat energy increased,thus leading to an increase on the number of studies in nucleate pool boiling and flow boilingwith the aim of producing more compact and efficient heat exchangers. The search for increasinglyefficient and compact products and for new techniques to improve the heat transfer,ensuring the physical integrity of the equipment, keep growing and it will remain so in thenext years. One of the techniques being widely researched in the scientific community is theuse of nanofluids. The nanofluids have been developed in order to improve the thermal conductivityand diffusivity compared to traditional fluids. Although many experiments withnanofluids have been developed in recent years, there are still many differences related to theeffects of these fluids on the pool boiling phenomenon. In this context, this work aims to analyzethe effects of nanostructured surfaces and different nanofluid concentrations, which aredeposited on the heating surface, on the heat transfer coefficient during the nucleate boilingregime. Therefore, tests were performed to heat fluxes values corresponding to the nucleateboiling regime for deionized water, at saturation temperature (Tsat = 99 °C) and atmosphericpressure (patm = 98 kPa), on copper heating surfaces with different roughness values. Thenanostructured surfaces were produced by maghemite nanoparticle deposition, which isachieved by boi... (Complete abstract click electronic access below)
Mestre
Cacheux, Jean. "Développement d'un système autonome de détection et de quantification des microARNs avec une plateforme nanofluidique pour la prise en charge du cancer du pancréas". Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30152/document.
Texto completo85% of patients affected by pancreatic adenocarcinoma (PDA) are diagnosed at an advanced stage, preventing effective care and curative treatments. Therefore, it is urgent to identify reliable biomarkers for the early detection of disease status, including relapse. MiRNAs (micro ribonucleic acids) are biomarkers of PDA, with demonstrated clinical value for early detection of tumors and monitoring of response to treatment. However, current methods of extraction and detection of miRNA are not compatible with clinical use. New technologies derived from micro and nanofabrication methods have the potential to facilitate the implementation of diagnostic tests, by offering a high degree of portability and robustness, short time to results at low cost. Here, we propose a nanofluidic platform coupled to fluorescence detection for the real time measurement of molecular interactions in a confined environment. We first describe the detection platform via a one-dimension theoretical model based on molecular dynamics to predict the capture of miRNAs into biofunctionalized nanochannels. The originality of the system lies in the non-homogeneous hybridization of miRNA targets onto the sensor. We demonstrate that the analysis of the spatial hybridization profile enables the determination of the affinity of the captured miRNA with the probe sequence in a wash-free single step. We then show the rapid discrimination (less than 10 minutes) of single nucleotide difference (SND) using this strategy. The performance of the device in the context of pancreatic cancer detection is discussed: the effect of sample preparation of complex biofluids is studied and two labeling approaches compatible with the detection of endogenous miRNAs are described and compared, leading to the detection of miRNAs extracted from model cell cultures of pancreatic cancer
Bento, André Ricardo Alves da Fonseca. "Caraterização termofísica de nanofluidos". Master's thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/19109.
Texto completoEm resposta à carência social de soluções sustentáveis, a comunidade científica iniciou o estudo acerca dos nanofluidos devido ao seu potencial em sistemas de transferência de calor, relacionada com o aumemto da condutividade térmica dos mesmos, quando comparada com a dos fluidos base, que resultará na miniaturização das soluções tornando-as mais eficientes e menos carentes de recursos naturais. As propriedades de transferência de calor destes fluidos, como a condutividade térmica tem sido alvo de inúmeros estudos ao invés de outras propriedadades termofísicas, como por exemplo a densidade, que têm ficado por estudar e assim, possivelemte uma das razões que podem explicar a baixa aplicação dos nanofluidos na indústria. No âmbito deste trabalho, estudou-se empíricamente o comportamento da densidade de nanofluidos de base aquosa com nanotubos de carbono de parede múltipla e assim avaliar as previões resultantes do único modelo físico para o efeito, o modelo de Pak e Cho. Para a concretização deste estudo, são apresentadas metodologias rigorosas e reprodutíveis para a produção deste tipo de nanofluidos, bem como os métodos mais importantes para a aferição da sua estabilidade coloidal, assegurando assim o rigor da sua produção. Após a obtenção dos nanofluidos estáveis, realizou-se uma análise comparativa conducente a uma base de dados obtida experimentalmente que visa quantificar a influência relativa dos distintos fatores de controlo no modelo preditivo para a densidade existente. Os fatores de controlo alvo de análise são: temperatura, fluido base, geometria da nanopartícula (relação diêmetro - comprimento) e concentração volúmica das nanopartículas. Assim, após a aquisição de uma base de dados de confiança e da quantificação do desvio em relação à literatura, induzido por combinações de fatores de controlo, desenvolveu-se e validou-se um modelo físico-matemático, que possibilitará a previsão mais acertada da densidade para este tipo de nanofluidos.
Looking forward for social needs and environmentally sustainable solutions, the scientific community began the study of nanofluid properties, mainly due to it high potential in heat transfer systems, as the carbon tubes present high thermal conductivity that will pave the road to device miniaturization, with concomitant gain of efficiency and less demanding in terms of consumption of natural resources. The heat transfer properties of the carbon nanotubes based nanofluids, in parallel with it thermal conductivity was been studied in detail, however, other thermophysical properties, such as density lacks for a detailed analysis that precludes the dissemination of the nanofluids in the industrial context. In this work, one makes the empirical study the of water-based multi-walled carbon nanofluids’ density, that were compared using the single physical model to the effect, the Pak and Cho model. To implement the study, rigorous and reproducible methodologies to produce and test the colloidal stability, thus ensuring its rigorous production, are presented. After the production of stable nanofluids, a comparative analysis was made looking ahead to the construction of an experimental database that intends to quantify the relative role of distinct control factors according to the existing predictive model such as temperature, base fluid, nanoparticle’s geometry and concentration. Thus, after the acquisition of a reliable database and quantification of deviations in comparison to the literature results, induced by the control factors combination, a physic and mathematical model was developed and validated, that will ensure the future determination of the density of the kind of nanofluids studied with improved accuracy.
Afonso, Luís Pedro Martins. "Modelos reológicos de nanofluidos". Master's thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/15382.
Texto completoA transferência de energia sob a forma de calor é um processo essencial ao funcionamento de uma enorme variedade de equipamentos e indústrias, desde a eletrónica à automóvel. Com o desenvolvimento da nanotecnologia das últimas décadas, várias inovações têm surgido, como é o caso dos nanofluidos. Estas suspensões de nanopartículas em fluidos de permuta, como a água e o etilenoglicol, têm sido consideradas como uma nova classe de fluidos de permuta, com propriedades térmicas superiores relativamente aos fluidos convencionais. A elevada razão de aspeto dos nanotubos de carbono (CNTs) associado ao progresso em técnicas de dispersão, proporcionou o desenvolvimento destas suspensões estáveis e de elevado desempenho térmico. O principal objetivo desta dissertação prende-se com o estudo do comportamento reológico de nanofluidos à base de CNTs. Desta forma, e utilizando para o efeito medições de viscosidade realizadas por investigadores do GRIDS-DIMOULD do Departamento de Engenharia Mecânica da Universidade de Aveiro), foi assim possível relacionar a viscosidade dos nanofluidos com diferentes variáveis, tais como a temperatura, taxa de corte, concentração e geometria dos CNT e fluidos base. A comparação dos resultados obtidos experimentalmente com previsões postuladas pelos modelos reológicos existentes na literatura são assim objeto de estudo detalhado nesta dissertação, Com este trabalho foi possível estabelecer os limites de validade e aplicabilidade dos modelos existentes, para os nanofluidos em estudo, evidenciando os trabalhos futuros que permitirão desmitificar algumas das dúvidas que ainda persistem na previsão.
The transfer of energy in the form of heat is an essential process for the operation of a wide variety of equipment and industries ranging from electronics to automotive. With the development of nanotechnology the last decades, various innovations have emerged, such as the nanofluids. These suspensions of nanoparticles in exchange fluids, such as water and ethylene glycol have been considered as a novel class of fluid exchange with superior thermal properties relative to conventional fluids. The high aspect ratio of carbon nanotubes (CNTs) associated with the progress scattering techniques, provided the development of these stable suspensions and high thermal performance. The main objective of this work relates to the study of the rheological behavior of CNT nanofluids. In this way, and based on viscosity measurements carried out by researchers of GRIDS-DIMOULD at the Mechanical Engineering Department of the University of Aveiro, it was it possible to relate the viscosity of nanofluids with different variables such as temperature, shear rate, concentration and geometry of the CNT and base fluids. The comparison of the results obtained experimentally was established with data predicted by the existing rheological models in the literature. The validity of the latter were therefore detailed studied during this dissertation, and the need for further work was assessed and discussed in order to identify the means to properly derive a generalized rheological model for CNT nanofluids.
Davenport, Matthew W. "Synthetic Nanopores| Biological Analogues and Nanofluidic Devices". Thesis, University of California, Irvine, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3565849.
Texto completoNanoscopic pores in biological systems – cells, for example – are responsible for regulating the transport of ionic and molecular species between physiologically distinct compartments maintained by thin plasma membranes. These biological pores are proteinaceous structures: long, contorted chains of chemical building blocks called amino acids. Protein pores have evolved to span a staggering range of shapes, sizes and chemical properties, each crucial to a pore's unique functionality.
Protein pores have extremely well-defined jobs. For instance, pores called ion channels only transport ions. Within this family, there are pores designated to selectively transport specific ions, such as sodium channels for sodium, chloride channels for chloride and so on. Further subdivisions exist within each type of ion channel, resulting in a pantheon of specialized proteins pores.
Specificity and selectivity are bestowed upon a pore through its unique incorporation and arrangement of its amino acids, which in turn have their own unique chemical and physical properties. With hundreds of task-specific pores, deciphering the precise relationship between form and function in these protein channels is a critical, but daunting task. In this thesis, we examine an alternative for probing the fundamental mechanisms responsible for transport on the nanoscale.
Solid-state membranes offer well-defined structural surrogates to directly address the science underlying pore functionality. Numerous protein pores rely on electronic interactions, size exclusion principles and hydrophobic effects to fulfill their duties, regardless of their amino acid sequence. Substituting an engineered and well-characterized pore, we strive to achieve and, thus, understand the hallmarks of biological pore function: analyte recognition and selective transport.
While we restrict our study to only two readily available membrane materials – one a polymer and the other a ceramic – nanofabrication techniques give us access to a virtually limitless combination of pore shapes and sizes. Exploiting this, we investigate the role of pore geometry in mediating the electrostatic and steric interactions responsible for transport on the nanoscale. Through targeted chemical modifications of our homogenous pores, we easily tailor their surface properties to investigate the role of hydrophobic effects in confined environments. Unbound by the physiological limitations of protein structures (such as sensitivity to electrolyte composition and fragility to external forces), our report concludes with the fusion of fabrication and modification considerations to design robust components for nanofluidic circuitry and nanoscopic biosensors.
Ceratti, Davide Raffaele. "Viability of nanoporous films for nanofluidic applications". Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066482/document.
Texto completoThis thesis had a dual purpose: i) the development of nanofluidic devices through not lithographic, cheap and scalable bottom-up approach ii) the understanding of nanofluidic phenomena both through experiments and simulations. Mesoporous thin films, in particular Pillared Planar Nanochannels (PPNs), were prepared and utilized to study the capillary infiltration of liquids in nanostructures and have been tested for future nanofluidic applications like separations and nanoconfined reactions. Non organized mesoporous films have also been studied to determine the relationship between nanostructure characteristics and infiltration speed. It has been also demonstrated that in the case of porosities with reduced bottle-necks capillary penetration is performed through a vapor mediated mechanism The samples were prepared by dip-coating. A novel method of preparation based on the substitution of a large part of the deposing solution in dip-coating with an inert fluid has been developed in order to strongly reduce the fabrication costs and allow the preparation of larger samples. Moreover advancement in control of the dip-coating technique in “acceleration-mode” to produce thickness gradients has been developed and some potential application linked to fluidics shown. Finally a part of the effort of this thesis has been placed in the modeling of the electro-osmotic phenomenon in nanostructures through a rather novel simulation method, Stochastic Rotational Dynamics, which takes into account the hydrodynamics and the other interactions inside a nanofluidic system. Validations of the method and further investigations in particular nanofluidic conditions have been performed
Stephenson, David. "Design and simulation of nanofluidic branching betworks". Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/74103/.
Texto completoSempere, Catherine. "Nanofluidic insight into energy harvesting and desalination". Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10200/document.
Texto completoThe first part of this thesis is an introduction to the different energy conversion and desalination methods that will be invoked in this work. In a second part, we show that the ionic conductance of a nanopore array is sub-additive with the number of pores. Individal contributions of each pore to the global conductance tend to a null value, if the network is big enough. We note that this phenomenon only involves length ratios, and that working at a nanometric scale does not have any influence. Then, in a third part, we measure the permeability of a pore array at a macroscopic scale. There too, the effect of the array does not depend on the scale of the system. Permeability evolves inversely to conductance: permeability is enhanced by the presence of neighboring pores, but in a smaller proportion than the ionic conductance falls under the same cause. The fourth part uses the results of the two preceding ones, to determine a scaling law for the electric power produced by streaming current and diffusio-osmosis, two methods of osmotic energy conversion. We show that entrance effects have a negative impact on such conversion, more efforts are needed to understand them better and circumvent them. The fifth and last part of this thesis is a numerical work on a new desalination device. It relies on osmosis through a gas phase which is trapped within a hydrophobic nanotube. Its main interest is to use nanotubes bigger than the pores of currently used materials, thus less prone to fouling. We use molecular dynamics methods to study the permeability and selectivity of this device
Gimeno, Furió Alexandra. "On the use of nanofluids to enhance the direct absorption of solar radiation". Doctoral thesis, Universitat Jaume I, 2019. http://hdl.handle.net/10803/666638.
Texto completoLa presente tesis trata de evaluar el potencial de los nanofluidos solares para absorber directamente la radiación solar e intentar generar vapor. Como el consumo de energía continúa aumentando y las fuentes de energía convencionales se están agotando, aparece como excelente alternativa, el uso de las energías renovables, concretamente, la energía solar térmica. Los sistemas actuales de energía solar térmica presentan numerosas pérdidas debido a los procesos de transferencia de calor, por ello, se han propuesto los nanofluidos solares como absorbedores de la radiación y fluidos de transferencia de calor y así, mejorar la eficiencia del proceso de generación de vapor en las centrales solares térmicas. En este trabajo, se ha realizado la caracterización de las propiedades ópticas de diferentes nanofluidos solares basados en nanopartículas de carbón para estudiar su idoneidad en la aplicación solar térmica.
Halelfadl, Salma. "Caractérisation des propriétés thermo-physiques et d’échanges de chaleur des nanofluides à base de nanotubes de carbone". Thesis, Rennes, INSA, 2014. http://www.theses.fr/2014ISAR0008/document.
Texto completoHeat transfer is one of the most important industrial processes in our daily lives. Nowadays, the intensification of the heat transfer and the improving of the energy efficiency have become a major problem in industry, regulatory agencies, and also the society that becomes conscious of the progressive exhaustion of the world’s energy resources and cares about the future of energy. Due to these energy and environmental issues, the technological challenge is to develop new processes for better energy management. This work fits in that context and applies particularly the problems associated to the improvements of heat exchanger’s energy efficiency. The conventional methods for increasing the heat transfer in heat exchangers have already been extensively explored and have reached their objective limits. There is therefore an urgent need for new strategies with improved performances. The novel concept of improving the thermal properties of the working fluids used in thermal system, especially in heat exchangers, has been proposed as a means of meeting these challenges. The innovative concept of nanofluids heat transfer fluids consisting of suspended of nanoparticles with very high thermal conductivities has been proposed for these challenges. The aim of this work is therefore to characterize profoundly the thermal and the rheological behavior of nanofluids containing carbon nanotubes CNTs used throughout of this work. This is in order to quantify the main parameters influencing their thermophysical properties and physical phenomena governing the intensification of heat transfer induced by these nanofluids. An analysis of previous researches has been conducted for the purpose of establishing various parameters that may influence the thermal and rheological behavior of nanofluids, which including the parameters related to the composition of nanofluids (volume fraction of CNTs, type of surfactant, aspect ratio of CNTs), the temperature, the base fluid... Following this study, experiments have been carried out on the thermal physical properties of tested nanofluids (thermal conductivity, dynamic viscosity, density) and thermal performances in a heat exchanger. Analyses of the results have been presented in order to study the influence of the abovementioned parameters. The results obtained are compared and discussed vis-à-vis the existing conventional models, suggesting improvements and interpretations according to the trends obtained. The promising results of this study are very encouraging and show that the use of nanofluids containing carbon nanotubes clearly improved the thermal performances compared to the conventional base fluids. The CNT-based nanofluids can thus be a promising candidate for heat transfer and presents good perspective and development
Pilkington, Georgia A. "Interactions in dendrimer nanofluids". Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.681484.
Texto completoJeyaraj, Ponmozhi. "Desenvolvimento e caracterização de nanofluidos". Master's thesis, Universidade de Aveiro, 2009. http://hdl.handle.net/10773/2492.
Texto completoÉ do conhecimento geral que a existência de fluidos com boa performance térmica é fundamental numa panóplia de sectores industriais, incluindo a produção de energia, indústria química, automóvel, entre outras. Contudo, são as limitações térmicas dos fluidos convencionais que comprometem a eficiência energética e, portanto a redução de tamanho, dos próprios permutadores de calor. De modo a melhorar a performance térmica dos fluidos convencionais, equaciona-se a adição de nanotubos de carbono (CNTs). Assim, com o este estudo, pretende-se contribuir para a redução significativa do tamanho, peso e custos envolvidos em sistemas de transferência de calor e, deste modo, contribuir efectivamente para a resolução de um dos maiores entraves actuais à miniaturização de equipamentos desta natureza. Neste estudo, variáveis como fracção volumétrica dos CNTs e temperatura do fluido são tidas em consideração. O nanofluido propriamente dito é obtido pela adição, a fluidos convencionais (neste caso, água) de nanotubos tratados quimicamente. A dispersão do nanotubo no fluido base, de modo a inferir homogeneidade, será garantida recorrendo a agitação por ultra-sons. A relação entre variáveis como viscosidade dinâmica, condutividade térmica, densidade e tensão superficial são, pois, objecto de estudo detalhado. ABSTRACT: The present proposal addresses the improvement of thermal characteristics of conventional fluids, having into account the great need for economy dematerialization and energy efficiency in industrial processes and systems, to achieve a higher level of environmental control and consequently a more sustainable development. Studying (and understanding) nanofluids, using available and innovative experimental and computational techniques, is the basis of the research towards the development of custom-designed nanofluids with enhanced properties and functions. Possible applications include more efficient cooling and heating in new and critical applications, like environment control, electronics, nuclear and biomedical instrumentation and equipment, transportation and industrial cooling, heat management, therefore promoting the eco design for energy efficiency. The heat transfer characteristics of conventional fluids obstruct their performance enhancement compromising both energy efficiency and compactness of heat exchangers. This work addresses the improvement of thermal characteristics of conventional fluids by the addition of specific nanoparticles (i.e. multiwalled carbon nanotubes, CNTs) in well defined concentrations, in order to obtain enhanced thermal properties of fluids for process intensification and device miniaturization. Thermal conductivity and rheological properties of nanofluids are studied.
Lopes, Cristiano Santos. "Estudo das propriedades fototérmicas de nanofluidos de prata". Universidade Estadual de Ponta Grossa, 2018. http://tede2.uepg.br/jspui/handle/prefix/2732.
Texto completoMade available in DSpace on 2019-02-12T15:41:23Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Cristiano Santos Lopes.pdf: 29539894 bytes, checksum: f1c58591825997b77f26dff47e244408 (MD5) Previous issue date: 2018-10-24
Os nanofluidos plasmônicos tem sido empregados em diversas aplicações nos mais variados campos, como por exemplo, fluidos de arrefecimento, coletores solares e agentes teranósticos. Dentro desta área, o entendimento da difusividade térmica é extremamente importante e as diversas técnicas que existem para a sua determinação podemoferecerresultados divergentes.O usodetécnicasfototérmicasapresentamuma grande sensibilidade para medir vários parâmetros dos nanofluidos. Neste trabalho, nanopartículasesféricasdepratacomtamanhomédiode32nmforamsintetizadaspelo métododeTurkevicherevestidascomosurfactantePolivinilpirrolidona(PVP).Medidas de índice de refração não linear e difusividade térmica de nanofluidos de prata foram realizadas por meio das técnicas de Z-Scan e Lente Térmica. Conseguimos obter uma relação entre o índice de refração com a frequência, e também da difusividade térmica com a concentração de nanopartículas. Estes resultados foram corroborados uma vez que a técnica utilizada neste trabalho foi replicada para a análise da difusidade térmica da água, cujo valor adquirido está de acordo com o valor já conhecido na literatura.
Plasmonic nanofluids have been used in several applications in many different fields, such as cooling fluids, solar collectors and theranostic agents. Related to this area, the understanding of thermal diusivity is extremely important and the various techniques that exist for its determination can offer divergent results. The use of photothermal techniques shows presents a great sensitivity to measure various parameters of nanoflu- ids. In this work, silver spherical nanoparticles with a average diameter of 32 nm were synthesized by the Turkevich method and coated with the surfactant Polyvinylpyrroli- done (PVP). Nonlinear refractive index and thermal diffusivity measurements of silver nanofluids were performed using the Z-Scan and Thermal Lens techniques.We obtained a relation that describe the dependence of the refractive index index of refraction with the frequency and also for of the thermal diffusivity with the nanoparticles concentration. These results were corroborated since the technique used in this work was replicated for the water thermal diffusion analysis, whose obtained value is in agreement with the expected literature value.
Tidy, Tiago Emanuel Ramos. "Modelling of volumetric solar receivers with nanoparticle suspensions". Master's thesis, Universidade de Évora, 2015. http://hdl.handle.net/10174/16213.
Texto completoFragelli, Renan Luis [UNESP]. "Análise da capacidade de refrigeração dos nanofluidos de prata e hematita com enfoque na aplicação prática em porta-ferramentas refrigerado internamente". Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/150017.
Texto completoApproved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-03-29T20:46:29Z (GMT) No. of bitstreams: 1 fragelli_rl_me_bauru.pdf: 5490064 bytes, checksum: 80c3b38563331cc9ef7e88ff192c5c8b (MD5)
Made available in DSpace on 2017-03-29T20:46:29Z (GMT). No. of bitstreams: 1 fragelli_rl_me_bauru.pdf: 5490064 bytes, checksum: 80c3b38563331cc9ef7e88ff192c5c8b (MD5) Previous issue date: 2017-03-16
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Este trabalho surgiu a partir da necessidade de produzir avanços em projeto que trata do desenvolvimento de um porta-ferramentas refrigerado internamente através de um fluido em mudança de fase e, na tentativa de minimizar a alta temperatura na ferramenta de corte através desse sistema de circulação. A utilização de nanofluidos surgiu como uma alternativa para a otimização da transferência térmica entre fluido e ferramenta de corte. A pesquisa consiste em avaliar a influência da adição de nanopartículas de prata numa solução de etilenoglicol e água deionizada, e também, da adição de nanopartículas de hematita (Fe2O3) no fluido refrigerante R141b. Em ambos os casos, as nanopartículas possuíam formato esférico, diâmetro médio de 30nm e foram avaliadas em concentrações. Além disso, as duas soluções foram submetidas a um campo elétrico na região de transferência térmica para analisar a influência do efeito eletrohidrodinâmico e, por fim, considerando as propriedades magnéticas da hematita, este nanofluido foi testado sob influência de um campo magnético. Os testes mostraram que as nanopartículas realmente influenciaram as propriedades dos fluidos e, por consequência, a quantidade de calor transferido. O nanofluido Ag/ETG+H2O(l) (0,023 vol%) resultou num incremento de 11% no valor do coeficiente de transferência térmica convectivo (h) quando sujeito ao campo elétrico. Para o caso do nanofluido Fe2O3/R141b, o valor de h aumentou em 30,3%, porém, quando sob efeito do campo magnético ou elétrico, o coeficiente foi prejudicado, resultando num valor menor que o do controle. Ao final, tem-se a proposta de um possível modelo desse porta-ferramentas.
This work arose from the need to produce advances in design development of an internally cooled toolholder through a phase change fluid. In order to minimize the high temperature in the cutting tool by this circulation system, using nanofluids emerged as an alternative to optimize heat transfer between the fluid and the cutting tool. The research consists in evaluate the influence of addition of silver nanoparticles in an ethylene glycol and deionized water solution, and also the addition of hematite nanoparticles (Fe2O3) in the refrigerant R141b. In both cases, nanoparticles had spherical shape, diameter of 30nm, and they were evaluated in different concentrations. Moreover, both nanofluids were subjected to an electric field in the heat transfer region to evaluate the influence of electrohydrodynamic effect and, finally, considering the magnetic properties of hematite, this nanofluid was tested under the influence of a magnetic field. The tests have shown that the nanoparticles really influence the properties of the fluids and, therefore, the amount of heat transferred. The nanofluid Ag/ETG+H2O(l) also presented a positive influence of the electric field, further enhancing the value of the convective heat transfer coefficient (h) in 11% (0,039 vol%). In the case of Fe2O3/R141b nanofluid, the h value increased 30.3%. However, when the nanofluid was under magnetic or electric effect, the value of h was deteriorated, resulting in a lesser value than the control. As conclusion, a new toolholder prototype is presented.
Asta, Adelchi Jacques. "Listening to the electrical noise for nanofluidic sensing". Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS444.
Texto completoMoving from microfluidics, which is now a well-established field, to nanofluidics requires the development of computational tools. Using the Lattice Boltzmann Electrokinetics (LBE) method, we can couple the Navier-Stokes equation with the Poisson-Nernst Planck theory and thus study charged confined fluids at the nanoscale. Electrochemists have begun to use the electrical fluctuations arising from them to extract information on the interfacial phenomena and thus the underlying microscopic processes (e.g. single molecule detection, adsorption/desorption). This requires to be able to model nanocapacitors with a constant potential difference between the two electrodes, which was the main novelty added to the LBE algorithm. Finally by coupling this method with the moment propagation method, we have been able to provide an efficient computational tool capable to analyse, hydrodynamic, electrokinetic, adsorption/desorption and finite size effects in fluids confined at the nanoscale, for arbitrary geometries, in both linear and non-linear regimes, as well as in the transient and steady state regimes. Within the context of electrical noise, the temporal charge response to a voltage perturbation can be linked to the impedance and thus to the electrical fluctuations. In the future we will also be able to study the electrokinetic response related to the cross correlation response between mass and electric currents
Licon, Bernal Edxon Eduardo. "Characterization and modelling of micro and nanofluidic systems". Doctoral thesis, Universitat Politècnica de Catalunya, 2015. http://hdl.handle.net/10803/288227.
Texto completoLa miniaturización de los análisis químicos y bioquímicos está cada vez utiliza más utilizada. Todas las manipulaciones de transporte de las muestras, la separación, la mezcla con los reactivos y la detección se integren y apliquen a escala de un microchip de varios centímetros de tamaño. Esto hace posible una reducción dramática en las cantidades requeridas de muestra y reactivos, así como en el tiempo del análisis. Además de eso, las operaciones de automatización y de alto rendimiento se vuelven mucho más fáciles que en los entornos convencionales "macro-laboratorio". De acuerdo con el gran interés en el desarrollo de nuevos materiales porosos incluyendo su posterior integración en dispositivos biomédicos y aplicaciones industriales, la descripción de las particularidades de los medios nanoporosos (por ejemplo membranas) y el desarrollo de técnicas de caracterización son cruciales para controlar el comportamiento de los sistemas que incluyen procesos de separación y purificación con dichas tecnologías. En esta tesis se han llevado a cabo diferentes avances en el campo de la microfluídica, la separación y purificación de sustancias: Para el campo de la microfluídica, este estudio puede ser útil para la descripción de las primeras etapas de la polarización en los sistemas microfluídicos que acoplan tecnología de membranas o micro/nano interfaces. Por otro lado, se demostró que para tales sistemas, la teoría de Taylor-Aris es aplicable localmente dentro de microcanales abiertos en una amplia gama de números de Péclet. Además, fue posible derivar una aproximación analítica sencilla para el gradiente de concentración interno dentro de canales largos en términos de sólo unos pocos parámetros, determinados numéricamente. Esta aproximación es útil para desarrollar futuros estudios experimentales. En algunos equipos usados para la medición del potencial zeta de medios porosos, la variación de la altura del canal es técnicamente posible. En esta tesis se muestra que en estas condiciones, el flujo de fluido puede llegar a ser de transición a turbulento y los enfoques convencionales para la interpretación de las mediciones electrocinéticas debe modificarse en consecuencia. Se definió un modelo matemático que permite describir de manera sencilla, fenómenos de transporte que ocurren en diversos procesos de separación osmóticos, para mezclas de electrolitos arbitrarias. El número limitado de parámetros ajustables que contiene este modelo hace factible su determinación inequívoca a partir de un conjunto limitado de datos experimentales. De acuerdo con los resultados de esta tesis, los contactores de membrana con fibras huecas son útiles como etapa de pulido para la eliminación de bajos niveles de amonio en agua. Se ha determinado y validado experimentalmente un modelo matemático el cual ha ayudado a describir la influencia de las condiciones de funcionamiento, tales como flujo, concentraciones de amonio y pH del sistema para ambas configuraciones, de lazo cerrado y abierto. Dichos resultados son útiles para el diseño de sistemas de producción de agua ultra pura que puede ser usada en la producción de hidrogeno por electrolisis. La aplicación de las tecnologías de microfluidos a escala industrial es uno de los principales retos que enfrentar en este campo del conocimiento; sin embargo, existen algunos dispositivos que ya se están utilizando de forma sistemática a nivel industrial para fines de separación que cumplen criterios necesarios para considerarlos dentro del grupo de las tecnologías de microfluídica. Acotando a los resultados presentados en microfluídica, con este trabajo se han establecido patrones y definido conceptos básicos, dentro de este campo de la ciencia, que pueden servir como bases en la caracterización y la descripción de versiones en miniatura de procesos de separación bien conocidos, los cuales se pueden usar para el desarrollo de procesos en nuevas aplicaciones bioquímicas.
Sen, Yi-Heng. "Nanofluidic system for single molecule manipulation and analysis". Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/46547.
Texto completoIncludes bibliographical references (p. 55-58).
This thesis focuses on characterizing and controlling the translocation of single 48.5 kbp [lambda]-DNA molecules through an artificial nanopore with the objective of enabling multiple measurements on the same molecule. This approach may enable nanopore sensors with enhanced size or charge resolution through statistical averaging over multiple detection events. Nanopores with dimensions of 200 nm x 500 nm x 5 pm connected by microfluidic channels were fabricated using soft lithography in polydimethylsiloxane (PDMS). The PDMS nanopore could successfully detect translocation events of single [lambda]DNA molecules. Factors such as applied voltage bias, DNA concentration, and dimensions of the channel were found to affect the frequency of translocation events and signal-to-noise ratio, which are critical factors for implementing multiple measurements on the same molecule with feedback control. Noise contributions from each part of the experimental apparatus and device were also characterized. Feedback control using Labview was implemented to reverse the direction of applied voltage bias upon detection of a translocation event. The direction of travel of single DNA molecules could be successfully reversed and two measurements on the same molecule were realized. This work lays the foundations for a nanofluidic device for enhanced measurement resolution through statistical averaging over multiple measurements on the same molecule.
by Yi-Heng Sen.
S.M.
Varsanik, Jonathan S. "Integrated optic/nanofluidic detection device with plasmonic readout". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/66467.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references.
Integrated lab-on-a-chip devices provide the promise of many benefits in many application areas. A low noise, high resolution, high sensitivity integrated optical microfluidic device would not only improve the capabilities of existing procedures but also enable new applications. This thesis presents an architecture and fabrication process for such a device. Previously, the possibilities for such integrated systems were limited by existing fabrication technologies. An integrated fabrication process including glass nanofluidics, diffused waveguides and metal structures was developed. To enable this process a voltage-assisted polymer bond procedure was developed. This bond process enables high strength, robust, optically clear, low temperature bonding of glass - a capability that was not possible before. Bond strength was compared with a glass-to-glass anodic type bond using various materials and a polymer bond using two polymers: Cytop and PMMA. Bond strength was far superior to standard polymer bonding procedures. Design considerations to minimize background noise are presented, analyzed and implemented. Using Cytop as an index-matched polymer layer reduces scattered light in the device. Plasmonic devices driven via evanescent fields were designed, simulated, fabricated, and tested in isolation as well as in the integrated system. A sample device was made to demonstrate applicability of this process to direct linear analysis of DNA. The device was shown to provide enhanced and confined electromagnetic excitation as well as the capability to excite submicron particles. A demonstrated excitation spot of 200nm is the best we have seen in this type of device. Further work is suggested that can improve this resolution further.
by Jonathan S. Varsanik.
Ph.D.
Hemminger, Orin L. "Visualizing and Understanding Complex Micro/Nanofluidic Flow Behavior". The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1275398565.
Texto completoBoone, Caitlin M. "Frequency Dependent Current Modulation in Gated Nanofluidic Channels". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1462363522.
Texto completoWei, Xiaohao y 魏晓浩. "Nanofluids: synthesis, characterization and thermal conductivity". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44765861.
Texto completo