Tesis sobre el tema "Natural language processing analysis"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Natural language processing analysis".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Woldemariam, Yonas Demeke. "Natural language processing in cross-media analysis". Licentiate thesis, Umeå universitet, Institutionen för datavetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-147640.
Texto completoShepherd, David. "Natural language program analysis combining natural language processing with program analysis to improve software maintenance tools /". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 176 p, 2007. http://proquest.umi.com/pqdweb?did=1397920371&sid=6&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Texto completoRamachandran, Venkateshwaran. "A temporal analysis of natural language narrative text". Thesis, This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-03122009-040648/.
Texto completoLi, Wenhui. "Sentiment analysis: Quantitative evaluation of subjective opinions using natural language processing". Thesis, University of Ottawa (Canada), 2008. http://hdl.handle.net/10393/28000.
Texto completoKeller, Thomas Anderson. "Comparison and Fine-Grained Analysis of Sequence Encoders for Natural Language Processing". Thesis, University of California, San Diego, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10599339.
Texto completoMost machine learning algorithms require a fixed length input to be able to perform commonly desired tasks such as classification, clustering, and regression. For natural language processing, the inherently unbounded and recursive nature of the input poses a unique challenge when deriving such fixed length representations. Although today there is a general consensus on how to generate fixed length representations of individual words which preserve their meaning, the same cannot be said for sequences of words in sentences, paragraphs, or documents. In this work, we study the encoders commonly used to generate fixed length representations of natural language sequences, and analyze their effectiveness across a variety of high and low level tasks including sentence classification and question answering. Additionally, we propose novel improvements to the existing Skip-Thought and End-to-End Memory Network architectures and study their performance on both the original and auxiliary tasks. Ultimately, we show that the setting in which the encoders are trained, and the corpus used for training, have a greater influence of the final learned representation than the underlying sequence encoders themselves.
Patil, Supritha Basavaraj. "Analysis of Moving Events Using Tweets". Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/90884.
Texto completoMaster of Science
News now travels faster on social media than through news channels. Information from social media can help retrieve minute details that might not be emphasized in news. People tend to describe their actions or sentiments in tweets. I aim at studying if such collections of tweets are dependable sources for identifying paths of moving events. In events like hurricanes, using Twitter can help in analyzing people’s reaction to such moving events. These may include actions such as dislocation or emotions during different phases of the event. The results obtained in the experiments concur with the actual path of the events with respect to the regions affected and time. The frequency of tweets increases during event peaks. The number of locations affected that are identified are significantly more than in news wires.
Giménez, Fayos María Teresa. "Natural Language Processing using Deep Learning in Social Media". Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/172164.
Texto completo[CA] En els últims anys, els models d'aprenentatge automàtic profund (AP) han revolucionat els sistemes de processament de llenguatge natural (PLN). Hem estat testimonis d'un avanç formidable en les capacitats d'aquests sistemes i actualment podem trobar sistemes que integren models PLN de manera ubiqua. Alguns exemples d'aquests models amb els quals interaccionem diàriament inclouen models que determinen la intenció de la persona que va escriure un text, el sentiment que pretén comunicar un tweet o la nostra ideologia política a partir del que compartim en xarxes socials. En aquesta tesi s'han proposats diferents models de PNL que aborden tasques que estudien el text que es comparteix en xarxes socials. En concret, aquest treball se centra en dues tasques fonamentalment: l'anàlisi de sentiments i el reconeixement de la personalitat de la persona autora d'un text. La tasca d'analitzar el sentiment expressat en un text és un dels problemes principals en el PNL i consisteix a determinar la polaritat que un text pretén comunicar. Es tracta per tant d'una tasca estudiada en profunditat de la qual disposem d'una vasta quantitat de recursos i models. Per contra, el problema del reconeixement de la personalitat és una tasca revolucionària que té com a objectiu determinar la personalitat dels usuaris considerant el seu estil d'escriptura. L'estudi d'aquesta tasca és més marginal i en conseqüència disposem de menys recursos per abordar-la però no obstant i això presenta un gran potencial. Tot i que el fouc principal d'aquest treball va ser el desenvolupament de models d'aprenentatge profund, també hem proposat models basats en recursos lingüístics i models clàssics de l'aprenentatge automàtic. Aquests últims models ens han permès explorar les subtileses de diferents elements lingüístics com ara l'impacte que tenen les emocions en la classificació correcta del sentiment expressat en un text. Posteriorment, després d'aquests treballs inicials es van desenvolupar models AP, en particular, Xarxes neuronals convolucionals (XNC) que van ser aplicades a les tasques prèviament esmentades. En el cas de el reconeixement de la personalitat, s'han comparat models clàssics de l'aprenentatge automàtic amb models d'aprenentatge profund la qual cosa a permet establir una comparativa de les dos aproximacions sota les mateixes premisses. Cal remarcar que el PNL ha evolucionat dràsticament en els últims anys gràcies a el desenvolupament de campanyes d'avaluació pública on múltiples equips d'investigació comparen les capacitats dels models que proposen sota les mateixes condicions. La majoria dels models presentats en aquesta tesi van ser o bé avaluats mitjançant campanyes d'avaluació públiques, o bé s'ha emprat la configuració d'una campanya pública prèviament celebrada. Sent conscients, per tant, de la importància d'aquestes campanyes per a l'avanç del PNL, vam desenvolupar una campanya d'avaluació pública on l'objectiu era classificar el tema tractat en un tweet, per a la qual cosa vam recollir i etiquetar un nou conjunt de dades. A mesura que avançàvem en el desenvolupament del treball d'aquesta tesi, vam decidir estudiar en profunditat com les XNC s'apliquen a les tasques de PNL. En aquest sentit, es van explorar dues línies de treball.En primer lloc, vam proposar un mètode d'emplenament semàntic per RNC, que planteja una nova manera de representar el text per resoldre tasques de PNL. I en segon lloc, es va introduir un marc teòric per abordar una de les crítiques més freqüents de l'aprenentatge profund, el qual és la falta de interpretabilitat. Aquest marc cerca visualitzar quins patrons lèxics, si n'hi han, han estat apresos per la xarxa per classificar un text.
[EN] In the last years, Deep Learning (DL) has revolutionised the potential of automatic systems that handle Natural Language Processing (NLP) tasks. We have witnessed a tremendous advance in the performance of these systems. Nowadays, we found embedded systems ubiquitously, determining the intent of the text we write, the sentiment of our tweets or our political views, for citing some examples. In this thesis, we proposed several NLP models for addressing tasks that deal with social media text. Concretely, this work is focused mainly on Sentiment Analysis and Personality Recognition tasks. Sentiment Analysis is one of the leading problems in NLP, consists of determining the polarity of a text, and it is a well-known task where the number of resources and models proposed is vast. In contrast, Personality Recognition is a breakthrough task that aims to determine the users' personality using their writing style, but it is more a niche task with fewer resources designed ad-hoc but with great potential. Despite the fact that the principal focus of this work was on the development of Deep Learning models, we have also proposed models based on linguistic resources and classical Machine Learning models. Moreover, in this more straightforward setup, we have explored the nuances of different language devices, such as the impact of emotions in the correct classification of the sentiment expressed in a text. Afterwards, DL models were developed, particularly Convolutional Neural Networks (CNNs), to address previously described tasks. In the case of Personality Recognition, we explored the two approaches, which allowed us to compare the models under the same circumstances. Noteworthy, NLP has evolved dramatically in the last years through the development of public evaluation campaigns, where multiple research teams compare the performance of their approaches under the same conditions. Most of the models here presented were either assessed in an evaluation task or either used their setup. Recognising the importance of this effort, we curated and developed an evaluation campaign for classifying political tweets. In addition, as we advanced in the development of this work, we decided to study in-depth CNNs applied to NLP tasks. Two lines of work were explored in this regard. Firstly, we proposed a semantic-based padding method for CNNs, which addresses how to represent text more appropriately for solving NLP tasks. Secondly, a theoretical framework was introduced for tackling one of the most frequent critics of Deep Learning: interpretability. This framework seeks to visualise what lexical patterns, if any, the CNN is learning in order to classify a sentence. In summary, the main achievements presented in this thesis are: - The organisation of an evaluation campaign for Topic Classification from texts gathered from social media. - The proposal of several Machine Learning models tackling the Sentiment Analysis task from social media. Besides, a study of the impact of linguistic devices such as figurative language in the task is presented. - The development of a model for inferring the personality of a developer provided the source code that they have written. - The study of Personality Recognition tasks from social media following two different approaches, models based on machine learning algorithms and handcrafted features, and models based on CNNs were proposed and compared both approaches. - The introduction of new semantic-based paddings for optimising how the text was represented in CNNs. - The definition of a theoretical framework to provide interpretable information to what CNNs were learning internally.
Giménez Fayos, MT. (2021). Natural Language Processing using Deep Learning in Social Media [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/172164
TESIS
Gorrell, Genevieve. "Generalized Hebbian Algorithm for Dimensionality Reduction in Natural Language Processing". Doctoral thesis, Linköping : Department of Computer and Information Science, Linköpings universitet, 2006. http://www.bibl.liu.se/liupubl/disp/disp2006/tek1045s.pdf.
Texto completoMarzo, i. Grimalt Núria. "Natural Language Processing Model for Log Analysis to Retrieve Solutions For Troubleshooting Processes". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300042.
Texto completoEn av de mest tidskrävande uppgifterna inom telekommunikationsindustrin är att felsöka och hitta lösningar till felrapporter (TR). Denna uppgift kräver förståelse av textdata, som försvåras as att texten innehåller företags- och domänspecifika attribut. Texten innehåller typiskt sett många förkortningar, felskrivningar och tabeller blandat med numerisk information. Detta examensarbete ämnar att förenkla inhämtningen av lösningar av nya felsökningar på ett automatiserat sätt med hjälp av av naturlig språkbehandling (NLP), specifikt modeller baserade på dubbelriktad kodrepresentation (BERT). Examensarbetet föreslår en textrankningsmodell som, givet en felbeskrivning, kan rangordna de bästa möjliga lösningarna till felet baserat på tidigare felsökningar. Modellen hanterar avvägningen mellan noggrannhet och fördröjning genom att implementera den dubbelriktade kodrepresentationen i två faser: en initial inhämtningsfas och en omordningsfas. För industrianvändning krävs att modellen uppnår en given noggrannhet med en viss tidsbegränsning. Experimenten för att utvärdera noggrannheten och fördröjningen har utförts på Ericssons felsökningsdata. Utvärderingen visar att den föreslagna modellen kan hämta och omordna data för felsökningar med signifikanta förbättringar gentemot modeller utan dubbelriktad kodrepresentation.
Mc, Kevitt Paul. "Analysing coherence of intention in natural language dialogue". Thesis, University of Exeter, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303991.
Texto completoCrocker, Matthew Walter. "A principle-based system for natural language analysis and translation". Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/27863.
Texto completoScience, Faculty of
Computer Science, Department of
Graduate
Tempfli, Peter. "Preprocessing method comparison and model tuning for natural language data". Thesis, Högskolan Dalarna, Mikrodataanalys, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:du-34438.
Texto completoMazidi, Karen. "Infusing Automatic Question Generation with Natural Language Understanding". Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc955021/.
Texto completoLindén, Johannes. "Huvudtitel: Understand and Utilise Unformatted Text Documents by Natural Language Processing algorithms". Thesis, Mittuniversitetet, Avdelningen för informationssystem och -teknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-31043.
Texto completoBanea, Carmen. "Extrapolating Subjectivity Research to Other Languages". Thesis, University of North Texas, 2013. https://digital.library.unt.edu/ark:/67531/metadc271777/.
Texto completoSunil, Kamalakar FNU. "Automatically Generating Tests from Natural Language Descriptions of Software Behavior". Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/23907.
Texto completoMaster of Science
Henriksson, Jimmy y Carl Hultberg. "Public Sentiment on Twitter and Stock Performance : A Study in Natural Language Processing". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259984.
Texto completoDe senaste åren har användandet av icke-traditionella datakällor ökat av hedgefonder för att ta investeringsbeslut. En av datakällorna som blivit populära är sociala medier och det har blivit vanligt att analysera folkopinionen med hjälp av sentimentanalys för att kunna förutspå ett företags resultat. För att analysera folkopinionen krävdes stora mängder Twitterdata. Twitter-datan hämtades genom att strömma Twitter-flödet och aktiedatan hämtades från en Bloomberg Terminal. Målet med studien var att undersöka ifall det finns en korrelation mellan folkopinionen av en aktie och aktiens prisutveckling, och även vad som påverkar denna relationen. Även om en sådan relation inte kan fastställas i allmänhet så kan vi visa att om datakvaliten är god, så finns det en hög korrelation mellan folkopinionen och aktiepriset, samt att vid betydande händelser som rör företaget, så resultar det i en hög korrelation under den perioden.
Riehl, Sean K. "Property Recommendation System with Geospatial Data Analytics and Natural Language Processing for Urban Land Use". Cleveland State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=csu1590513674513905.
Texto completoJochim, Charles [Verfasser] y Hinrich [Akademischer Betreuer] Schütze. "Natural language processing and information retrieval methods for intellectual property analysis / Charles Jochim. Betreuer: Hinrich Schütze". Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2014. http://d-nb.info/1064308643/34.
Texto completoHolmes, Wesley J. "Topological Analysis of Averaged Sentence Embeddings". Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1609351352688467.
Texto completoZhan, Tianjie. "Semantic analysis for extracting fine-grained opinion aspects". HKBU Institutional Repository, 2010. http://repository.hkbu.edu.hk/etd_ra/1213.
Texto completoJohansson, David. "Applicability analysis of computation double entendre humor recognition with machine learning methods". Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-12413.
Texto completoAndersson, Ludwig. "Natural Language Processing In A Distributed Environment : A comparative performance analysis of Apache Spark and Hadoop MapReduce". Thesis, Umeå universitet, Institutionen för datavetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-126865.
Texto completoLee, Wing Kuen. "Interpreting tables in text using probabilistic two-dimensional context-free grammars /". View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?COMP%202005%20LEEW.
Texto completoCannon, Paul C. "Extending the information partition function : modeling interaction effects in highly multivariate, discrete data /". Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2263.pdf.
Texto completoBjörner, Amanda. "Natural Language Processing techniques for feedback on text improvement : A qualitative study on press releases". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301303.
Texto completoAktörer som sträcker sig från privata företag till mydigheter och forskare använder pressmeddelanden för att offentligt delge information med nyhetsvärde. Dessa pressmeddelanden spelar därefter en nyckelroll i dagens nyhetsproduktion genom att förformulera nyheter och eftersträvar därför att hålla en viss språklig nivå. För att förbättra kvalitet och innehåll i pressmeddelanden undersöker detta examensarbete hur språkteknologisk textanalys och återkoppling till författare kan stödja dem i att förbättra sina texter. Denna frågeställning undersöks i två delar, en tillämpad del och en teoretisk del. Den tillämpade delen undersöker hur återkoppling kring innehållsuppfattning kan förbättra pressmeddelanden. Ett webb-baserat verktyg utvecklades där användare kan skriva in pressmeddelanden och få dessa analyserade. Analysen baseras på läsbarhet som bedöms med hjälp av måttet LIX samt språklig bias (partiska uttryck) i form av weasel words (vessleord) och peacock words (påfågelord) som detekteras genom regelbaserad sentimentanalys. Denna del utvärderades kvalitativt genom en enkätundersökning till användarna samt djupintervjuer. Den teoretiska delen av frågeställningen undersöker hur information om trendande ämnen kan bidra till att förbättra pressmeddelanden. Undersökningen genomfördes som en litteraturstudie och utvärderades kvalitativt genom att sammanställa åsikter från yrkesverksamma som arbetar med pressmeddelanden i enkätundersökningen och djupintervjuerna som beskrevs ovan. Resultaten indikerar att för feedback om innehållsuppfattning är det särskilt mindre erfarna författare och vetenskapligt innehåll riktat till allmänheten som skulle uppnå förbättrad textkvalitet till följd av läsbarhetsbedömning och upptäckt av partiska uttryck. Samtidigt var en majoritet av deltagarna i utvärderingen mer nöjda med sina pressmeddelanden efter redigering baserat på läsbarhetsfeedbacken. Dessutom rapporterade alla deltagare med partiska uttryck i sina texter att upptäckten ledde till positiva förändringar som resulterade i förbättrad textkvalitet. Gällande den teoretiska delen anses både textkvaliteten och antalet publikationer öka för pressmeddelnanden om trendande ämnen. Att ge författare information om trendande ämnen på en detaljerad nivå indikeras vara det mest hjälpsamma.
Gorinski, Philip John. "Automatic movie analysis and summarisation". Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31053.
Texto completoWong, Jimmy Pui Fung. "The use of prosodic features in Chinese speech recognition and spoken language processing /". View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?ELEC%202003%20WONG.
Texto completoIncludes bibliographical references (leaves 97-101). Also available in electronic version. Access restricted to campus users.
Eglowski, Skylar. "CREATE: Clinical Record Analysis Technology Ensemble". DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1771.
Texto completoKeshtkar, Fazel. "A Computational Approach to the Analysis and Generation of Emotion in Text". Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20137.
Texto completoShen, Mo. "Exploiting Vocabulary, Morphological, and Subtree Knowledge to Improve Chinese Syntactic Analysis". 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215675.
Texto completoKyoto University (京都大学)
0048
新制・課程博士
博士(情報学)
甲第19848号
情博第599号
新制||情||104(附属図書館)
32884
京都大学大学院情報学研究科知能情報学専攻
(主査)准教授 河原 大輔, 教授 黒橋 禎夫, 教授 鹿島 久嗣
学位規則第4条第1項該当
Vlas, Radu. "A Requirements-Based Exploration of Open-Source Software Development Projects – Towards a Natural Language Processing Software Analysis Framework". Digital Archive @ GSU, 2012. http://digitalarchive.gsu.edu/cis_diss/48.
Texto completoDagerman, Björn. "Semantic Analysis of Natural Language and Definite Clause Grammar using Statistical Parsing and Thesauri". Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-26142.
Texto completoJin, Gongye. "High-quality Knowledge Acquisition of Predicate-argument Structures for Syntactic and Semantic Analysis". 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215677.
Texto completoKyoto University (京都大学)
0048
新制・課程博士
博士(情報学)
甲第19850号
情博第601号
新制||情||105(附属図書館)
32886
京都大学大学院情報学研究科知能情報学専攻
(主査)准教授 河原 大輔, 教授 黒橋 禎夫, 教授 河原 達也
学位規則第4条第1項該当
Yang, Jianji. "Automatic summarization of mouse gene information for microarray analysis by functional gene clustering and ranking of sentences in MEDLINE abstracts : a dissertation". Oregon Health & Science University, 2007. http://content.ohsu.edu/u?/etd,643.
Texto completoMedical Informatics and Clinical Epidemiology
Tools to automatically summarize gene information from the literature have the potential to help genomics researchers better interpret gene expression data and investigate biological pathways. Even though several useful human-curated databases of information about genes already exist, these have significant limitations. First, their construction requires intensive human labor. Second, curation of genes lags behind the rapid publication rate of new research and discoveries. Finally, most of the curated knowledge is limited to information on single genes. As such, most original and up-to-date knowledge on genes can only be found in the immense amount of unstructured, free text biomedical literature. Genomic researchers frequently encounter the task of finding information on sets of differentially expressed genes from the results of common highthroughput technologies like microarray experiments. However, finding information on a set of genes by manually searching and scanning the literature is a time-consuming and daunting task for scientists. For example, PubMed, the first choice of literature research for biologists, usually returns hundreds of references for a search on a single gene in reverse chronological order. Therefore, a tool to summarize the available textual information on genes could be a valuable tool for scientists. In this study, we adapted automatic summarization technologies to the biomedical domain to build a query-based, task-specific automatic summarizer of information on mouse genes studied in microarray experiments - mouse Gene Information Clustering and Summarization System (GICSS). GICSS first clusters a set of differentially expressed genes by Medical Subject Heading (MeSH), Gene Ontology (GO), and free text features into functionally similar groups;next it presents summaries for each gene as ranked sentences extracted from MEDLINE abstracts, with the ranking emphasizing the relation between genes, similarity to the function cluster it belongs to, and recency. GICSS is available as a web application with links to the PubMed (www.pubmed.gov) website for each extracted sentence. It integrates two related steps, functional gene clustering and gene information gathering, of the microarray data analysis process. The information from the clustering step was used to construct the context for summarization. The evaluation of the system was conducted with scientists who were analyzing their real microarray datasets. The evaluation results showed that GICSS can provide meaningful clusters for real users in the genomic research area. In addition, the results also indicated that presenting sentences in the abstract can provide more important information to the user than just showing the title in the default PubMed format. Both domain-specific and non-domain-specific terminologies contributed in the informative sentences selection. Summarization may serve as a useful tool to help scientists to access information at the time of microarray data analysis. Further research includes setting up the automatic update of MEDLINE records; extending and fine-tuning of the feature parameters for sentence scoring using the available evaluation data; and expanding GICSS to incorporate textual information from other species. Finally, dissemination and integration of GICSS into the current workflow of the microarray analysis process will help to make GICSS a truly useful tool for the targeted users, biomedical genomics researchers.
Norsten, Theodor. "Exploring the Potential of Twitter Data and Natural Language Processing Techniques to Understand the Usage of Parks in Stockholm". Thesis, KTH, Geoinformatik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278532.
Texto completoTraditionella metoder använda för att förstå hur människor använder parker består av frågeformulär, en mycket tids -och- resurskrävande metod. Idag använder mer en fyra miljarder människor någon form av social medieplattform dagligen. Det har inneburit att enorma datamängder genereras dagligen via olika sociala media plattformar och har skapat potential för en ny källa att erhålla stora mängder data. Denna undersöker ett modernt tillvägagångssätt, genom användandet av Natural Language Processing av Twitter data för att förstå hur parker i Stockholm används. Natural Language Processing (NLP) är ett område inom artificiell intelligens och syftar till processen att läsa, analysera och förstå stora mängder textdata och anses vara framtiden för att förstå ostrukturerad text. Data från Twitter inhämtades via Twitters öppna API. Data från tre parker i Stockholm erhölls mellan perioden 2015–2019. Tre analyser genomfördes därefter, temporal, sentiment och topic modeling. Resultaten från ovanstående analyser visar att det är möjligt att förstå vilka attityder och aktiviteter som är associerade med att besöka parker genom användandet av NLP baserat på data från sociala medier. Det är tydligt att sentiment analys är ett svårt problem för datorer att lösa och är fortfarande i ett tidigt skede i utvecklingen. Resultaten från sentiment analysen indikerar några osäkerheter. För att uppnå mer tillförlitliga resultat skulle analysen bestått av mycket mer data, mer exakta metoder för data rensning samt baserats på tweets skrivna på engelska. En tydlig slutsats från resultaten är att människors attityder och aktiviteter kopplade till varje park är tydligt korrelerat med de olika attributen respektive park består av. Ytterligare ett tydligt mönster är att användandet av parker är som högst under högtider och att positiva känslor är starkast kopplat till park-besök. Resultaten föreslår att framtida studier fokuserar på att kombinera metoden i denna rapport med geospatial data baserat på en social medieplattform där användare delar sin platsinfo i större utsträckning.
Silva, João. "Shallow Processing of Portuguese: From Sentence Chunking to Nominal Lemmatization". Master's thesis, Department of Informatics, University of Lisbon, 2007. http://hdl.handle.net/10451/14016.
Texto completoNilsson, Ludvig y Olle Djerf. "How to improve Swedish sentiment polarityclassification using context analysis". Thesis, Uppsala universitet, Institutionen för lingvistik och filologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446382.
Texto completoJanevski, Angel. "UniversityIE: Information Extraction From University Web Pages". UKnowledge, 2000. http://uknowledge.uky.edu/gradschool_theses/217.
Texto completoPassos, Alexandre Tachard 1986. "Combinatorial algorithms and linear programming for inference in natural language processing = Algoritmos combinatórios e de programação linear para inferência em processamento de linguagem natural". [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/275609.
Texto completoTese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação
Made available in DSpace on 2018-08-24T00:42:33Z (GMT). No. of bitstreams: 1 Passos_AlexandreTachard_D.pdf: 2615030 bytes, checksum: 93841a46120b968f6da6c9aea28953b7 (MD5) Previous issue date: 2013
Resumo: Em processamento de linguagem natural, e em aprendizado de máquina em geral, é comum o uso de modelos gráficos probabilísticos (probabilistic graphical models). Embora estes modelos sejam muito convenientes, possibilitando a expressão de relações complexas entre várias variáveis que se deseja prever dado uma sentença ou um documento, algoritmos comuns de aprendizado e de previsão utilizando estes modelos são frequentemente ineficientes. Por isso têm-se explorado recentemente o uso de relaxações usando programação linear deste problema de inferência. Esta tese apresenta duas contribuições para a teoria e prática de relaxações de programação linear para inferência em modelos probabilísticos gráficos. Primeiro, apresentamos um novo algoritmo, baseado na técnica de geração de colunas (dual à técnica dos planos de corte) que acelera a execução do algoritmo de Viterbi, a técnica mais utilizada para inferência em modelos lineares. O algoritmo apresentado também se aplica em modelos que são árvores e em hipergrafos. Em segundo mostramos uma nova relaxação linear para o problema de inferência conjunta, quando se quer acoplar vários modelos, em cada qual inferência é eficiente, mas em cuja junção inferência é NP-completa. Esta tese propõe uma extensão à técnica de decomposição dual (dual decomposition) que permite além de juntar vários modelos a adição de fatores que tocam mais de um submodelo eficientemente
Abstract: In natural language processing, and in general machine learning, probabilistic graphical models (and more generally structured linear models) are commonly used. Although these models are convenient, allowing the expression of complex relationships between many random variables one wants to predict given a document or sentence, most learning and prediction algorithms for general models are inefficient. Hence there has recently been interest in using linear programming relaxations for the inference tasks necessary when learning or applying these models. This thesis presents two contributions to the theory and practice of linear programming relaxations for inference in structured linear models. First we present a new algorithm, based on column generation (a technique which is dual to the cutting planes method) to accelerate the Viterbi algorithm, the most popular exact inference technique for linear-chain graphical models. The method is also applicable to tree graphical models and hypergraph models. Then we present a new linear programming relaxation for the problem of joint inference, when one has many submodels and wants to predict using all of them at once. In general joint inference is NP-complete, but algorithms based on dual decomposition have proven to be efficiently applicable for the case when the joint model can be expressed as many separate models plus linear equality constraints. This thesis proposes an extension to dual decomposition which allows also the presence of factors which score parts that belong in different submodels, improving the expressivity of dual decomposition at no extra computational cost
Doutorado
Ciência da Computação
Doutor em Ciência da Computação
Currin, Aubrey Jason. "Text data analysis for a smart city project in a developing nation". Thesis, University of Fort Hare, 2015. http://hdl.handle.net/10353/2227.
Texto completoErogul, Umut. "Sentiment Analysis In Turkish". Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610616/index.pdf.
Texto completoSanagavarapu, Krishna Chaitanya. "Determining Whether and When People Participate in the Events They Tweet About". Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc984235/.
Texto completoSobhani, Parinaz. "Stance Detection and Analysis in Social Media". Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36180.
Texto completoPérez-Rosas, Verónica. "Exploration of Visual, Acoustic, and Physiological Modalities to Complement Linguistic Representations for Sentiment Analysis". Thesis, University of North Texas, 2014. https://digital.library.unt.edu/ark:/67531/metadc699996/.
Texto completoEckart, de Castilho Richard [Verfasser], Iryna [Akademischer Betreuer] Gurevych, Andreas [Akademischer Betreuer] Henrich y Christopher D. [Akademischer Betreuer] Manning. "Natural Language Processing: Integration of Automatic and Manual Analysis / Richard Eckart de Castilho. Betreuer: Iryna Gurevych ; Andreas Henrich ; Christopher D. Manning". Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2014. http://d-nb.info/1110979118/34.
Texto completoYeates, Stuart Andrew. "Text Augmentation: Inserting markup into natural language text with PPM Models". The University of Waikato, 2006. http://hdl.handle.net/10289/2600.
Texto completoRahgozar, Arya. "Automatic Poetry Classification and Chronological Semantic Analysis". Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40516.
Texto completoKarlin, Ievgen. "An Evaluation of NLP Toolkits for Information Quality Assessment". Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-22606.
Texto completoAlsehaimi, Afnan Abdulrahman A. "Sentiment Analysis for E-book Reviews on Amazon to Determine E-book Impact Rank". University of Dayton / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1619109972210567.
Texto completo