Artículos de revistas sobre el tema "Navier-Stokes equations. Numerical grid generation (Numerical analysis) Fluid-structure interaction"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Navier-Stokes equations. Numerical grid generation (Numerical analysis) Fluid-structure interaction".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Li, Xue Feng, Xiu Quan Huang y Chao Liu. "Numerical Simulation Method for Fluid-Structure Interaction in Compressor Blades". Applied Mechanics and Materials 488-489 (enero de 2014): 914–17. http://dx.doi.org/10.4028/www.scientific.net/amm.488-489.914.

Texto completo
Resumen
A simulation method for fluid-structure interaction (FSI) in compressor blades was discussed to predict the aeroelastic stability of blades. Using the MFX, which is a Multi-Field Solver in ANSYS, the total force of computational fluid dynamics (CFD) have been interpolated to computational structural dynamics (CSD) grids, and then the vibration displacements of CSD nodes have been interpolated to CFD grids at the blade surface. In CFD analysis, the grid coordinates of the moveable region have been updated by multi-layer moving grid technique, and the finite volume method has been applied to calculate the Reynolds-averaged Navier-Stokes (RANS) equations closed by k-E turbulent model. For NASA Rotor 67, detect the displacement response of compressor blades at the design speed , and the aeroelastic stability of blades has been analyzed preliminarily. The study shows that the FSI procedure is feasible to predict the aeroelastic stability of compressor blades.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Han, Cheol Heui, Sang Jin Ma y Myung Jin Chung. "Effect of Flow Characteristics on the Operation of a Solenoid Switching Control Valve". Applied Mechanics and Materials 799-800 (octubre de 2015): 1113–16. http://dx.doi.org/10.4028/www.scientific.net/amm.799-800.1113.

Texto completo
Resumen
Effect of the compressible flow characteristics inside a high-speed electromagnetic valve on the operation of the valve is investigated using a numerical simulation. The numerical simulation solves Navier-Stokes equations and heat transfer equations by coupling, and the compressible flow phenomena inside the valves are studied focusing on the shock structures. . Fluid-structure interaction is considered using freely moving grid deformations. The flow patterns of subsonic acceleration, choked flow, supersonic expansion, and a strong curved shock were observed inside the valve during on/off operations. The subsonic flow acceleration affected the operation characteristics of the valve.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Markovic, Zoran, Slobodan Stupar, Mirko Dinulovic, Ognjen Pekovic, Predrag Stefanovic y Dejan Cvetinovic. "Assessment results of fluid-structure interaction numerical simulation using fuzzy logic". Thermal Science 20, suppl. 1 (2016): 235–50. http://dx.doi.org/10.2298/tsci160111083m.

Texto completo
Resumen
A fuzzy approximation concept is applied in order to predict results of coupled computational structure mechanics and computational fluid dynamics while solving a problem of steady incompressible gas flow through thermally loaded rectangular thin-walled channel. Channel wall deforms into wave - type shapes depending on thermal load and fluid inlet velocity inducing the changes of fluid flow accordingly. A set of fluid - structure interaction (FSI) numerical tests have been defined by varying the values of fluid inlet velocity, temperature of inner and outer surface of the channel wall and numerical grid density. The unsteady Navier-Stokes equations are numerically solved using an element-based finite volume method and second order backward Euler discretization scheme. The structural model is solved by finite element method including geometric and material nonlinearities. The implicit two-way iterative code coupling, partitioned solution approach, were used while solving these numerical tests. Results of numerical analysis indicate that gravity and pressure distribution inside the channel contributes to triggering the shape of deformation. In the inverse problem, the results of FSI numerical simulations formed a database of input variables for development fuzzy logic based models considering downstream pressure drop and maximum stresses as the objective functions. Developed fuzzy models predicted targeting results within a reasonable accuracy limit at lower computation cost compared to series of FSI numerical calculations. Smaller relative difference were obtained when calculating the values of pressure drop then maximal stresses indicating that transfer function influence on output values have to be additionally investigated.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

EL BAROUDI, ADIL y FULGENCE RAZAFIMAHERY. "THEORETICAL AND NUMERICAL INVESTIGATIONS OF FREQUENCY ANALYSIS OF TWO CIRCULAR CYLINDERS OSCILLATING IN A INCOMPRESSIBLE VISCOUS FLUID". International Journal of Applied Mechanics 06, n.º 05 (octubre de 2014): 1450049. http://dx.doi.org/10.1142/s1758825114500495.

Texto completo
Resumen
A potential flow is presented in this paper for the analysis of the fluid-structure interaction systems including, but not limited to, the idealized human head. The model considers a cerebro-spinal fluid (CSF) medium interacting with two solid domain. The fluid field is governed by the linearized Navier–Stokes equation. A potential technique is used to obtain a general solution for a problem. The method consists in solving analytically partial differential equations obtained from the linearized Navier–Stokes equation. From the solution, modal shapes and stokes cells are shown. In the analysis, the elastic skull model and the rigid skull model are presented. A finite element analysis is also used to check the validity of the present method. The results from the proposed method are in good agreement with numerical solutions. The effects of the fluid thickness is also investigated.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Nie, Shuai, Yihua Cao y Zhenlong Wu. "Numerical simulation of parafoil inflation via a Robin–Neumann transmission-based approach". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 232, n.º 4 (24 de enero de 2017): 797–810. http://dx.doi.org/10.1177/0954410016688925.

Texto completo
Resumen
In this paper, a partitioned coupled iterative approach based on the Robin–Neumann transmission condition is proposed for the fluid–structure interaction simulation of the inflation process of a parafoil. The Reynold-averaged Navier–Stokes equations and the versatile finite element method are employed to solve the fluid flow field and the structural deformation, respectively. The generalized-α time integration scheme for the structure and the second order back Euler scheme for the fluid are incorporated in the Robin-Neumann method. A modified spring-transfinite interpolation hybrid method is exploited to detect the deformation of the grid and regenerate the grid for the fluid architecture. Both a two-dimensional case and a three-dimensional case are studied to examine the feasibility of the present approach. The simulation results reveal the evolution of the flow regime during the inflation process when the air pours into the parafoil. The whole inflation process can be concluded as two stages: the span-wise deployment and the longitudinal expansion. The numerical aerodynamic performance agrees well with that obtained by wind-tunnel experiment, suggesting the effectiveness of this method in handling such a highly nonlinear fluid–structure interaction in parachute inflation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

CAO, YIHUA, QIANFU SONG, ZHUO WU y JOHN SHERIDAN. "FLOW FIELD AND TOPOLOGICAL ANALYSIS OF HEMISPHERICAL PARACHUTE IN LOW ANGLES OF ATTACK". Modern Physics Letters B 24, n.º 15 (20 de junio de 2010): 1707–25. http://dx.doi.org/10.1142/s0217984910023323.

Texto completo
Resumen
For analyzing the flow field and topological structure of hemispherical parachute in low angles of attack, a fluid-structure interaction (FSI) simulation technique is established to decide the shape of the hemispherical parachute during terminal descent. In the fluid simulation, the semi-implicit method for pressure-linked equations consistent (SIMPLEC) algorithm is introduced to solve shear stress transport (SST) k–ω turbulence Navier–Stokes (N–S) Equations. This method is proved to be efficient and stable by the experiment and corresponding numerical simulation. After obtaining the stable shape of the canopy, the parachute in different angles and velocities are considered.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Zhu, Hongjun, Hongnan Zhao, Qian Pan y Xue Li. "Coupling Analysis of Fluid-Structure Interaction and Flow Erosion of Gas-Solid Flow in Elbow Pipe". Advances in Mechanical Engineering 6 (1 de enero de 2014): 815945. http://dx.doi.org/10.1155/2014/815945.

Texto completo
Resumen
A numerical simulation has been conducted to investigate flow erosion and pipe deformation of elbow in gas-solid two-phase flow. The motion of the continuous fluid phase is captured based on calculating three-dimensional Reynolds-averaged-Navier-Stokes (RANS) equations, while the kinematics and trajectory of the discrete particles are evaluated by discrete phase model (DPM), and a fluid-structure interaction (FSI) computational model is adopted to calculate the pipe deformation. The effects of inlet velocity, pipe diameter, and the ratio of curvature and diameter on flow feature, erosion rate, and deformation of elbow are analyzed based on a series of numerical simulations. The numerical results show that flow field, erosion rate, and deformation of elbow are all sensitive to the structural changes and inlet condition changes. Higher inlet rate, smaller curvature diameter ratio, or smaller pipe diameter leads to greater deformation, while slower inlet rate, larger curvature diameter ratio, and larger pipe diameter can weaken flow erosion.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Lara, Javier, Inigo Javier Losada, Manuel Del Jesus, Gabriel Barajas y Raul Guanche. "IH-3VOF: A THREE-DIMENSIONAL NAVIER-STOKES MODEL FOR WAVE AND STRUCTURE INTERACTION". Coastal Engineering Proceedings 1, n.º 32 (27 de enero de 2011): 55. http://dx.doi.org/10.9753/icce.v32.waves.55.

Texto completo
Resumen
This paper describes the capability of a new model, called IH-3VOF to simulate wave-structure interaction problems using a three-dimensional approach. The model is able to deal with physical processes associated with wave interaction with porous structures. The model considers the VARANS equations, a volume-averaged version of the traditional RANS (Reynolds Averaged Navier-Stokes) equations. Turbulence is modeled using a k- approach, not only at the clear fluid region (outside the porous media) but also inside the porous media. The model has been validated using laboratory data of free surface time evolution in a fish tank containing a porous dam. Numerical simulations were calibrated by adjusting the porous flow empirical coefficients for two granular material characteristics. Sensitivity analysis of porous parameters has also been performed. The model is proven to reproduce with a high degree of agreement the free surface evolution during the seeping process. Simulations of a three- dimensional porous dam breaking problem has been studied, showing the excellent performance of the model in reproducing fluid patterns around a porous structure. The model is powerful tool to examine the near-field flow characteristics around porous structures in three dimensional flow conditions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Chern, Ming-Jyh, Dedy Zulhidayat Noor, Ching-Biao Liao y Tzyy-Leng Horng. "Direct-Forcing Immersed Boundary Method for Mixed Heat Transfer". Communications in Computational Physics 18, n.º 4 (octubre de 2015): 1072–94. http://dx.doi.org/10.4208/cicp.151214.250515s.

Texto completo
Resumen
AbstractA direct-forcing immersed boundary method (DFIB) with both virtual force and heat source is developed here to solve Navier-Stokes and the associated energy transport equations to study some thermal flow problems caused by a moving rigid solid object within. The key point of this novel numerical method is that the solid object, stationary or moving, is first treated as fluid governed by Navier-Stokes equations for velocity and pressure, and by energy transport equation for temperature in every time step. An additional virtual force term is then introduced on the right hand side of momentum equations in the solid object region to make it act exactly as if it were a solid rigid body immersed in the fluid. Likewise, an additional virtual heat source term is applied to the right hand side of energy equation at the solid object region to maintain the solid object at the prescribed temperature all the time. The current method was validated by some benchmark forced and natural convection problems such as a uniform flow past a heated circular cylinder, and a heated circular cylinder inside a square enclosure. We further demonstrated this method by studying a mixed convection problem involving a heated circular cylinder moving inside a square enclosure. Our current method avoids the otherwise requested dynamic grid generation in traditional method and shows great efficiency in the computation of thermal and flow fields caused by fluid-structure interaction.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Cavallaro, Luca, Fabio Dentale, Giovanna Donnarumma, Enrico Foti, Rosaria E. Musumeci y Eugenio Pugliese Carratelli. "RUBBLE MOUND BREAKWATER OVERTOPPING: ESTIMATION OF THE RELIABILITY OF A 3D NUMERICAL SIMULATION". Coastal Engineering Proceedings 1, n.º 33 (25 de octubre de 2012): 8. http://dx.doi.org/10.9753/icce.v33.structures.8.

Texto completo
Resumen
Until recently, physical models were the only way to investigate into the details of breakwaters behavior under wave attack. From the numerical point of view, the complexity of the fluid dynamic processes involved has so far hindered the direct application of Navier-Stokes equations within the armour blocks, due to the complex geometry and the presence of strongly non stationary flows, free boundaries and turbulence. In the present work the most recent CFD technology is used to provide a new and more reliable approach to the design analysis of breakwaters, especially in connection with run-up and overtopping. The solid structure is simulated within the numerical domain by overlapping individual virtual elements to form the empty spaces delimited by the blocks. Thus, by defining a fine computational grid, an adequate number of nodes is located within the interstices and a complete solution of the full hydrodynamic equations is carried out. In the work presented here the numerical simulations are carried out by integrating the three-dimensional Reynolds Average Navier-Stokes Equations coupled with the RNG turbulence model and a Volume of Fluid Method used to handle the dynamics of the free surface. The aim of the present work is to investigate the reliability of this approach as a design tool. Two different breakwaters are considered, both located in Southern Sicily: one a typical quarry stone breakwater, another a more complex design incorporating a spill basin and an armoured layer made up by Coreloc® blocks.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Khan, Asif, Shahab Khushnood, Najum Ul Saqib y Imran Sajid Shahid. "Numerical simulation of vortex induced vibration in heat exchanger tube bundle at low Reynolds number". Journal of Naval Architecture and Marine Engineering 14, n.º 2 (28 de diciembre de 2017): 77–91. http://dx.doi.org/10.3329/jname.v14i2.25894.

Texto completo
Resumen
It is sound recognized that when the tube is forced to vibrate or is naturally excited to sufficient amplitudes by flow-induced forces, cyclones peeling phenomena arises at downstream of a tube which clues to vibration in the tube. Two-dimensional numerical recreation model for the computation of flow induced vibration of heat exchanger tube bundle imperiled to cross- flow is proficient in current research. Computational Fluid Dynamics (CFD) tool, GAMBIT (grid generation) and ANSYS FLUENT (fluid flow analysis) are operated during numerical investigations. k-epsilon model is used to solve the Navier– Stokes equations. Lift coefficient graph derived from analysis is used to predict the vortex shedding frequency using Fast Fourier Transform (FFT). The results of flow rate, Strouhal number, Reduced velocity, Natural frequency of tube as found from the experimental data has been verified numerically for a Reynolds number range of 4.45 × 104<Re <4.65 × 104 . It is concluded that experimental results are well in agreement with the numerical results.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Kanchan, Mithun y Ranjith Maniyeri. "Numerical Simulation of Flow in a Wavy Wall Microchannel Using Immersed Boundary Method". Recent Patents on Mechanical Engineering 13, n.º 2 (31 de mayo de 2020): 118–25. http://dx.doi.org/10.2174/2212797613666200207111629.

Texto completo
Resumen
Background: Fluid flow in microchannels is restricted to low Reynolds number regimes and hence inducing chaotic mixing in such devices is a major challenge. Over the years, the Immersed Boundary Method (IBM) has proved its ability in handling complex fluid-structure interaction problems. Objectives: Inspired by recent patents in microchannel mixing devices, we study passive mixing effects by performing two-dimensional numerical simulations of wavy wall in channel flow using IBM. Methods: The continuity and Navier-Stokes equations governing the flow are solved by fractional step based finite volume method on a staggered Cartesian grid system. Fluid variables are described by Eulerian coordinates and solid boundary by Lagrangian coordinates. A four-point Dirac delta function is used to couple both the coordinate variables. A momentum forcing term is added to the governing equation in order to impose the no-slip boundary condition between the wavy wall and fluid interface. Results: Parametric study is carried out to analyze the fluid flow characteristics by varying amplitude and wavelength of wavy wall configurations for different Reynolds number. Conclusion: Configurations of wavy wall microchannels having a higher amplitude and lower wavelengths show optimum results for mixing applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Chandra Murty, MSR, PK Sinha y D. Chakraborty. "Effect of rocket exhaust of canisterized missile on adjoining launching system". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 231, n.º 11 (8 de agosto de 2016): 2085–97. http://dx.doi.org/10.1177/0954410016662064.

Texto completo
Resumen
Transient numerical simulations are carried out to study missile motion in a vertical launch system and to estimate the effect of missile exhaust in the adjoining launch structure. Three-dimensional Navier–Stokes equations along with k–ɛ turbulence model and species transport equations are solved using commercial computational fluid dynamics software. Dynamic grid movement is adopted and one degree of freedom trajectory equations are integrated with the computational fluid dynamic solver to obtain the instantaneous position of the missile. Multi-zone grid generation approach with sliding interface method through layering technique is adopted to address the changing boundary problem. The computational methodology is applied to study the missile motion in a scale-down test configuration as well as in the flight condition. The computations capture all essential flow features of test and flight conditions in active cell as well as in adjacent cells. Parametric studies are conducted to study the effect geometrical features and measurement uncertainty in the input data. Computed pressures in the adjacent cells in the launch system match better (∼12%) with the experimental and flight results compared to distant cells.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Bihs, Hans, Kristina Heveling y Arun Kamath. "REEF3D:NSEWAVE, A THREE-DIMENSIONAL NON-HYDROSTATIC WAVE MODEL ON A FIXED GRID". Coastal Engineering Proceedings, n.º 36 (30 de diciembre de 2018): 8. http://dx.doi.org/10.9753/icce.v36.waves.8.

Texto completo
Resumen
For coastal engineering problems, wave modeling is required for various spatial scales. In recent years, the development of high-resolution Computational Fluid Dynamics (CFD) based numerical wave tanks (NWT) has gained a lot of attention. Here, the Navier-Stokes equations are solved together with a two-phase interface capturing algorithm for the calculation of the free surface location. The interface capturing treatment of the free water surface is performed on fixed grids, allowing for the simulation of complex wave phenomena such as breaking waves. The CFD-based NWT are preferably used for nearfield problems, such as wave-structure interaction. For larger spatial scales, the computational cost becomes rather expensive. In the current paper, the three-dimensional open-source hydrodynamics model REEF3D is extended from a CFD-based NWT to a non-hydrostatic wave model, suitable for economic large scale computation of waves.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Brousseau, Paul, Mustapha Benaouicha y Sylvain Guillou. "Hydrodynamic Efficiency Analysis of a Flexible Hydrofoil Oscillating in a Moderate Reynolds Number Fluid Flow". Energies 14, n.º 14 (20 de julio de 2021): 4370. http://dx.doi.org/10.3390/en14144370.

Texto completo
Resumen
The paper focuses on the study of a semi-activated system, based on a combination of two movements of forced pitching and free-heaving motion. Therefore, quantifying with accuracy the hydrodynamic forces applied on the hydrofoil seems to be crucial. This is investigated throughout a numerical analysis of the hydrofoil dynamics. The deformable structure is oscillating in a low-Reynolds number flow. In this study, a hydrofoil animated by a combined forced pitching and heaving movements is considered. Various materials of the hydrofoil structure are studied, from the rigid material to a more flexible one. A partitioned implicit coupling approach is applied in order to consider the Fluid-Structure Interaction (FSI) effects, while the Navier–Stokes equations are solved using the Arbitrary Lagrangian–Eulerian (ALE) method. Both the viscous incompressible Navier–Stokes equations and the elasticity equation are solved using finite volume method. The study is based on the analysis of the hydrodynamic loads acting on the structure. Therefore, the induced dynamics and the power coefficient of the structure are investigated. It is shown that the flexibility of the hydrofoil has an effect on its hydrodynamic behavior. Indeed it increases the load fluctuations and the horizontal mean force component. Furthermore, the unsteady vortices around the hydrofoil are highly impacted by its deformations. Finally, the structure deformations mostly improve the device energy efficiency.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Michailides, Constantine. "VD-PQ; A Velocity-Dependent Viscous Damping Model for Wave-Structure Interaction Analysis". Journal of Marine Science and Engineering 9, n.º 2 (9 de febrero de 2021): 175. http://dx.doi.org/10.3390/jmse9020175.

Texto completo
Resumen
For the analysis and design of coastal and offshore structures, viscous loads represent one of the most influential parameters that dominate their response. Very commonly, the potential flow theory is used for identifying the excitation wave loads, while the viscous damping loads are taken into consideration as distributed drag type loads and/or as linear and quadratic damping loads approximated with the use of motion decay curves of the structure in specific degrees of freedom. In the present paper, is developed and proposed a numerical analysis method for addressing wave-structure interaction effects through a velocity-dependent viscous damping model. Results derived by a computational fluid dynamics model are coupled with a model that uses the boundary element method for the estimation of the viscous damping loads iteratively in every time-step of the analysis. The computational fluid dynamics model solves the Navier–Stokes equations considering incompressible flow, while the second model solves the modified Cummins Equation of motion of the structure in the time domain. Details about the development of the coupling method and the velocity-dependent viscous damping (VD-PQ) are presented. The coupling between the different models is realized through a dynamic-link library. The proposed coupling method is applied for the case of a wave energy converter. Results derived with the use of the developed numerical analysis method are compared against experimental data and relevant numerical analysis predictions. The importance of considering the instantaneous velocity of the structure in estimating the viscous damping loads is demonstrated. The proposed numerical analysis method for estimating the viscous damping loads provides good accuracy compared to experimental data and, at the same time, low computational cost.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Liu, Long, Hongda Li, Haisong Ang y Tianhang Xiao. "Numerical investigation of flexible flapping wings using computational fluid dynamics/computational structural dynamics method". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 232, n.º 1 (6 de octubre de 2016): 85–95. http://dx.doi.org/10.1177/0954410016671343.

Texto completo
Resumen
A fluid–structure interaction numerical simulation was performed to investigate the flow field around a flexible flapping wing using an in-house developed computational fluid dynamics/computational structural dynamics solver. The three-dimensional (3D) fluid–structure interaction of the flapping locomotion was predicted by loosely coupling preconditioned Navier–Stokes solutions and non-linear co-rotational structural solutions. The computational structural dynamic solver was specifically developed for highly flexible flapping wings by considering large geometric non-linear characteristics. The high fidelity of the developed methodology was validated by benchmark tests. Then, an analysis of flexible flapping wings was carried out with a specific focus on the unsteady aerodynamic mechanisms and effects of flexion on flexible flapping wings. Results demonstrate that the flexion will introduce different flow fields, and thus vary thrust generation and pressure distribution significantly. In the meanwhile, relationship between flapping frequency and flexion plays an important role on efficiency. Therefore, appropriate combination of frequency and flexion of flexible flapping wings provides higher efficiency. This study may give instruction for further design of flexible flapping wings.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Le-Quoc, C., Linh A. Le, V. Ho-Huu, P. D. Huynh y T. Nguyen-Thoi. "An Immersed Boundary Proper Generalized Decomposition (IB-PGD) for Fluid–Structure Interaction Problems". International Journal of Computational Methods 15, n.º 06 (septiembre de 2018): 1850045. http://dx.doi.org/10.1142/s0219876218500457.

Texto completo
Resumen
Proper generalized decomposition (PGD), a method looking for solutions in separated forms, was proposed recently for solving highly multidimensional problems. In the PGD, the unknown fields are constructed using separated representations, so that the computational complexity scales linearly with the dimension of the model space instead of exponential scaling as in standard grid-based methods. The PGD was proven to be effective, reliable and robust for some simple benchmark fluid–structure interaction (FSI) problems. However, it is very hard or even impossible for the PGD to find the solution of problems having complex boundary shapes (i.e., problems of fluid flow with arbitrary complex geometry obstacles). The paper hence further extends the PGD to solve FSI problems with arbitrary boundaries by combining the PGD with the immersed boundary method (IBM) to give a so-called immersed boundary proper generalized decomposition (IB-PGD). In the IB-PGD, a forcing term constructed by the IBM is introduced to Navier–Stokes equations to handle the influence of the boundaries and the fluid flow. The IB-PGD is then applied to solve Poisson’s equation to find the fluid pressure distribution for each time step. The numerical results for three problems are presented and compared to those of previous publications to illustrate the robustness and effectiveness of the IB-PGD in solving complex FSI problems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Huang, Ya-Nan, Wen-Hua Wang, Jun Liu y Yan-Ying Wang. "Special Motion Characteristic of Wind Turbine Installation Vessel in Waves". International Journal of Computational Methods 17, n.º 05 (6 de junio de 2019): 1940007. http://dx.doi.org/10.1142/s0219876219400073.

Texto completo
Resumen
Wind turbine installation vessel (WTIV) is a kind of special ship that has large upper deck and shallow draft, which is specifically designed for the installation of offshore wind turbines. However, accurately predicting the motion of WTIV is still a challenge. In this paper, computational fluid dynamics (CFD) is adopted to investigate the motion of WTIV under different wave conditions in a three-dimensional numerical wave tank using commercial software Star-CCM+. Reynolds Averaged Navier–Stokes (RANS) equations and [Formula: see text] turbulent models are used for modeling the turbulent flow, and volume of fluid (VOF) method is applied to track the location and shape of transit-free surface. The overset grid technique is taken to handle the fluid–structure interaction (FSI) problem with large motion amplitude. The simulation results have been validated by comparing with the experimental data, and show potential to provide theoretical guidance and technical support for the motion of WTIV in waves.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Eren, Emir Taha, Mahdi Tabatabaei Malazi y Galip Temir. "Numerical Investigation on the Collision between a Solitary Wave and a Moving Cylinder". Water 12, n.º 8 (31 de julio de 2020): 2167. http://dx.doi.org/10.3390/w12082167.

Texto completo
Resumen
A 2-D numerical wave tank (NWT) was applied for solving the interaction between a solitary wave and a moving circular cylinder. The cylinder was placed at various positions from the tank bed floor. The cylinder can move at a constant horizontal velocity towards the solitary wave. The collision between a solitary wave and a moving cylinder is investigated at various conditions. A total of fifteen cases were studied. Ten different numerical simulations were used, including five submergence depths and two different moving velocities. The other five different numerical simulations were studied when the cylinder was unmoved in the NWT for comparing wave-structure interaction results between the moving and unmoved cylinders. The numerical results were obtained by calculating Reynolds-Averaged Navier-Stokes (RANS) equations and the volume of fluid (VOF) equations. Two different codes (User-Define-Function-UDF) were used for the generation of a solitary wave by moving a wave paddle and traveling cylinder in the NWT. The dynamic mesh method was applied for recreating mesh. First, the ability of CFD codes to generate a solitary wave by using wave paddle movement and the hydrodynamic forces of a moving cylinder were validated by numerical results. Further, the free-surface elevation and hydrodynamic forces were considered at various conditions. The numerical results show that moving cylinder velocity and the space between the cylinder and the tank bed floor have significant effects on surface displacement and hydrodynamic forces.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Vazifehdoostsaleh, A., N. Fatouraee, M. Navidbakhsh y F. Izadi. "Numerical Analysis of the Sulcus Vocalis Disorder on the Function of the Vocal Folds". Journal of Mechanics 33, n.º 4 (25 de octubre de 2016): 513–20. http://dx.doi.org/10.1017/jmech.2016.92.

Texto completo
Resumen
AbstractSpeaking is a very complex process resulting from the interaction between the air flow along the larynx and the vibrating structure of the vocal folds. Sulcus is a disease missing layers in the vocal folds result in cracks resulting in some disorders in producing sounds. Sulcus and its effects on the vocal cord vibrations are numerically studied for the first time in this paper. An ideal model of healthy vocal folds and Sulcus vocalis has been two-dimensionally defined and the finite element model of vocal folds is solved in a fully coupled form. The proposed calculative model was used in a fluid range of the computational fluid dynamics, arbitrary Lagrangian-Eulerian (ALE), incompressible continuity and Navier-Stokes equations and in a structure range of a three-layer elastic linear model. Self-excited oscillations were presented for vocal folds among type II patients and compared with healthy models. Responses were qualitatively and quantitatively studied. The healthy model was compared with numerical and empirical results. In addition, the effects of the disease on the flow parameters and the vibration frequency of the vocal folds were studied. According to the simulated model, the oscillation frequency decreased 25% and the average and instantaneous volume flux significantly increased compared to healthy samples. Results may help present a guideline for surgery and subsequently evaluate patients’ improvement.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

BOFFI, DANIELE, NICOLA CAVALLINI y LUCIA GASTALDI. "FINITE ELEMENT APPROACH TO IMMERSED BOUNDARY METHOD WITH DIFFERENT FLUID AND SOLID DENSITIES". Mathematical Models and Methods in Applied Sciences 21, n.º 12 (diciembre de 2011): 2523–50. http://dx.doi.org/10.1142/s0218202511005829.

Texto completo
Resumen
The Immersed Boundary Method (IBM) has been designed by Peskin for the modeling and the numerical approximation of fluid-structure interaction problems, where flexible structures are immersed in a fluid. In this approach, the Navier–Stokes equations are considered everywhere and the presence of the structure is taken into account by means of a source term which depends on the unknown position of the structure. These equations are coupled with the condition that the structure moves at the same velocity of the underlying fluid. Recently, a finite element version of the IBM has been developed, which offers interesting features for both the analysis of the problem under consideration and the robustness and flexibility of the numerical scheme. Initially, we considered structure and fluid with the same density, as it often happens when dealing with biological tissues. Here we study the case of a structure which can have a density higher than that of the fluid. The higher density of the structure is taken into account as an excess of Lagrangian mass located along the structure, and can be dealt with in a variational way in the finite element approach. The numerical procedure to compute the solution is based on a semi-implicit scheme. In fluid-structure simulations, nonimplicit schemes often produce instabilities when the density of the structure is close to that of the fluid. This is not the case for the IBM approach. In fact, we show that the scheme enjoys the same stability properties as in the case of equal densities.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Khellaf, Belkhiri y Boumeddane Boussad. "Computational hemodynamic investigation of a new bileaflet mechanical heart valve". SIMULATION 96, n.º 5 (14 de noviembre de 2019): 459–69. http://dx.doi.org/10.1177/0037549719886364.

Texto completo
Resumen
In this paper, we perform a numerical analysis for simulating steady, two-dimensional, laminar blood flow through our proposed design, known as the Butterfly mechanical heart valve, where the leaflets are fully opened. Blood has been assumed to be Newtonian and non-Newtonian fluid using the Casson model for shear-thinning behavior. A non-uniform Cartesian grid generation technique is presented to generate a two-dimensional grid for the irregular geometry of the Butterfly valve. The governing Navier–Stokes equations of flow, written in a stream function–vorticity formulation, are solved by the finite difference method with hybrid differencing of the convective terms. The computed results show that the blood’s non-Newtonian nature significantly affects the flow field with the existence of recirculation and consequently stagnation causing thrombus formation, as well as an increase of the shear stress along the wall, which contributes to hemolytic blood damage. The results demonstrate that the model is capable of predicting the hemodynamic features most interesting to physiologists. It can be used to assess thromboembolic problems occurring with heart valves and in the design of cardiac prostheses.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Tchomeni, Bernard Xavier y Alfayo Alugongo. "Modelling and numerical simulation of vibrations induced by mixed faults of a rotor system immersed in an incompressible viscous fluid". Advances in Mechanical Engineering 10, n.º 12 (diciembre de 2018): 168781401881934. http://dx.doi.org/10.1177/1687814018819341.

Texto completo
Resumen
Extraction of features of a specific signal in fluid–structure interaction is among the hottest problems in the field of mechanics. Yet, a comprehensive study of such problems remains a challenge due to their high nonlinearity and multidisciplinary nature. The study presented in this article is focused on a particular engineering application of fluid–structure interaction. The governing equation of a spinning rotor submerged in an incompressible viscous fluid is modelled by means of well-established dissipative energy principle, yielding a highly coupled 3-degree-of-freedom system with strong nonlinear terms. A two-dimensional model of the Navier–Stokes equations for the incompressible flow is developed for the viscous fluid motion around the spinning rotor under high fluctuations induced by unbalance, rotor–stator rub and a crack. The extracted features through frequency spectrum, orbit patterns and rotor-coupled deflection revealed that the performances of rotor systems are highly impacted by the hydrodynamic terms which are the sources of multiple frequency response. The results showed that the complex fluid–rotor model yields good analysis of fault diagnosis, and responses at more than one parametric resonance appear and reach a point of complex feature extractions when more than one fault coexists in the system. Furthermore, a nonlinear denoising by thresholding the wavelet coefficients is performed to overcome the complexity of discretization and for effective multiple fault diagnoses.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Corvaro, Sara, Andrea Crivellini, Francesco Marini, Andrea Cimarelli, Loris Capitanelli y Alessandro Mancinelli. "Experimental and Numerical Analysis of the Hydrodynamics around a Vertical Cylinder in Waves". Journal of Marine Science and Engineering 7, n.º 12 (10 de diciembre de 2019): 453. http://dx.doi.org/10.3390/jmse7120453.

Texto completo
Resumen
The present study provides an extensive analysis on the hydrodynamics induced by a vertical slender pile under wave action. The authors carried out the study both experimentally and numerically, thus enabling a deep understanding of the flow physics. The experiments took place at a wave flume of the Università Politecnica delle Marche. Two different experimental campaigns were performed: In the former one, a mobile bed model was realized with the aims to study both the scour process and the hydrodynamics around the cylinder; in the latter one, the seabed was rigid in order to make undisturbed optical measurements, providing a deeper analysis of the hydrodynamics. The numerical investigation was made by performing a direct numerical simulation. A second order numerical discretization, both in time and in space, was used to solve the Navier–Stokes equations while a volume of fluid (VOF) approach was adopted for tracking the free surface. The comparison between experimental and numerical results is provided in terms of velocity, pressure distributions around the cylinder, and total force on it. The analysis of the pressure gradient was used to evaluate the generation and evolution of vortices around the cylinder. Finally, the relation between scour and bed shear stresses due to the structure of the vortex pattern around the pile was assessed. It is worth noting that the physical understanding of this last analysis was enabled by the combined use of experimental data on scour and numerical data on the flow pattern.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Lotfi, Babak, Bengt Sunden y Qiu-Wang Wang. "3D fluid-structure interaction (FSI) simulation of new type vortex generators in smooth wavy fin-and-elliptical tube heat exchanger". Engineering Computations 33, n.º 8 (7 de noviembre de 2016): 2504–29. http://dx.doi.org/10.1108/ec-04-2015-0091.

Texto completo
Resumen
Purpose The purpose of this paper is to investigate the numerical fluid-structure interaction (FSI) framework for the simulations of mechanical behavior of new vortex generators (VGs) in smooth wavy fin-and-elliptical tube (SWFET) heat exchanger using the ANSYS MFX Multi-field® solver. Design/methodology/approach A three-dimensional FSI approach is proposed in this paper to provide better understanding of the performance of the VG structures in SWFET heat exchangers associated with the alloy material properties and geometric factors. The Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are applied for modeling of the turbulent flow in SWFET heat exchanger and the linear elastic Cauchy-Navier model is solved for the structural von Mises stress and elastic strain analysis in the VGs region. Findings Parametric studies conducted in the course of this research successfully identified illustrate that the maximum magnitude of von Mises stress and elastic strain occurs at the root of the VGs and depends on geometrical parameters and material types. These results reveal that the titanium alloy VGs shows a slightly higher strength and lower elastic strain compared to the aluminum alloy VGs. Originality/value This paper is one of the first in the literature that provides original information mechanical behavior of a SWFET heat exchanger model with new VGs in the field of FSI coupling technique.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Albatati, F. A., A. M. Hegab, M. A. Rady, A. A. Abuhabaya y S. M. El-Behery. "Turbulent Flow Characteristics in a Model of a Solid Rocket Motor Chamber with Sidewall Mass Injection and End-Wall Disturbance". Mathematical Problems in Engineering 2021 (15 de junio de 2021): 1–17. http://dx.doi.org/10.1155/2021/9978102.

Texto completo
Resumen
The present analytical, numerical, and experimental investigations are performed to study the flow field in acoustically simulated solid rocket motor (SRM) chamber geometry. The computational solution is carried out for a high Reynolds number and low Mach number internal flows driven by sidewall mass addition in a long chamber with end-wall disturbances. This kind of flow (transient, weakly viscous, and contains vorticity) have several features in common with a turbulent flow field. The numerical study is performed by solving the unsteady Reynolds-averaged Navier–Stokes equations along with the energy equation using the control volume approach based on a staggered grid system. The v2-f turbulence model has been implemented in the current study. A comparison of the SIMPLE and PISO algorithms showed that both algorithms provide identical results, and the computational time using the PISO algorithm is higher by about 6% than the corresponding value of the SIMPLE algorithm. A fair agreement has been obtained between the numerical, analytical, and experimental results. Moreover, the results showed that the complex turbulent internal flow patterns are induced inside the chamber due to the strong interaction of the sidewall injection with the traveling acoustic waves. Such a complex internal structure is shown to be dependent on the piston frequency and sidewall mass flux. The current study, for the first time, emphasizes the acoustic-fluid dynamics interaction mechanism and the accompanying unsteady rotational fields along with the effect of the generated turbulence on the unsteady vorticity and its impact on the real burning rate.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Devaraj, H., Kean C. Aw, E. Haemmerle y R. Sharma. "Fluid–Structure Interaction of High Aspect-Ratio Hair-Like Micro-Structures Through Dimensional Transformation Using Lattice Boltzmann Method". International Journal of Applied Mechanics 08, n.º 08 (diciembre de 2016): 1650095. http://dx.doi.org/10.1142/s1758825116500952.

Texto completo
Resumen
3D printed hair-like micro-structures have been previously demonstrated in a novel micro-fluidic flow sensor aimed at sensing air flows down to rates of a few milliliters per second. However, there is a lack of in-depth understanding of the structural response of these ‘micro-hairs' under a fluid flow field. This paper demonstrates the use of lattice Boltzmann methods (LBM) to understand this structural response towards a better optimization of the micro-hair flow sensors designed to suit the end applications' needs. The LBM approach was chosen as an efficient alternative to simulate Navier–Stokes equations for modeling fluid flow around complex geometries primarily for improved accuracy and simplicity with lesser computational costs. As the spatial dimensions of the sensor's flow channel are much larger in comparison to the actual micro-hairs (the sensing element), a multidimensional approach of combining two-dimensional (D2Q9) and three-dimensional (D3Q19) lattice configurations were implemented for improved computational speeds and efficiency. The drag force on the micro-hairs was estimated using the momentum-exchange method in the D3Q19 configuration and this drag force is transferred to the structural analysis model which determines the micro-hair deformation using Euler–Bernoulli beam theory. The entirety of the LBM Fluid–Structure Interaction (FSI) model was implemented within MATLAB and the obtained results are compared against the numerical model implemented on a commercially available software package.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Morvarid, Masoud, Ali Rezghi, Alireza Riasi y Mojtaba Haghighi Yazdi. "3D numerical simulation of laminar water hammer considering pipe wall viscoelasticity and the arbitrary Lagrangian-Eulerian method". World Journal of Engineering 15, n.º 2 (9 de abril de 2018): 298–305. http://dx.doi.org/10.1108/wje-08-2017-0236.

Texto completo
Resumen
Purpose Analysis of fast transient flow in water pipe systems is an important issue for the prevention of unfavorable pressure oscillations and severe damage to the pipelines. This paper aims to present the performance of three-dimensional (3D) simulation of laminar water hammer caused by fast closure of valve. Design/methodology/approach The viscoelastic behavior of pipe wall is mathematically modeled by using the rheological model of Maxwell. The arbitrary Lagrangian–Eulerian (ALE) method is also used to simulate fluid–structure interaction. In this method, unlike the classical water hammer theory, the acoustic wave velocity is calculated during the numerical simulations and therefore it is not predetermined. Findings Investigating the velocity profiles and the shear stress diagrams for transient flow in elastic pipe showed that the strong effect of viscous forces on the near wall region in conjunction with the influence of inertial forces in the central region of the pipe leads to creation of reverse flow near the pipe wall. Comparing the numerical results obtained for elastic pipe with those of viscoelastic pipe revealed that during transient condition, the viscoelastic wall absorbs the energy of fluid and therefore pressure fluctuations of viscoelastic pipe are damped more quickly. Moreover, the 3D simulation of water hammer confirmed the plane wave hypothesis of water hammer. Originality/value The 3D Navier–Stokes equations are solved considering the viscoelasticity of the pipe and the ALE method using the software package of COMSOL Multiphysics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Liu, Xiaojian, Cheng Liu, Xiaowei Zhu, Yong He, Qisong Wang y Zhiyuan Wu. "3D Modeling and Mechanism Analysis of Breaking Wave-Induced Seabed Scour around Monopile". Mathematical Problems in Engineering 2020 (17 de marzo de 2020): 1–17. http://dx.doi.org/10.1155/2020/1647640.

Texto completo
Resumen
Breaking wave-induced scour is recognized as one of the major causes of coastal erosion and offshore structure failure, which involves in the full 3D water-air-sand interaction, raising a great challenge for the numerical simulation. To better understand this process, a nonlinear 3D numerical model based on the open-source CFD platform OpenFOAM® was self-developed in this study. The Navier–Stokes equations were used to compute the two-phase incompressible flow, combining with the finite volume method (FVM) to discretize calculation domain, a modified VOF method to track the free surface, and a k−ε model to closure the turbulence. The nearshore sediment transport process is reproduced in view of shear stress, suspended load, and bed load, in which the terms of shear stress and suspended load were updated by introducing volume fraction. The seabed morphology is updated based on Exner equation and implemented by dynamic mesh technique. The mass conservative sand slide algorithm was employed to avoid the incredible vary of the bed mesh. Importantly, a two-way coupling method connecting the hydrodynamic module with the beach morphodynamic module is implemented at each computation step to ensure the fluid-sediment interaction. The capabilities of this model were calibrated by laboratory data from some published references, and the advantages/disadvantages, as well as proper recommendations, were introduced. Finally, nonbreaking- and breaking wave-induced scour around the monopile, as well as breaking wave-induced beach evolution, were reproduced and discussed. This study would be significantly helpful to understand and evaluate the nearshore sediment transport.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Saeedi, Mehran, Kai-Uwe Bletzinger y Roland Wüchner. "Multi-fidelity fluid–structure interaction analysis of a membrane blade concept in non-rotating, uniform flow condition". Wind Energy Science 1, n.º 2 (23 de noviembre de 2016): 255–69. http://dx.doi.org/10.5194/wes-1-255-2016.

Texto completo
Resumen
Abstract. In order to study the aerodynamic performance of a semi-flexible membrane blade, fluid–structure interaction simulations have been performed for a non-rotating blade under steady inflow condition. The studied concept blade has a length of about 5 m. It consists of a rigid mast at the leading edge, ribs along the blade, tensioned edge cables at the trailing edge and membranes forming the upper and lower surface of the blade. Equilibrium shape of membrane structures in the absence of external loading depends on the location of the supports and the prestresses in the membranes and the supporting edge cables. Form-finding analysis is used to find the equilibrium shape. The exact form of a membrane structure for the service conditions depends on the internal forces and also on the external loads, which in turn depend on the actual shape. As a result, two-way coupled fluid–structure interaction (FSI) analysis is necessary to study this class of structures. The fluid problem has been modelled using two different approaches, which are the vortex panel method and the numerical solution of the Navier–Stokes equations. Nonlinear analysis of the structural problem is performed using the finite-element method. The goal of the current study is twofold: first, to make a comparison between the converged FSI results obtained from the two different methods to solve the fluid problem. This investigation is a prerequisite for the development of an efficient and accurate multi-fidelity simulation concept for different design stages of the flexible blade. The second goal is to study the aerodynamic performance of the membrane blade in terms of lift and drag coefficient as well as lift-to-drag ratio and to compare them with those of the equivalent conventional rigid blade. The blade configuration from the NASA-Ames Phase VI rotor is taken as the baseline rigid-blade configuration. The studied membrane blade shows a higher lift curve slope and higher lift-to-drag ratio compared with the rigid blade.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Vlasenko, V. I. y K. Hutter. "Generation of second mode solitary waves by the interaction of a first mode soliton with a sill". Nonlinear Processes in Geophysics 8, n.º 4/5 (31 de octubre de 2001): 223–39. http://dx.doi.org/10.5194/npg-8-223-2001.

Texto completo
Resumen
Abstract. Results of an experimental and theoretical study of the interaction of a first mode internal solitary wave with a localised bottom topography (sill) are presented. Laboratory experiments have been performed in a 10m long and 0.33m wide channel filled with a stratified fluid. The interface between the two layers (fresh and salt water) is diffuse and has a finite thickness. Soliton-type disturbances of the interface having characteristics of the first baroclinic mode are generated at one channel end. They move along the channel and encounter an underwater obstacle (sill) in the middle of the channel, where they break into reflected and transmitted waves. Two types of internal waves are produced by the interaction: a fast first mode internal soliton and a slower (by a factor of approximately 3) second mode soliton-like wave. A numerical model, based on the two-dimensional Navier-Stokes equations in the Boussinesq approximation, is used tore produce the laboratory experiment. The detailed analysis of the horizontal and vertical structures of transmitted and reflected waves showed that the fast reflected and transmitted waves observed in the experiment can be interpreted as a first mode internal solitary wave whose characteristics are very close to those of the K-dV solitons. It is also demonstrated that the slow speed waves, generated during the interaction behind the first fast wave have vertical and horizontal structures very close to the second mode internal K-dV solitons.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Gharakhani, Adrin y Ahmed F. Ghoniem. "Simulation of the Piston Driven Flow Inside a Cylinder With an Eccentric Port". Journal of Fluids Engineering 120, n.º 2 (1 de junio de 1998): 319–26. http://dx.doi.org/10.1115/1.2820651.

Texto completo
Resumen
A grid-free Lagrangian approach is applied to simulate the high Reynolds number unsteady flow inside a three-dimensional domain with moving boundaries. For this purpose, the Navier-Stokes equations are expressed in terms of the vorticity transport formulation. The convection and stretch of vorticity are obtained using the Lagrangian vortex method, while diffusion is approximated by the random walk method. The boundary-element method is used to solve a potential flow problem formulated to impose the normal flux condition on the boundary of the domain. The no-slip condition is satisfied by a vortex tile generation mechanism at the solid boundary, which takes into account the time-varying boundary surfaces due to, e.g., a moving piston. The approach is entirely grid-free within the fluid domain, requiring only meshing of the surface boundary, and virtually free of numerical diffusion. The method is applied to study the evolution of the complex vortical structure forming inside the time-varying semi-confined geometry of a cylinder equipped with an eccentric inlet port and a harmonically driven piston. Results show that vortical structures resembling those observed experimentally in similar configurations dominate this unsteady flow. The roll-up of the incoming jet is responsible for the formation of eddies whose axes are nearly parallel to the cylinder axis. These eddies retain their coherence for most of the stroke length. Instabilities resembling conventional vortex ring azimuthal modes are found to be responsible for the breakup of these toroidal eddies near the end of the piston motion. The nondiffusive nature of the numerical approach allows the prediction of these essentially inviscid phenomena without resorting to a turbulence model or the need for extremely fine, adaptive volumetric meshes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Walters, D. K. y J. H. Leylek. "A Detailed Analysis of Film-Cooling Physics: Part I—Streamwise Injection With Cylindrical Holes". Journal of Turbomachinery 122, n.º 1 (1 de febrero de 1997): 102–12. http://dx.doi.org/10.1115/1.555433.

Texto completo
Resumen
A previously documented systematic computational methodology is implemented and applied to a jet-in-crossflow problem in order to document all of the pertinent flow physics associated with a film-cooling flowfield. Numerical results are compared to experimental data for the case of a row of three-dimensional, inclined jets with length-to-diameter ratios similar to a realistic film-cooling application. A novel vorticity-based approach is included in the analysis of the flow physics. Particular attention has been paid to the downstream coolant structures and to the source and influence of counterrotating vortices in the crossflow region. It is shown that the vorticity in the boundary layers within the film hole is primarily responsible for this secondary motion. Important aspects of the study include: (1) a systematic treatment of the key numerical issues, including accurate computational modeling of the physical problem, exact geometry and high-quality grid generation techniques, higher-order numerical discretization, and accurate evaluation of turbulence model performance; (2) vorticity-based analysis and documentation of the physical mechanisms of jet–crossflow interaction and their influence on film-cooling performance; (3) a comparison of computational results to experimental data; and (4) comparison of results using a two-layer model near-wall treatment versus generalized wall functions. Solution of the steady, time-averaged Navier–Stokes equations were obtained for all cases using an unstructured/adaptive grid, fully explicit, time-marching code with multigrid, local time stepping, and residual smoothing acceleration techniques. For the case using the two-layer model, the solution was obtained with an implicit, pressure-correction solver with multigrid. The three-dimensional test case was examined for two different film-hole length-to-diameter ratios of 1.75 and 3.5, and three different blowing ratios, from 0.5 to 2.0. All of the simulations had a density ratio of 2.0, and an injection angle of 35 deg. An improved understanding of the flow physics has provided insight into future advances to film-cooling configuration design. In addition, the advantages and disadvantages of the two-layer turbulence model are highlighted for this class of problems. [S0889-504X(00)01201-0]
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Michel, Guillaume y Gregory P. Chini. "Strong wave–mean-flow coupling in baroclinic acoustic streaming". Journal of Fluid Mechanics 858 (6 de noviembre de 2018): 536–64. http://dx.doi.org/10.1017/jfm.2018.785.

Texto completo
Resumen
The interaction of an acoustic wave with a stratified fluid can drive strong streaming flows owing to the baroclinic production of fluctuating vorticity, as recently demonstrated by Chini et al. (J. Fluid Mech., 744, 2014, pp. 329–351). In the present investigation, a set of wave/mean-flow interaction equations is derived that governs the coupled dynamics of a standing acoustic-wave mode of characteristic (small) amplitude $\unicode[STIX]{x1D716}$ and the streaming flow it drives in a thin channel with walls maintained at differing temperatures. Unlike classical Rayleigh streaming, the resulting mean flow arises at $O(\unicode[STIX]{x1D716})$ rather than at $O(\unicode[STIX]{x1D716}^{2})$. Consequently, fully two-way coupling between the waves and the mean flow is possible: the streaming is sufficiently strong to induce $O(1)$ rearrangements of the imposed background temperature and density fields, which modifies the spatial structure and frequency of the acoustic mode on the streaming time scale. A novel Wentzel–Kramers–Brillouin–Jeffreys analysis is developed to average over the fast wave dynamics, enabling the coupled system to be integrated strictly on the slow time scale of the streaming flow. Analytical solutions of the reduced system are derived for weak wave forcing and are shown to reproduce results from prior direct numerical simulations (DNS) of the compressible Navier–Stokes and heat equations with remarkable accuracy. Moreover, numerical simulations of the reduced system are performed in the regime of strong wave/mean-flow coupling for a fraction of the computational cost of the corresponding DNS. These simulations shed light on the potential for baroclinic acoustic streaming to be used as an effective means to enhance heat transfer.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Luhar, M., A. S. Sharma y B. J. McKeon. "On the structure and origin of pressure fluctuations in wall turbulence: predictions based on the resolvent analysis". Journal of Fluid Mechanics 751 (16 de junio de 2014): 38–70. http://dx.doi.org/10.1017/jfm.2014.283.

Texto completo
Resumen
AbstractWe generate predictions for the fluctuating pressure field in turbulent pipe flow by reformulating the resolvent analysis of McKeon and Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382) in terms of the so-called primitive variables. Under this analysis, the nonlinear convective terms in the Fourier-transformed Navier–Stokes equations (NSE) are treated as a forcing that is mapped to a velocity and pressure response by the resolvent of the linearized Navier–Stokes operator. At each wavenumber–frequency combination, the turbulent velocity and pressure field are represented by the most-amplified (rank-1) response modes, identified via a singular value decomposition of the resolvent. We show that these rank-1 response modes reconcile many of the key relationships among the velocity field, coherent structure (i.e. hairpin vortices), and the high-amplitude wall-pressure events observed in previous experiments and direct numerical simulations (DNS). A Green’s function representation shows that the pressure fields obtained under this analysis correspond primarily to the fast pressure contribution arising from the linear interaction between the mean shear and the turbulent wall-normal velocity. Recovering the slow pressure requires an explicit treatment of the nonlinear interactions between the Fourier response modes. By considering the velocity and pressure fields associated with the triadically consistent mode combination studied by Sharma and McKeon (J. Fluid Mech., vol. 728, 2013, pp. 196–238), we identify the possibility of an apparent amplitude modulation effect in the pressure field, similar to that observed for the streamwise velocity field. However, unlike the streamwise velocity, for which the large scales of the flow are in phase with the envelope of the small-scale activity close to the wall, we expect there to be a $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\pi /2$ phase difference between the large-scale wall-pressure and the envelope of the small-scale activity. Finally, we generate spectral predictions based on a rank-1 model assuming broadband forcing across all wavenumber–frequency combinations. Despite the significant simplifying assumptions, this approach reproduces trends observed in previous DNS for the wavenumber spectra of velocity and pressure, and for the scale-dependence of wall-pressure propagation speed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Kavurmacioglu, Levent, Hidir Maral, Cem Berk Senel y Cengiz Camci. "Performance of Partial and Cavity Type Squealer Tip of a HP Turbine Blade in a Linear Cascade". International Journal of Aerospace Engineering 2018 (2 de mayo de 2018): 1–11. http://dx.doi.org/10.1155/2018/3262164.

Texto completo
Resumen
Three-dimensional highly complex flow structure in tip gap between blade tip and casing leads to inefficient turbine performance due to aerothermal loss. Interaction between leakage vortex and secondary flow structures is the substantial source of that loss. Different types of squealer tip geometries were tried in the past, in order to improve turbine efficiency. The current research deals with comparison of partial and cavity type squealer tip concepts for higher aerothermal performance. Effects of squealer tip have been examined comprehensively for an unshrouded HP turbine blade tip geometry in a linear cascade. In the present paper, flow structure through the tip gap was comprehensively investigated by computational fluid dynamic (CFD) methods. Numerical calculations were obtained by solving three-dimensional, incompressible, steady, and turbulent form of the Reynolds-averaged Navier-Stokes (RANS) equations using a general purpose and three-dimensional viscous flow solver. The two-equation turbulence model, shear stress transport (SST), has been used. The tip profile belonging to the Pennsylvania State University Axial Flow Turbine Research Facility (AFTRF) was used to create an extruded solid model of the axial turbine blade. For identifying optimal dimensions of squealer rim in terms of squealer height and squealer width, our previous studies about aerothermal investigation of cavity type squealer tip were utilized. In order to obtain the mesh, an effective parametric generation has been utilized using a multizone structured mesh. Numerical calculations indicate that partial and cavity squealer designs can be effective to reduce the aerodynamic loss and heat transfer to the blade tip. Future efforts will include novel squealer shapes for higher aerothermal performance.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Kanchan, Mithun y Ranjith Maniyeri. "Numerical simulation of buckling and asymmetric behavior of flexible filament using temporal second-order immersed boundary method". International Journal of Numerical Methods for Heat & Fluid Flow 30, n.º 3 (30 de agosto de 2019): 1047–95. http://dx.doi.org/10.1108/hff-06-2019-0467.

Texto completo
Resumen
Purpose The purpose of this paper is to perform two-dimensional numerical simulation involving fluid-structure interaction of flexible filament. The filament is tethered to the bottom of a rectangular channel with oscillating fluid flow inlet conditions at low Reynolds number. The simulations are performed using a temporal second-order finite volume-based immersed boundary method (IBM). Further, to understand the relation between different aspect ratios i.e. ratio of filament length to channel height (Len/H) and fixed channel geometry ratio, i.e. ratio of channel height to channel length (H/Lc) on mixing and pumping capabilities. Design/methodology/approach The discretization of governing continuity and Navier–Stokes equation is done by finite-volume method on a staggered Cartesian grid. SIMPLE algorithm is used to solve fluid velocity and pressure terms. Two cases of oscillatory flow conditions are used with the flexible filament tethered at the center of bottom channel wall. The first case is sinusoidal oscillatory flow with phase shift (SOFPS) and second case is sinusoidal oscillatory flow without phase shift (SOF). The simulation results are validated with filament dynamics studies of previous researchers. Further, parametric analysis is carried to study the effect of filament length (aspect ratio), filament bending rigidity and Reynolds number on the complex deformation and behavior of flexible filament interacting with nearby oscillating fluid motion. Findings It is found that selection of right filament length and bending rigidity is crucial for fluid mixing scenarios. The phase shift in fluid motion is also found to critically effect filament displacement dynamics, especially for rigid filaments. Aspect ratio, suitable for mixing applications is dependent on channel geometry ratio. Symmetric deformation is observed for filaments subjected to SOFPS condition irrespective of bending rigidity, whereas medium and low rigidity filaments placed in SOF condition show severe asymmetric behavior. Two key findings of this study are: symmetric filament conformity without appreciable bending produces sweeping motion in fluid flow, which is highly suited for mixing application; and asymmetric behavior shown by the filament depicts antiplectic metachronism commonly found in beating cilia. As a result, it is possible to pin point the type of fluid motion governing fluid mixing and fluid pumping. The developed computational model can, thus, successfully demonstrate filament-fluid interaction for a wide variety of similar problems. Originality/value The present study uses a temporal second-order finite volume-based IBM to examine flexible filament dynamics for various applications such as fluid mixing. Also, it highlights the relationship between channel geometry ratio and filament aspect ratio and its effect on filament sweep patterns. The study further reports the effect of filament displacement dynamics with or without phase shift for inlet oscillating fluid flow condition.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Gautam, Prashanta y Abhilash J. Chandy. "A Computational Fluid Dynamics Model for Investigating Air-Pumping Mechanisms in Air-Borne Tire Noise". Tire Science and Technology 44, n.º 3 (1 de julio de 2016): 191–211. http://dx.doi.org/10.2346/tire.16.440304.

Texto completo
Resumen
ABSTRACT The reduction in power train noise over the past decade has led to an increased focus in reducing tire/road noise, largely due to the environmental concerns related to road traffic noise in industrial countries. Computational fluid dynamic (CFD) simulations conducted using ANSYS FLUENT are presented here with the objective of understanding air-pumping noise-generation mechanisms due to tire/road interaction. The CFD model employs a large eddy simulation turbulence modeling approach, in which the filtered compressible Navier-Stokes equations are solved to obtain temporally and spatially accurate near-field pressure fluctuations for a two-dimensional (2D) tire geometry with (1) one groove and (2) two grooves. In addition, the Ffowcs-Williams and Hawkings (FW-H) acoustic model is used to predict far-field acoustics. The deformation of the grooves, as the tire rotates, is represented by prescribed sidewall movements. Consequently, the solution to the numerical problem is obtained through a single process, thereby enabling the prediction of small-scale air pumping, horn effect, and far-field acoustics in a single simulation. The acoustic characteristics associated with air pumping are studied through spectral analysis tools, and comparisons show that the additional groove on the horn geometry alters the spectral characteristics of air pumping. Validation of the model is conducted through qualitative and quantitative comparisons with previous studies. These simulations are intended to provide a deeper understanding about the small-scale noise generation as well as the near-field and far-field acoustics, thereby paving the way for the automotive manufacturer to compare a variety of air-related tire noise characteristics without spending time and money for vehicle pass-by tests.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Zandian, A., W. A. Sirignano y F. Hussain. "Understanding liquid-jet atomization cascades via vortex dynamics". Journal of Fluid Mechanics 843 (21 de marzo de 2018): 293–354. http://dx.doi.org/10.1017/jfm.2018.113.

Texto completo
Resumen
Temporal instabilities of a planar liquid jet are studied using direct numerical simulation (DNS) of the incompressible Navier–Stokes equations with level-set (LS) and volume-of-fluid (VoF) surface tracking methods. $\unicode[STIX]{x1D706}_{2}$ contours are used to relate the vortex dynamics to the surface dynamics at different stages of the jet breakup – namely, lobe formation, lobe perforation, ligament formation, stretching and tearing. Three distinct breakup mechanisms are identified in the primary breakup, which are well categorized on the parameter space of gas Weber number ($We_{g}$) versus liquid Reynolds number ($Re_{l}$). These mechanisms are analysed here from a vortex dynamics perspective. Vortex dynamics explains the hairpin formation, and the interaction between the hairpins and the Kelvin–Helmholtz (KH) roller explains the perforation of the lobes, which is attributed to the streamwise overlapping of two oppositely oriented hairpin vortices on top and bottom of the lobe. The formation of corrugations on the lobe front edge at high $Re_{l}$ is also related to the location and structure of the hairpins with respect to the KH vortex. The lobe perforation and corrugation formation are inhibited at low $Re_{l}$ and low $We_{g}$ due to the high surface tension and viscous forces, which damp the small-scale corrugations and resist hole formation. Streamwise vorticity generation – resulting in three-dimensional instabilities – is mainly caused by vortex stretching and baroclinic torque at high and low density ratios, respectively. Generation of streamwise vortices and their interaction with spanwise vortices produce the liquid structures seen at various flow conditions. Understanding the liquid sheet breakup and the related vortex dynamics are crucial for controlling the droplet-size distribution in primary atomization.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Kida, Shigeo y Mitsuru Tanaka. "Dynamics of vortical structures in a homogeneous shear flow". Journal of Fluid Mechanics 274 (10 de septiembre de 1994): 43–68. http://dx.doi.org/10.1017/s002211209400203x.

Texto completo
Resumen
The mechanism of generation, development and interaction of vortical structures, extracted as concentrated-vorticity regions, in homogeneous shear turbulence is investigated by the use of the results of a direct numerical simulation of the Navier-Stokes equation with 1283 grid points. Among others, a few of typical vortical structures are identified as important dynamical elements, namely longitudinal and lateral vortex tubes and vortex layers. They interact strongly with each other. Longitudinal vortex tubes are generated from a random fluctuating vorticity field through stretching of fluid elements caused by the mean linear shear. They are inclined toward the streamwise direction by rotational motion due to the mean shear. There is a small (about 10°) deviation in direction between the longitudinal vortex tubes and vorticity vectors therein, which makes the vorticity vectors turn toward the spanwise direction (against the mean vorticity) until the spanwise components of the fluctuating vorticity become comparable in magnitude with the mean vorticity. These longitudinal vortex tubes induce straining flows perpendicular to themselves which generate vortex layers with spanwise vorticity in planes spanned by the tubes and the spanwise axis. These vortex layers are unstable, and roll up into lateral vortex tubes with concentrated spanwise vorticity through the Kelvin-Helmholtz instability. All of these vortical structures, through strong mutual interactions, break down into a complicated smallscale random vorticity field. Throughout the simulated period an oblique stripe structure dominates the whole flow field: initially it is inclined at about 45° to the downstream and, as the flow develops, the inclination angle decreases but eventually stays at around 10°–20°.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

PEDRIZZETTI, GIANNI. "Vortex formation out of two-dimensional orifices". Journal of Fluid Mechanics 655 (5 de mayo de 2010): 198–216. http://dx.doi.org/10.1017/s0022112010000844.

Texto completo
Resumen
The understanding of the vortex formation process is currently driving a novel attempt to evaluate the performance of fluid dynamics in biological systems. The concept of formation time, developed for axially symmetric orifices, is here studied in two-dimensional flows for the generation of vortex pairs. The early stage of the formation process is studied with the single vortex model in the inviscid limit. Within this framework, the equation can be written in a universal form in terms of the formation time. The single vortex model properly represents the initial circular spiralling vortex sheet and its acceleration for self-induced motion. Then, an analysis is performed by numerical simulation of the two-dimensional Navier–Stokes equations to cope with the spatially extended vortex structure. The results do not show the pinch-off phenomenon previously reported for vortex rings. The two-dimensional vortex pair tends to a stably growing structure such that, while it translates and extends longitudinally, it remains connected to the sharp edge by a shear layer whose velocity is always about twice that of the leading vortex. At larger values of the Reynolds number the instability of the shear layer develops small-scale vortices capable of destabilizing the coherent vortex growth. The absence of a critical formation number for two-dimensional vortex pairs suggests further considerations for the development of concepts of optimal vortex formation from orifices with variable curvature or of a tapered shape.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

SHEN, LIAN y DICK K. P. YUE. "Large-eddy simulation of free-surface turbulence". Journal of Fluid Mechanics 440 (10 de agosto de 2001): 75–116. http://dx.doi.org/10.1017/s0022112001004669.

Texto completo
Resumen
In this paper we investigate the large-eddy simulation (LES) of the interaction between a turbulent shear flow and a free surface at low Froude numbers. The benchmark flow field is first solved by using direct numerical simulations (DNS) of the Navier–Stokes equations at fine (1282 × 192 grid) resolution, while the LES is performed at coarse resolution. Analysis of the ensemble of 25 DNS datasets shows that the amount of energy transferred from the grid scales to the subgrid scales (SGS) reduces significantly as the free surface is approached. This is a result of energy backscatter associated with the fluid vertical motions. Conditional averaging reveals that the energy backscatter occurs at the splat regions of coherent hairpin vortex structures as they connect to the free surface. The free-surface region is highly anisotropic at all length scales while the energy backscatter is carried out by the horizontal components of the SGS stress only. The physical insights obtained here are essential to the efficacious SGS modelling of LES for free-surface turbulence. In the LES, the SGS contribution to the Dirichlet pressure free-surface boundary condition is modelled with a dynamic form of the Yoshizawa (1986) expression, while the SGS flux that appears in the kinematic boundary condition is modelled by a dynamic scale-similarity model. For the SGS stress, we first examine the existing dynamic Smagorinsky model (DSM), which is found to capture the free-surface turbulence structure only roughly. Based on the special physics of free-surface turbulence, we propose two new SGS models: a dynamic free-surface function model (DFFM) and a dynamic anisotropic selective model (DASM). The DFFM correctly represents the reduction of the Smagorinsky coefficient near the surface and is found to capture the surface layer more accurately. The DASM takes into account both the anisotropy nature of free-surface turbulence and the dependence of energy backscatter on specific coherent vorticity mechanisms, and is found to produce substantially better surface signature statistics. Finally, we show that the combination of the new DFFM and DASM with a dynamic scale-similarity model further improves the results.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

CONNELL, BENJAMIN S. H. y DICK K. P. YUE. "Flapping dynamics of a flag in a uniform stream". Journal of Fluid Mechanics 581 (22 de mayo de 2007): 33–67. http://dx.doi.org/10.1017/s0022112007005307.

Texto completo
Resumen
We consider the flapping stability and response of a thin two-dimensional flag of high extensional rigidity and low bending rigidity. The three relevant non-dimensional parameters governing the problem are the structure-to-fluid mass ratio, μ = ρsh/(ρfL); the Reynolds number, Rey = VL/ν; and the non-dimensional bending rigidity, KB = EI/(ρfV2L3). The soft cloth of a flag is represented by very low bending rigidity and the subsequent dominance of flow-induced tension as the main structural restoring force. We first perform linear analysis to help understand the relevant mechanisms of the problem and guide the computational investigation. To study the nonlinear stability and response, we develop a fluid–structure direct simulation (FSDS) capability, coupling a direct numerical simulation of the Navier–Stokes equations to a solver for thin-membrane dynamics of arbitrarily large motion. With the flow grid fitted to the structural boundary, external forcing to the structure is calculated from the boundary fluid dynamics. Using a systematic series of FSDS runs, we pursue a detailed analysis of the response as a function of mass ratio for the case of very low bending rigidity (KB = 10−4) and relatively high Reynolds number (Rey = 103). We discover three distinct regimes of response as a function of mass ratio μ: (I) a small μ regime of fixed-point stability; (II) an intermediate μ regime of period-one limit-cycle flapping with amplitude increasing with increasing μ; and (III) a large μ regime of chaotic flapping. Parametric stability dependencies predicted by the linear analysis are confirmed by the nonlinear FSDS, and hysteresis in stability is explained with a nonlinear softening spring model. The chaotic flapping response shows up as a breaking of the limit cycle by inclusion of the 3/2 superharmonic. This occurs as the increased flapping amplitude yields a flapping Strouhal number (St = 2Af/V) in the neighbourhood of the natural vortex wake Strouhal number, St ≃ 0.2. The limit-cycle von Kármán vortex wake transitions in chaos to a wake with clusters of higher intensity vortices. For the largest mass ratios, strong vortex pairs are distributed away from the wake centreline during intermittent violent snapping events, characterized by rapid changes in tension and dynamic buckling.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Sharma, A. S. y B. J. McKeon. "On coherent structure in wall turbulence". Journal of Fluid Mechanics 728 (8 de julio de 2013): 196–238. http://dx.doi.org/10.1017/jfm.2013.286.

Texto completo
Resumen
AbstractA new theory of coherent structure in wall turbulence is presented. The theory is the first to predict packets of hairpin vortices and other structure in turbulence, and their dynamics, based on an analysis of the Navier–Stokes equations, under an assumption of a turbulent mean profile. The assumption of the turbulent mean acts as a restriction on the class of possible structures. It is shown that the coherent structure is a manifestation of essentially low-dimensional flow dynamics, arising from a critical-layer mechanism. Using the decomposition presented in McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382), complex coherent structure is recreated from minimal superpositions of response modes predicted by the analysis, which take the form of radially varying travelling waves. The leading modes effectively constitute a low-dimensional description of the turbulent flow, which is optimal in the sense of describing the resonant effects around the critical layer and which minimally predicts all types of structure. The approach is general for the full range of scales. By way of example, simple combinations of these modes are offered that predict hairpins and modulated hairpin packets. The example combinations are chosen to represent observed structure, consistent with the nonlinear triadic interaction for wavenumbers that is required for self-interaction of structures. The combination of the three leading response modes at streamwise wavenumbers $6, ~1, ~7$ and spanwise wavenumbers $\pm 6, ~\pm 6, ~\pm 12$, respectively, with phase velocity $2/ 3$, is understood to represent a turbulence ‘kernel’, which, it is proposed, constitutes a self-exciting process analogous to the near-wall cycle. Together, these interactions explain how the mode combinations may self-organize and self-sustain to produce experimentally observed structure. The phase interaction also leads to insight into skewness and correlation results known in the literature. It is also shown that the very large-scale motions act to organize hairpin-like structures such that they co-locate with areas of low streamwise momentum, by a mechanism of locally altering the shear profile. These energetic streamwise structures arise naturally from the resolvent analysis, rather than by a summation of hairpin packets. In addition, these packets are modulated through a ‘beat’ effect. The relationship between Taylor’s hypothesis and coherence is discussed, and both are shown to be the consequence of the localization of the response modes around the critical layer. A pleasing link is made to the classical laminar inviscid theory, whereby the essential mechanism underlying the hairpin vortex is captured by two obliquely interacting Kelvin–Stuart (cat’s eye) vortices. Evidence for the theory is presented based on comparison with observations of structure in turbulent flow reported in the experimental and numerical simulation literature and with exact solutions reported in the transitional literature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Chen, Linya, Dong-Sheng Jeng, Chencong Liao y Dagui Tong. "Wave-Induced Seabed Response around a Dumbbell Cofferdam in Non-Homogeneous Anisotropic Seabed". Journal of Marine Science and Engineering 7, n.º 6 (19 de junio de 2019): 189. http://dx.doi.org/10.3390/jmse7060189.

Texto completo
Resumen
Cofferdams are frequently used to assist in the construction of offshore structures that are built on a natural non-homogeneous anisotropic seabed. In this study, a three-dimensional (3D) integrated numerical model consisting of a wave submodel and seabed submodel was adopted to investigate the wave–structure–seabed interaction. Reynolds-Averaged Navier–Stokes (RANS) equations were employed to simulate the wave-induced fluid motion and Biot’s poroelastic theory was adopted to control the wave-induced seabed response. The present model was validated with available laboratory experimental data and previous analytical results. The hydrodynamic process and seabed response around the dumbbell cofferdam are discussed in detail, with particular attention paid to the influence of the depth functions of the permeability K i and shear modulus G j . Numerical results indicate that to avoid the misestimation of the liquefaction depth, a steady-state analysis should be carried out prior to the transient seabed response analysis to first determine the equilibrium state caused by seabed consolidation. The depth function G j markedly affects the vertical distribution of the pore pressure and the seabed liquefaction around the dumbbell cofferdam. The depth function K i has a mild effect on the vertical distribution of the pore pressure within a coarse sand seabed, with the influence concentrated in the range defined by 0.1 times the seabed thickness above and below the embedded depth. The depth function K i has little effect on seabed liquefaction. In addition, the traditional assumption that treats the seabed parameters as constants may result in the overestimation of the seabed liquefaction depth and the liquefaction area around the cofferdam will be miscalculated if consolidation is not considered. Moreover, parametric studies reveal that the shear modulus at the seabed surface G z 0 has a significant influence on the vertical distribution of the pore pressure. However, the effect of the permeability at the seabed surface K z 0 on the vertical distribution of the pore pressure is mainly concentrated on the seabed above the embedded depth in front and to the side of the cofferdam. Furthermore, the amplitude of pore pressure decreases as Poisson’s ratio μ s increases.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

TASKINOGLU, EZGI S. y JOSETTE BELLAN. "A posteriori study using a DNS database describing fluid disintegration and binary-species mixing under supercritical pressure: heptane and nitrogen". Journal of Fluid Mechanics 645 (9 de febrero de 2010): 211–54. http://dx.doi.org/10.1017/s0022112009992606.

Texto completo
Resumen
A large eddy simulation (LES) a posteriori study is conducted for a temporal mixing layer which initially contains different species in the lower and upper streams and in which the initial pressure is larger than the critical pressure of either species. A vorticity perturbation, initially imposed, promotes roll-up and a double pairing of four initial spanwise vortices to reach a transitional state. The LES equations consist of the differential conservation equations coupled with a real-gas equation of state, and the equations utilize transport properties depending on the thermodynamic variables. Unlike all LES models to date, the differential equations contain, additional to the subgrid-scale (SGS) fluxes, a new SGS term denoted a ‘pressure correction’ (p correction) in the momentum equation. This additional term results from filtering the Navier–Stokes equations and represents the gradient of the difference between the filtered p and p computed from the filtered flow field. A previous a priori analysis, using a direct numerical simulation (DNS) database for the same configuration, found this term to be of leading order in the momentum equation, a fact traced to the existence of regions of high density-gradient magnitude that populated the entire flow; in that study, the appropriateness of several SGS-flux models was assessed, and a model for the p-correction term was proposed.In the present study, the constant-coefficient SGS-flux models of the a priori investigation are tested a posteriori in LES devoid of, or including, the SGS p-correction term. A new p-correction model, different from that of the a priori study, is used, and the results of the two p-correction models are compared. The results reveal that the former is less computationally intensive and more accurate than the latter in reproducing global and structural features of the flow. The constant-coefficient SGS-flux models encompass the Smagorinsky (SMC) model, in conjunction with the Yoshizawa (YO) model for the trace, the gradient (GRC) model and the scale similarity (SSC) models, all exercised with the a priori study constant-coefficient values calibrated at the transitional state. Further, dynamic SGS-flux model LESs are performed with the p correction included in all cases. The dynamic models are the Smagorinsky (SMD) model, in conjunction with the YO model, the gradient (GRD) model and ‘mixed’ models using SMD in combination with GRC or SSC utilized with their theoretical coefficient values. The LES comparison is performed with the filtered-and-coarsened DNS (FC-DNS) which represents an ideal LES solution. The constant-coefficient models including the p correction (SMCP, GRCP and SSCP) are substantially superior to those devoid of it; the SSCP model produces the best agreement with the FC-DNS template. For duplicating the local flow structure, the predictive superiority of the dynamic mixed models is demonstrated over the SMD model; however, even better predictions in capturing vortical features are obtained with the GRD model. The GRD predictions improve when LES is initiated at a time past the initial range in which the p-correction term rivals in magnitude the leading-order term in the momentum equation. Finally, the ability of the LES to predict the FC-DNS irreversible entropy production is assessed. It is shown that the SSCP model is the best at recovering the domain-averaged irreversible entropy production. The sensitivity of the predictions to the initial conditions and grid size is also investigated.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

"Effect of Impeller Parameters on the Flow inside the Centrifugal Blower using CFD". International Journal of Recent Technology and Engineering 8, n.º 6 (30 de marzo de 2020): 3977–80. http://dx.doi.org/10.35940/ijrte.f8973.038620.

Texto completo
Resumen
A numerical analysis is carried out to understand the flow characteristics for different impeller configurations of a single stage centrifugal blower. The volute design is based on constant velocity method. Four different impeller configurations are selected for the analysis. Impeller blade geometry is created with point by point method. Numerical simulation is carried out by CFD software GAMBIT 2.4.6 and FLUENT 6.3.26. GAMBIT work includes geometry definition and grid generation of computational domain. This process includes selection of grid types, grid refinements and defining correct boundary conditions. Processing work is carried out in FLUENT. The viscous Navier-Stokes equations are solved with control volume approach and the k-ε turbulence model. In this three dimensional numerical analysis is carried out with steady flow approach. The rotor and stator interaction is solved by mixing plane approach. Results of simulation are presented in terms of flow parameters, at impeller outlet and various angular positions inside the volute. Also, the contours of flow properties are presented at the outlet plane of fluid domain. Results suggest that for the same configurations of centrifugal blower, as we change geometrical parameter of impeller the flow inside the blower get affected.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Bukac, Martina y Suncica Canic. "A partitioned numerical scheme for fluid-structure interaction with slip". Mathematical Modelling of Natural Phenomena, 6 de diciembre de 2020. http://dx.doi.org/10.1051/mmnp/2020051.

Texto completo
Resumen
We present a loosely coupled, partitioned scheme for fluid-structure interaction problems with the Navier slip boundary condition. The fluid flow is modeled by the Navier-Stokes equations for an incompressible, viscous fluid, interacting with a thin elastic structure modeled by the membrane or Koiter shell type equations. The fluid and structure are coupled via two sets of coupling conditions: a dynamic coupling condition describing balance of forces, and a kinematic coupling condition describing fluid slipping tangentially to the moving fluid-structure interface, with no penetration in the normal direction. We propose a novel, efficient partitioned scheme where the fluid sub-problem is solved separately from the structure sub-problem, and there is no need for sub-iterations to achieve stability, convergence, and its optimal, first-order accuracy. We derive energy estimates, which prove that the proposed scheme is unconditionally stable, and present convergence analysis which shows that the method is first-order accurate in time and optimally convergent in space. The theoretical rates of convergence in time are confirmed numerically on an example with an explicit solution using the method of manufactured solutions. The effects of the slip rate and fluid viscosity on the FSI solution are numerically investigated in two additional examples.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Giannopapa, C. G. y G. Papadakis. "Linear Stability Analysis and Application of a New Solution Method of the Elastodynamic Equations Suitable for a Unified Fluid-Structure-Interaction Approach". Journal of Pressure Vessel Technology 130, n.º 3 (11 de julio de 2008). http://dx.doi.org/10.1115/1.2937764.

Texto completo
Resumen
In the conventional approach for fluid-structure-interaction problems, the fluid and solid components are treated separately and information is exchanged across their interface. According to the conventional terminology, the current numerical methods can be grouped in two major categories: partitioned methods and monolithic methods. Both methods use separate sets of equations for fluid and solid that have different unknown variables. A unified solution method has been presented in the previous work of Giannopapa and Papadakis (2004, “A New Formulation for Solids Suitable for a Unified Solution Method for Fluid-Structure Interaction Problems,” ASME PVP 2004, San Diego, CA, July, PVP Vol. 491–1, pp. 111–117), which is different from these methods. The new approach treats both fluid and solid as a single continuum; thus, the whole computational domain is treated as one entity discretized on a single grid. Its behavior is described by a single set of equations, which are solved fully implicitly. In this paper, the elastodynamic equations are reformulated so that they contain the same unknowns as the Navier–Stokes equations, namely, velocities and pressure. Two time marching and one spatial discretization scheme, widely used for fluid equations, are applied for the solution of the reformulated equations for solids. Using linear stability analysis, the accuracy and dissipation characteristics of the resulting difference equations are examined. The aforementioned schemes are applied to a transient structural problem (beam bending) and the results compare favorably with available analytic solutions and are consistent with the conclusions of the stability analysis. A parametric investigation using different meshes, time steps, and beam dimensions is also presented. For all cases examined, the numerical solution was stable and robust and therefore is suitable for the next stage of application to full fluid-structure-interaction problems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía