Libros sobre el tema "Neural language models"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores mejores libros para su investigación sobre el tema "Neural language models".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore libros sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
1957-, Houghton George, ed. Connectionist models in cognitive psychology. Psychology Press, 2004.
Buscar texto completoMiikkulainen, Risto. Subsymbolic natural language processing: An integrated model of scripts, lexicon, and memory. MIT Press, 1993.
Buscar texto completoBavaeva, Ol'ga. Metaphorical parallels of the neutral nomination "man" in modern English. INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1858259.
Texto completoArbib, Michael. Neural Models of Language Processes. Elsevier Science & Technology Books, 2012.
Buscar texto completoCairns, Paul, Joseph P. Levy, Dimitrios Bairaktaris, and John A. Bullinaria. Connectionist Models of Memory and Language. Taylor & Francis Group, 2015.
Buscar texto completoDimitoglou, George, and Ahmad Tafti. Artificial Intelligence: Machine Learning, Convolutional Neural Networks and Large Language Models. de Gruyter GmbH, Walter, 2024.
Buscar texto completoDimitoglou, George, and Ahmad Tafti. Artificial Intelligence: Machine Learning, Convolutional Neural Networks and Large Language Models. de Gruyter GmbH, Walter, 2024.
Buscar texto completoDimitoglou, George, and Ahmad Tafti. Artificial Intelligence: Machine Learning, Convolutional Neural Networks and Large Language Models. de Gruyter GmbH, Walter, 2024.
Buscar texto completoHoughton, George. Connectionist Models in Cognitive Psychology. Taylor & Francis Group, 2004.
Buscar texto completoHoughton, George. Connectionist Models in Cognitive Psychology. Taylor & Francis Group, 2004.
Buscar texto completoHoughton, George. Connectionist Models in Cognitive Psychology. Taylor & Francis Group, 2004.
Buscar texto completoHoughton, George. Connectionist Models in Cognitive Psychology. Taylor & Francis Group, 2004.
Buscar texto completoHoughton, George. Connectionist Models in Cognitive Psychology. Taylor & Francis Group, 2004.
Buscar texto completoComputational Neuroscience: Trends in Research, 1997 (Language of Science). Springer, 1997.
Buscar texto completoGomez-Perez, Jose Manuel, Ronald Denaux, and Andres Garcia-Silva. Practical Guide to Hybrid Natural Language Processing: Combining Neural Models and Knowledge Graphs for NLP. Springer International Publishing AG, 2021.
Buscar texto completoDeep Learning with Keras: Implementing Deep Learning Models and Neural Networks with the Power of Python. de Gruyter GmbH, Walter, 2017.
Buscar texto completoGomez-Perez, Jose Manuel, Ronald Denaux, and Andres Garcia-Silva. A Practical Guide to Hybrid Natural Language Processing: Combining Neural Models and Knowledge Graphs for NLP. Springer, 2020.
Buscar texto completoMishra, Pradeepta. PyTorch Recipes: A Problem-Solution Approach to Build, Train and Deploy Neural Network Models. Apress L. P., 2022.
Buscar texto completoKumar, Rahul, Matthew Lamons, and Abhishek Nagaraja. Python Deep Learning Projects: 9 projects demystifying neural network and deep learning models for building intelligent systems. Packt Publishing, 2018.
Buscar texto completoNeural Networks with R: Smart models using CNN, RNN, deep learning, and artificial intelligence principles. Packt Publishing - ebooks Account, 2017.
Buscar texto completoBali, Raghav, Dipanjan Sarkar, and Tamoghna Ghosh. Hands-On Transfer Learning with Python: Implement advanced deep learning and neural network models using TensorFlow and Keras. Packt Publishing, 2018.
Buscar texto completoReese, Richard M., and AshishSingh Bhatia. Natural Language Processing with Java: Techniques for building machine learning and neural network models for NLP, 2nd Edition. Packt Publishing - ebooks Account, 2018.
Buscar texto completoKalin, Josh. Generative Adversarial Networks Cookbook: Over 100 recipes to build generative models using Python, TensorFlow, and Keras. Packt Publishing, 2018.
Buscar texto completoDeep Learning with PyTorch: A practical approach to building neural network models using PyTorch. Packt Publishing, 2018.
Buscar texto completoJulian, David. Deep Learning with Pytorch Quick Start Guide: Learn to Train and Deploy Neural Network Models in Python. Packt Publishing, Limited, 2018.
Buscar texto completoHwang, Yoon Hyup. C# Machine Learning Projects: Nine real-world projects to build robust and high-performing machine learning models with C#. Packt Publishing, 2018.
Buscar texto completoWhitenack, Daniel. Machine Learning With Go: Implement Regression, Classification, Clustering, Time-series Models, Neural Networks, and More using the Go Programming Language. Packt Publishing - ebooks Account, 2017.
Buscar texto completoR Deep Learning Essentials: A step-by-step guide to building deep learning models using TensorFlow, Keras, and MXNet, 2nd Edition. Packt Publishing, 2018.
Buscar texto completoMcNamara, Patrick, and Magda Giordano. Cognitive Neuroscience and Religious Language. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190636647.003.0005.
Texto completoStrevens, Michael. The Whole Story. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199685509.003.0005.
Texto completoRatcliff, Roger, and Philip Smith. Modeling Simple Decisions and Applications Using a Diffusion Model. Edited by Jerome R. Busemeyer, Zheng Wang, James T. Townsend, and Ami Eidels. Oxford University Press, 2015. http://dx.doi.org/10.1093/oxfordhb/9780199957996.013.3.
Texto completoPapanicolaou, Andrew C., and Marina Kilintari. Imaging the Networks of Language. Edited by Andrew C. Papanicolaou. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199764228.013.15.
Texto completoZerilli, John. The Adaptable Mind. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780190067885.001.0001.
Texto completoBergen, Benjamin, and Nancy Chang. Embodied Construction Grammar. Edited by Thomas Hoffmann and Graeme Trousdale. Oxford University Press, 2013. http://dx.doi.org/10.1093/oxfordhb/9780195396683.013.0010.
Texto completoSeneque, Gareth, and Darrell Chua. Hands-On Deep Learning with Go: A Practical Guide to Building and Implementing Neural Network Models Using Go. Packt Publishing, Limited, 2019.
Buscar texto completoWiley, Joshua F., Yuxi (Hayden) Liu, Pablo Maldonado, and Mark Hodnett. Deep Learning with R for Beginners: Design Neural Network Models in R 3. 5 Using TensorFlow, Keras, and MXNet. Packt Publishing, Limited, 2019.
Buscar texto completoSangeetha, V., and S. Kevin Andrews. Introduction to Artificial Intelligence and Neural Networks. Magestic Technology Solutions (P) Ltd, Chennai, Tamil Nadu, India, 2023. http://dx.doi.org/10.47716/mts/978-93-92090-24-0.
Texto completoButz, Martin V., and Esther F. Kutter. How the Mind Comes into Being. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780198739692.001.0001.
Texto completoBourhis, Richard Y., and Annie Montreuil. Acculturation, Vitality, and Bilingual Healthcare. Edited by Seth J. Schwartz and Jennifer Unger. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780190215217.013.27.
Texto completoMariani, Giorgio. The Rhetorical Equivalent of War. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252039751.003.0003.
Texto completovan der Hulst, Harry. Palatal harmony. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198813576.003.0004.
Texto completoZhai, Xiaoming, and Joseph Krajcik, eds. Uses of Artificial Intelligence in STEM Education. Oxford University PressOxford, 2024. http://dx.doi.org/10.1093/oso/9780198882077.001.0001.
Texto completoNonlinear Workbook: Chaos, Fractals, Cellular Automata, Genetic Algorithms, Gene Expression Programming, Support Vector Machine, Wavelets, Hidden Markov Models, Fuzzy Logic with C++, Java and Symbolicc++ Programs 6th Edition. World Scientific Publishing Co Pte Ltd, 2014.
Buscar texto completoNonlinear Workbook: Chaos, Fractals, Cellular Automata, Neural Networks, Genetic Algorithms, Gene Expression Programming, Support Vector Machine, Wavelets, Hidden Markov Models, Fuzzy Logic with C++, Java and SymbolicC++ Programs. World Scientific Publishing Co Pte Ltd, 2005.
Buscar texto completoNolte, David D. Introduction to Modern Dynamics. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198844624.001.0001.
Texto completoThe nonlinear workbook: Chaos, fractals, cellular automata, neural networks, genetic algorithms, gene expression programming, support vector machine, wavelets, hidden Markov models, Fuzzy logic with C++, Java and SymbolicC++ programs. 4th ed. World Scientific, 2008.
Buscar texto completoThe nonlinear workbook: Chaos, fractals, cellular automata, neural networks, genetic algorithms, gene expression programming, support vector machine, wavelets, hidden Markov models, Fuzzy logic with C++, Java and SymbolicC++ programs. 3rd ed. World Scientific, 2005.
Buscar texto completo