Literatura académica sobre el tema "Non-Histone Chromosome Segregation DNA-Binding Proteins Saccharomyces cerevisiae Proteins"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Non-Histone Chromosome Segregation DNA-Binding Proteins Saccharomyces cerevisiae Proteins".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Non-Histone Chromosome Segregation DNA-Binding Proteins Saccharomyces cerevisiae Proteins"

1

Smith, M. M., P. Yang, M. S. Santisteban, P. W. Boone, A. T. Goldstein y P. C. Megee. "A novel histone H4 mutant defective in nuclear division and mitotic chromosome transmission." Molecular and Cellular Biology 16, n.º 3 (marzo de 1996): 1017–26. http://dx.doi.org/10.1128/mcb.16.3.1017.

Texto completo
Resumen
The histone proteins are essential for the assembly and function of th e eukaryotic chromosome. Here we report the first isolation of a temperature-sensitive lethal histone H4 mutant defective in mitotic chromosome transmission Saccharomyces cerevisiae. The mutant requires two amino acid substitutions in histone H4: a lethal Thr-to-Ile change at position 82, which lies within one of the DNA-binding surfaces of the protein, and a substitution of Ala to Val at position 89 that is an intragenic suppressor. Genetic and biochemical evidence shows that the mutant histone H4 is temperature sensitive for function but not for synthesis, deposition, or stability. The chromatin structure of 2 micrometer circle minichromosomes is temperature sensitive in vivo, consistent with a defect in H4-DNA interactions. The mutant also has defects in transcription, displaying weak Spt- phenotypes. At the restrictive temperature, mutant cells arrest in the cell cycle at nuclear division, with a large bud, a single nucleus with 2C DNA content, and a short bipolar spindle. At semipermissive temperatures, the frequency of chromosome loss is elevated 60-fold in the mutant while DNA recombination frequencies are unaffected. High-copy CSE4, encoding an H3 variant related to the mammalian CENP-A kinetochore antigen, was found to suppress the temperature sensitivity of the mutant without suppressing the Spt- transcription defect. These genetic, biochemical, and phenotypic results indicate that this novel histone H4 mutant defines one or more chromatin-dependent steps in chromosome segregation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Cho, Jae Hyoung, Sang Jin Ha, Ling Rong Kao, Timothy L. Megraw y Chi-Bom Chae. "A Novel DNA-Binding Protein Bound to the Mitochondrial Inner Membrane Restores the Null Mutation of Mitochondrial Histone Abf2p in Saccharomyces cerevisiae". Molecular and Cellular Biology 18, n.º 10 (1 de octubre de 1998): 5712–23. http://dx.doi.org/10.1128/mcb.18.10.5712.

Texto completo
Resumen
ABSTRACT The yeast mitochondrial HMG-box protein, Abf2p, is essential for maintenance of the mitochondrial genome. To better understand the role of Abf2p in the maintenance of the mitochondrial chromosome, we have isolated a multicopy suppressor (YHM2) of the temperature-sensitive defect associated with an abf2null mutation. The function of Yhm2p was characterized at the molecular level. Yhm2p has 314 amino acid residues, and the deduced amino acid sequence is similar to that of a family of mitochondrial carrier proteins. Yhm2p is localized in the mitochondrial inner membrane and is also associated with mitochondrial DNA in vivo. Yhm2p exhibits general DNA-binding activity in vitro. Thus, Yhm2p appears to be novel in that it is a membrane-bound DNA-binding protein. A sequence that is similar to the HMG DNA-binding domain is important for the DNA-binding activity of Yhm2p, and a mutation in this region abolishes the ability of YHM2 to suppress the temperature-sensitive defect of respiration of the abf2 null mutant. Disruption of YHM2 causes a significant growth defect in the presence of nonfermentable carbon sources such as glycerol and ethanol, and the cells have defects in respiration as determined by 2,3,5,-triphenyltetrazolium chloride staining. Yhm2p may function as a member of the protein machinery for the mitochondrial inner membrane attachment site of mitochondrial DNA during replication and segregation of mitochondrial genomes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Tan, Hwei Ling, Yi Bing Zeng y Ee Sin Chen. "N-Terminus Does Not Govern Protein Turnover of Schizosaccharomyces pombe CENP-A". International Journal of Molecular Sciences 21, n.º 17 (26 de agosto de 2020): 6175. http://dx.doi.org/10.3390/ijms21176175.

Texto completo
Resumen
Centromere integrity underlies an essential framework for precise chromosome segregation and epigenetic inheritance. Although centromeric DNA sequences vary among different organisms, all eukaryotic centromeres comprise a centromere-specific histone H3 variant, centromeric protein A (CENP-A), on which other centromeric proteins assemble into the kinetochore complex. This complex connects chromosomes to mitotic spindle microtubules to ensure accurate partitioning of the genome into daughter cells. Overexpression of CENP-A is associated with many cancers and is correlated with its mistargeting, forming extra-centromeric kinetochore structures. The mislocalization of CENP-A can be counteracted by proteolysis. The amino (N)-terminal domain (NTD) of CENP-A has been implicated in this regulation and shown to be dependent on the proline residues within this domain in Saccharomyces cerevisiae CENP-A, Cse4. We recently identified a proline-rich GRANT motif in the NTD of Schizosaccharomyces pombe CENP-A (SpCENP-A) that regulates the centromeric targeting of CENP-A via binding to the CENP-A chaperone Sim3. Here, we investigated whether the NTD is required to confer SpCENP-A turnover (i.e., counter stability) using various truncation mutants of SpCENP-A. We show that sequential truncation of the NTD did not improve the stability of the protein, indicating that the NTD of SpCENP-A does not drive turnover of the protein. Instead, we reproduced previous observations that heterochromatin integrity is important for SpCENP-A stability, and showed that this occurs in an NTD-independent manner. Cells bearing the null mutant of the histone H3 lysine 9 methyltransferase Clr4 (Δclr4), which have compromised constitutive heterochromatin integrity, showed reductions in the proportion of SpCENP-A in the chromatin-containing insoluble fraction of the cell extract, suggesting that heterochromatin may promote SpCENP-A chromatin incorporation. Thus, a disruption in heterochromatin may result in the delocalization of SpCENP-A from chromatin, thus exposing it to protein turnover. Taken together, we show that the NTD is not required to confer SpCENP-A protein turnover.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Jayaram, Makkuni, Keng-Ming Chang, Chien-Hui Ma, Chu-Chun Huang, Yen-Ting Liu y Soumitra Sau. "Topological similarity between the 2μm plasmid partitioning locus and the budding yeast centromere: evidence for a common evolutionary origin?" Biochemical Society Transactions 41, n.º 2 (21 de marzo de 2013): 501–7. http://dx.doi.org/10.1042/bst20120224.

Texto completo
Resumen
The partitioning locus STB of the selfish plasmid, the 2μm circle, of Saccharomyces cerevisiae is essential for the propagation of this multi-copy extra-chromosomal DNA element with nearly chromosome-like stability. The functional competence of STB requires the plasmid-coded partitioning proteins Rep1 and Rep2 as well as host-coded proteins. Host factors that associate with STB in a Rep1- and Rep2-dependent manner also interact with centromeres, and play important roles in chromosome segregation. They include the cohesin complex and the centromere-specific histone H3 variant Cse4. The genetically defined point centromere of S. cerevisiae differs starkly from the much more widespread epigenetically specified regional centromeres of eukaryotes. The particularly small size of the S. cerevisiae centromere and the association of chromosome segregation factors with STB raise the possibility of an evolutionary link between these two partitioning loci. The unusual positive supercoiling harboured by the S. cerevisiae centromere and STB in vivo in their functional states, unveiled by recent experiments, bolsters the notion of their potential descent from an ancestral plasmid partitioning locus.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Saunders, M. J., E. Yeh, M. Grunstein y K. Bloom. "Nucleosome depletion alters the chromatin structure of Saccharomyces cerevisiae centromeres." Molecular and Cellular Biology 10, n.º 11 (noviembre de 1990): 5721–27. http://dx.doi.org/10.1128/mcb.10.11.5721.

Texto completo
Resumen
Saccharomyces cerevisiae centromeric DNA is packaged into a highly nuclease-resistant chromatin core of approximately 200 base pairs of DNA. The structure of the centromere in chromosome III is somewhat larger than a 160-base-pair nucleosomal core and encompasses the conserved centromere DNA elements (CDE I, II, and III). Extensive mutational analysis has revealed the sequence requirements for centromere function. Mutations affecting the segregation properties of centromeres also exhibit altered chromatin structures in vivo. Thus the structure, as delineated by nuclease digestion, correlated with functional centromeres. We have determined the contribution of histone proteins to this unique structural organization. Nucleosome depletion by repression of either histone H2B or H4 rendered the cell incapable of chromosome segregation. Histone repression resulted in increased nuclease sensitivity of centromere DNA, with up to 40% of CEN3 DNA molecules becoming accessible to nucleolytic attack. Nucleosome depletion also resulted in an alteration in the distribution of nuclease cutting sites in the DNA surrounding CEN3. These data provide the first indication that authentic nucleosomal subunits flank the centromere and suggest that nucleosomes may be the central core of the centromere itself.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Saunders, M. J., E. Yeh, M. Grunstein y K. Bloom. "Nucleosome depletion alters the chromatin structure of Saccharomyces cerevisiae centromeres". Molecular and Cellular Biology 10, n.º 11 (noviembre de 1990): 5721–27. http://dx.doi.org/10.1128/mcb.10.11.5721-5727.1990.

Texto completo
Resumen
Saccharomyces cerevisiae centromeric DNA is packaged into a highly nuclease-resistant chromatin core of approximately 200 base pairs of DNA. The structure of the centromere in chromosome III is somewhat larger than a 160-base-pair nucleosomal core and encompasses the conserved centromere DNA elements (CDE I, II, and III). Extensive mutational analysis has revealed the sequence requirements for centromere function. Mutations affecting the segregation properties of centromeres also exhibit altered chromatin structures in vivo. Thus the structure, as delineated by nuclease digestion, correlated with functional centromeres. We have determined the contribution of histone proteins to this unique structural organization. Nucleosome depletion by repression of either histone H2B or H4 rendered the cell incapable of chromosome segregation. Histone repression resulted in increased nuclease sensitivity of centromere DNA, with up to 40% of CEN3 DNA molecules becoming accessible to nucleolytic attack. Nucleosome depletion also resulted in an alteration in the distribution of nuclease cutting sites in the DNA surrounding CEN3. These data provide the first indication that authentic nucleosomal subunits flank the centromere and suggest that nucleosomes may be the central core of the centromere itself.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Morey, Lisa, Kelly Barnes, Yinhuai Chen, Molly Fitzgerald-Hayes y Richard E. Baker. "The Histone Fold Domain of Cse4 Is Sufficient for CEN Targeting and Propagation of Active Centromeres in Budding Yeast". Eukaryotic Cell 3, n.º 6 (diciembre de 2004): 1533–43. http://dx.doi.org/10.1128/ec.3.6.1533-1543.2004.

Texto completo
Resumen
ABSTRACT Centromere-specific H3-like proteins (CenH3s) are conserved across the eukaryotic kingdom and are required for packaging centromere DNA into a specialized chromatin structure required for kinetochore assembly. Cse4 is the CenH3 protein of the budding yeast Saccharomyces cerevisiae. Like all CenH3 proteins, Cse4 consists of a conserved histone fold domain (HFD) and a divergent N terminus (NT). The Cse4 NT contains an essential domain designated END (for essential N-terminal domain); deletion of END is lethal. To investigate the role of the Cse4 NT in centromere targeting, a series of deletion alleles (cse4ΔNT) were analyzed. No part of the Cse4 NT was required to target mutant proteins to centromere DNA in the presence of functional Cse4. A Cse4 degron strain was used to examine targeting of a Cse4ΔNT protein in the absence of wild-type Cse4. The END was not required for centromere targeting under these conditions, confirming that the HFD confers specificity of Cse4 centromere targeting. Surprisingly, overexpression of the HFD bypassed the requirement for the END altogether, and viable S. cerevisiae strains in which the cells express only the Cse4 HFD and six adjacent N-terminal amino acids (Cse4Δ129) were constructed. Despite the complete absence of the NT, mitotic chromosome loss in the cse4Δ129 strain increased only 6-fold compared to a 15-fold increase in strains overexpressing wild-type Cse4. Thus, when overexpressed, the Cse4 HFD is sufficient for centromere function in S. cerevisiae, and no posttranslational modification or interaction of the NT with other kinetochore component(s) is essential for accurate chromosome segregation in budding yeast.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Wang, Shao-Win, Rebecca L. Read y Chris J. Norbury. "Fission yeast Pds5 is required for accurate chromosome segregation and for survival after DNA damage or metaphase arrest". Journal of Cell Science 115, n.º 3 (1 de febrero de 2002): 587–98. http://dx.doi.org/10.1242/jcs.115.3.587.

Texto completo
Resumen
Sister chromatid cohesion, which is established during the S phase of the eukaryotic cell cycle and persists until the onset of anaphase, is essential for the maintenance of genomic integrity. Cohesion requires the multi-protein complex cohesin, as well as a number of accessory proteins including Pds5/BIMD/Spo76. In the budding yeast Saccharomyces cerevisiae Pds5 is an essential protein that localises to chromosomes in a cohesin-dependent manner. Here we describe the characterisation in the fission yeast Schizosaccharomyces pombe of pds5+, a novel,non-essential orthologue of S. cerevisiae PDS5. The S. pombePds5 protein was localised to punctate nuclear foci in a manner that was dependent on the Rad21 cohesin component. This, together with additional genetic evidence, points towards an involvement of S. pombe Pds5 in sister chromatid cohesion. S. pombe pds5 mutants were hypersensitive to DNA damage and to mitotic metaphase delay, but this sensitivity was apparently not due to precocious loss of sister chromatid cohesion. These cells also suffered increased spontaneous chromosome loss and meiotic defects and their viability was dependent on the spindle checkpoint protein Bub1. Thus, while S. pombe Pds5 has an important cohesin-related role, this differs significantly from that of the equivalent budding yeast protein.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Anderson, Marybeth, Julian Haase, Elaine Yeh y Kerry Bloom. "Function and Assembly of DNA Looping, Clustering, and Microtubule Attachment Complexes within a Eukaryotic Kinetochore". Molecular Biology of the Cell 20, n.º 19 (octubre de 2009): 4131–39. http://dx.doi.org/10.1091/mbc.e09-05-0359.

Texto completo
Resumen
The kinetochore is a complex protein–DNA assembly that provides the mechanical linkage between microtubules and the centromere DNA of each chromosome. Centromere DNA in all eukaryotes is wrapped around a unique nucleosome that contains the histone H3 variant CENP-A (Cse4p in Saccharomyces cerevisiae). Here, we report that the inner kinetochore complex (CBF3) is required for pericentric DNA looping at the Cse4p-containing nucleosome. DNA within the pericentric loop occupies a spatially confined area that is radially displaced from the interpolar central spindle. Microtubule-binding kinetochore complexes are not involved in pericentric DNA looping but are required for the geometric organization of DNA loops around the spindle microtubules in metaphase. Thus, the mitotic segregation apparatus is a composite structure composed of kinetochore and interpolar microtubules, the kinetochore, and organized pericentric DNA loops. The linkage of microtubule-binding to centromere DNA-looping complexes positions the pericentric chromatin loops and stabilizes the dynamic properties of individual kinetochore complexes in mitosis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Hajra, Sujata, Santanu Kumar Ghosh y Makkuni Jayaram. "The centromere-specific histone variant Cse4p (CENP-A) is essential for functional chromatin architecture at the yeast 2-μm circle partitioning locus and promotes equal plasmid segregation". Journal of Cell Biology 174, n.º 6 (11 de septiembre de 2006): 779–90. http://dx.doi.org/10.1083/jcb.200603042.

Texto completo
Resumen
The centromere protein A homologue Cse4p is required for kinetochore assembly and faithful chromosome segregation in Saccharomyces cerevisiae. It has been regarded as the exquisite hallmark of centromeric chromatin. We demonstrate that Cse4 resides at the partitioning locus STB of the 2-μm plasmid. Cse4p-STB association is absolutely dependent on the plasmid partitioning proteins Rep1p and Rep2p and the integrity of the mitotic spindle. The kinetochore mutation ndc10-1 excludes Cse4p from centromeres without dislodging it from STB. Cse4p-STB association lasts from G1/S through late telophase during the cell cycle. The release of Cse4p from STB chromatin is likely mediated through spindle disassembly. A lack of functional Cse4p disrupts the remodeling of STB chromatin by the RSC2 complex, negates Rep2p binding and cohesin assembly at STB, and causes plasmid missegregation. Poaching of a specific histone variant by the plasmid to mark its partitioning locus with a centromere tag reveals yet another one of the molecular trickeries it performs for achieving chromosome- like fidelity in segregation.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Non-Histone Chromosome Segregation DNA-Binding Proteins Saccharomyces cerevisiae Proteins"

1

Collins, Kimberly A. "Characterization of the budding yeast centromeric histone H3 variant, Cse4 /". Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/5011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía