Siga este enlace para ver otros tipos de publicaciones sobre el tema: Numerical implementation.

Artículos de revistas sobre el tema "Numerical implementation"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Numerical implementation".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Mikeš, Karel y Milan Jirásek. "Free Warping Analysis and Numerical Implementation". Applied Mechanics and Materials 825 (febrero de 2016): 141–48. http://dx.doi.org/10.4028/www.scientific.net/amm.825.141.

Texto completo
Resumen
This article deals with the mathematical description and numerical implementation of the free warping problem. The solution of the warping problem is given by a warping function obtained by solving the Laplace equation with a corresponding boundary condition. An analytical solution is available only for a limited number of specific cross-sectional shapes such as ellipse or rectangle. For the solution of a general cross section, the Laplace equation must be solved numerically by the finite element method. From a mathematical point of view, the free warping problem can be described in the same way as the heat transfer phenomena, but in the numerical implementation, there are several features specific to warping analysis.The solution algorithm has been implemented in the OOFEM open-source finite element code [1] and verification has been done on several examples with known analytical solutions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Nairn, John A. "Numerical implementation of imperfect interfaces". Computational Materials Science 40, n.º 4 (octubre de 2007): 525–36. http://dx.doi.org/10.1016/j.commatsci.2007.02.010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Lee, Chun Jin. "The numerical implementation of risk". Korean Journal of Computational & Applied Mathematics 2, n.º 2 (septiembre de 1995): 53–61. http://dx.doi.org/10.1007/bf03008963.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Linderberg, Jan, So/ren B. Padkjær, Yngve Öhrn y Behnam Vessal. "Numerical implementation of reactive scattering theory". Journal of Chemical Physics 90, n.º 11 (junio de 1989): 6254–65. http://dx.doi.org/10.1063/1.456342.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Doong, T. y I. Mayergoyz. "On numerical implementation of hysteresis models". IEEE Transactions on Magnetics 21, n.º 5 (septiembre de 1985): 1853–55. http://dx.doi.org/10.1109/tmag.1985.1063923.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

JAUSLIN, H. R. "NUMERICAL IMPLEMENTATION OF A K.A.M. ALGORITHM". International Journal of Modern Physics C 04, n.º 02 (abril de 1993): 317–22. http://dx.doi.org/10.1142/s0129183193000331.

Texto completo
Resumen
We discuss a numerical implementation of a K.A.M. algorithm to determine invariant tori, for systems that are quadratic in the action variables. The method has the advantage that the iteration procedure does not produce higher order terms in the actions, allowing thus a systematic control of the convergence.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Einziger, P. D. "Numerical implementation of the Gabor representation". Electronics Letters 24, n.º 13 (1988): 810. http://dx.doi.org/10.1049/el:19880551.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Cardelli, E., E. Della Torre y A. Faba. "Numerical Implementation of the DPC Model". IEEE Transactions on Magnetics 45, n.º 3 (marzo de 2009): 1186–89. http://dx.doi.org/10.1109/tmag.2009.2012549.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Low, K. H. "Numerical implementation of structural dynamics analysis". Computers & Structures 65, n.º 1 (octubre de 1997): 109–25. http://dx.doi.org/10.1016/s0045-7949(95)00338-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Babolian, E. y A. Davari. "Numerical implementation of Adomian decomposition method". Applied Mathematics and Computation 153, n.º 1 (mayo de 2004): 301–5. http://dx.doi.org/10.1016/s0096-3003(03)00646-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Ledoit, Olivier y Michael Wolf. "Numerical implementation of the QuEST function". Computational Statistics & Data Analysis 115 (noviembre de 2017): 199–223. http://dx.doi.org/10.1016/j.csda.2017.06.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Sprecher, David A. "A Numerical Implementation of Kolmogorov's Superpositions". Neural Networks 9, n.º 5 (julio de 1996): 765–72. http://dx.doi.org/10.1016/0893-6080(95)00081-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Egorchenkov, R. A. y Yu A. Kravtsov. "Numerical implementation of complex geometrical optics". Radiophysics and Quantum Electronics 43, n.º 7 (julio de 2000): 569–75. http://dx.doi.org/10.1007/bf02677088.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Ling, F. H. y G. W. Bao. "A numerical implementation of Melnikov's method". Physics Letters A 122, n.º 8 (junio de 1987): 413–17. http://dx.doi.org/10.1016/0375-9601(87)90739-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Skála, Jan y Miroslav Bárta. "LSFEM Implementation of MHD Numerical Solver". Applied Mathematics 03, n.º 11 (2012): 1842–50. http://dx.doi.org/10.4236/am.2012.331250.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Nairn, John A., Chad C. Hammerquist y Yamina E. Aimene. "Numerical implementation of anisotropic damage mechanics". International Journal for Numerical Methods in Engineering 112, n.º 12 (27 de junio de 2017): 1848–68. http://dx.doi.org/10.1002/nme.5585.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Darve, Eric. "The Fast Multipole Method: Numerical Implementation". Journal of Computational Physics 160, n.º 1 (mayo de 2000): 195–240. http://dx.doi.org/10.1006/jcph.2000.6451.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Umrzoqova, Kommuna Xursanovna. "Numerical Technologies In Economy". American Journal of Interdisciplinary Innovations and Research 03, n.º 05 (7 de mayo de 2021): 100–104. http://dx.doi.org/10.37547/tajiir/volume03issue05-18.

Texto completo
Resumen
This article deals with the several key technologies of the numerical economy, such as BIMPLM,loT, SRM, BIG DATA.. Analyzed the advantages and the risks of the implementation of numerical technologies in economy and the role of numerical technologies in the development of economy.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Qi, Ai Xue, Cheng Liang Zhang y Guang Yi Wang. "Memristor Oscillators and its FPGA Implementation". Advanced Materials Research 383-390 (noviembre de 2011): 6992–97. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.6992.

Texto completo
Resumen
This paper presents a method that utilizes a memristor to replace the non-linear resistance of typical Chua’s circuit for constructing a chaotic system. The improved circuit is numerically simulated in the MATLAB condition, and its hardware implementation is designed using field programmable gate array (FPGA). Comparing the experimental results with the numerical simulation, the two are the very same, and be able to generate chaotic attractor.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Ivanyuk, V. A. y V. A. Fedorchuk. "Vector-Matrix Method of Numerical Implementation of the Polynomial Integral Volterra Operators". Mathematical and computer modelling. Series: Technical sciences 1, n.º 20 (20 de septiembre de 2019): 40–50. http://dx.doi.org/10.32626/2308-5916.2019-20.40-50.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Grewal, Mohinder S. y James Kain. "Kalman Filter Implementation With Improved Numerical Properties". IEEE Transactions on Automatic Control 55, n.º 9 (septiembre de 2010): 2058–68. http://dx.doi.org/10.1109/tac.2010.2042986.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Babiuc, M. C., S. Husa, D. Alic, I. Hinder, C. Lechner, E. Schnetter, B. Szilágyi et al. "Implementation of standard testbeds for numerical relativity". Classical and Quantum Gravity 25, n.º 12 (2 de junio de 2008): 125012. http://dx.doi.org/10.1088/0264-9381/25/12/125012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Breidbach, J. y L. S. Cederbaum. "Migration of holes: Numerical algorithms and implementation". Journal of Chemical Physics 126, n.º 3 (21 de enero de 2007): 034101. http://dx.doi.org/10.1063/1.2428292.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Mayergoyz, I. D. y A. A. Adly. "Numerical implementation of the feedback Preisach model". IEEE Transactions on Magnetics 28, n.º 5 (septiembre de 1992): 2605–7. http://dx.doi.org/10.1109/20.179571.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

de Freitas, J. A. Teixeira y C. Cismaşiu. "Numerical implementation of hybrid-Trefftz displacement elements". Computers & Structures 73, n.º 1-5 (octubre de 1999): 207–25. http://dx.doi.org/10.1016/s0045-7949(98)00271-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Tiwari, R. C. "Simplified Numerical Implementation in Slope Stability Modeling". International Journal of Geomechanics 15, n.º 3 (junio de 2015): 04014051. http://dx.doi.org/10.1061/(asce)gm.1943-5622.0000399.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Foote, W., J. Kraemer y G. Foster. "APL2 implementation of numerical asset pricing models". ACM SIGAPL APL Quote Quad 18, n.º 2 (diciembre de 1987): 120–25. http://dx.doi.org/10.1145/377719.55643.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Sprecher, David A. "A Numerical Implementation of Kolmogorov's Superpositions II". Neural Networks 10, n.º 3 (abril de 1997): 447–57. http://dx.doi.org/10.1016/s0893-6080(96)00073-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Litvinov, G. L. y E. V. Maslova. "Universal numerical algorithms and their software implementation". Programming and Computer Software 26, n.º 5 (septiembre de 2000): 275–80. http://dx.doi.org/10.1007/bf02759321.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Stock, J. D. R., I. H. Dunbar, S. A. Ramsdale, S. Simons y M. M. R. Williams. "The numerical implementation of multicomponent aerosol modelling". Annals of Nuclear Energy 14, n.º 1 (enero de 1987): 1–8. http://dx.doi.org/10.1016/0306-4549(87)90034-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Benad, Justus. "FAST NUMERICAL IMPLEMENTATION OF THE MDR TRANSFORMATIONS". Facta Universitatis, Series: Mechanical Engineering 16, n.º 2 (1 de agosto de 2018): 127. http://dx.doi.org/10.22190/fume180526023b.

Texto completo
Resumen
In the present paper a numerical implementation technique for the transformations of the Method of Dimensionality Reduction (MDR) is described. The MDR has become, in the past few years, a standard tool in contact mechanics for solving axially-symmetric contacts. The numerical implementation of the integral transformations of the MDR can be performed in several different ways. In this study, the focus is on a simple and robust algorithm on the uniform grid using integration by parts, a central difference scheme to obtain the derivatives, and a trapezoidal rule to perform the summation. The results are compared to the analytical solutions for the contact of a cone and the Hertzian contact. For the tested examples, the proposed method gives more accurate results with the same number of discretization points than other tested numerical techniques. The implementation method is further tested in a wear simulation of a heterogeneous cylinder composed of rings of different material having the same elastic properties but different wear coefficients. These discontinuous transitions in the material properties are handled well with the proposed method.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Sgró, Mario A., Dante J. Paz y Manuel Merchán. "Anisotropic halo model: implementation and numerical results". Monthly Notices of the Royal Astronomical Society 433, n.º 1 (29 de mayo de 2013): 787–95. http://dx.doi.org/10.1093/mnras/stt773.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Alamir, M. y N. Marchand. "Numerical Stabilisation of Non-linear Systems: Exact Theory and Approximate Numerical Implementation". European Journal of Control 5, n.º 1 (enero de 1999): 87–97. http://dx.doi.org/10.1016/s0947-3580(99)70143-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Akat, M., R. Kosker y A. Sirma. "On the numerical schemes for Langevin-type equations". BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 99, n.º 3 (30 de septiembre de 2020): 62–74. http://dx.doi.org/10.31489/2020m3/62-74.

Texto completo
Resumen
In this paper, a numerical approach is proposed based on the variation-of-constants formula for the numerical discretization Langevin-type equations. Linear and non-linear cases are treated separately. The proofs of convergence have been provided for the linear case, and the numerical implementation has been executed for the non-linear case. The order one convergence for the numerical scheme has been shown both theoretically and numerically. The stability of the numerical scheme has been shown numerically and depicted graphically.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Murawski, K., K. Murawski y P. Stpiczyński. "Implementation of MUSCL-Hancock method into the C++ code for the Euler equations". Bulletin of the Polish Academy of Sciences: Technical Sciences 60, n.º 1 (1 de marzo de 2012): 45–53. http://dx.doi.org/10.2478/v10175-012-0008-7.

Texto completo
Resumen
Implementation of MUSCL-Hancock method into the C++ code for the Euler equationsIn this paper we present implementation of the MUSCL-Hancock method for numerical solutions of the Euler equations. As a result of the internal complexity of these equations solving them numerically is a formidable task. With the use of the original C++ code, we developed and presented results of a numerical test that was performed. This test shows that our code copes very well with this task.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

KESICI, EMINE, BEATRICE PELLONI, TRISTAN PRYER y DAVID SMITH. "A numerical implementation of the unified Fokas transform for evolution problems on a finite interval". European Journal of Applied Mathematics 29, n.º 3 (23 de noviembre de 2017): 543–67. http://dx.doi.org/10.1017/s0956792517000316.

Texto completo
Resumen
We present the numerical solution of two-point boundary value problems for a third-order linear PDE, representing a linear evolution in one space dimension. To our knowledge, the numerical evaluation of the solution so far could only be obtained by a time-stepping scheme, that must also take into account the issue, generically non-trivial, of the imposition of the boundary conditions. Instead of computing the evolution numerically, we evaluate the novel solution representation formula obtained by the unified transform, also known as Fokas transform. This representation involves complex line integrals, but in order to evaluate these integrals numerically, it is necessary to deform the integration contours using appropriate deformation mappings. We formulate a strategy to implement effectively this deformation, which allows us to obtain accurate numerical results.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Adytia, Didit. "Performansi Implementasi Numerik Metode Pseudo Spectral pada Model Gelombang 1D Boussinesq". Indonesian Journal on Computing (Indo-JC) 2, n.º 1 (14 de septiembre de 2017): 101. http://dx.doi.org/10.21108/indojc.2017.2.1.164.

Texto completo
Resumen
<p>In the design of a numerical wave tank, it is necessary to use an accurate wave model as well as to choose an accurate and efficient numerical scheme for implementing the model. In this paper, we use a Pseudo-Spectral (PS) implementationfor a wave model so called Variational Boussinesq Model. The implementation is aimed to obtain a higher time efficiency in the calculation of wave simulations. The performance of the PS implementation is compared in CPU-time with a Finite Element (FE) implementation of the wave model for simulating a focusing wave group. Results of both implementations give a good agreement with wave data from laboratory experiment. The PS-implementation gives more efficient CPU-time compared to the FE-implementation.</p>
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

He, Cuiyu, Weiwei Hu y Lin Mu. "Optimal control of convection-cooling and numerical implementation". Computers & Mathematics with Applications 92 (junio de 2021): 48–61. http://dx.doi.org/10.1016/j.camwa.2021.03.020.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Neulybin, Sergey, Gleb Permyakov, Dmitry Trushnikov, Iuri Shchitsyn, Vladimir Belenkiy y Dmitry Belinin. "PLASMA SURFACING: MATHEMATICAL MODEL, NUMERICAL IMPLEMENTATION AND VERIFICATION". PNIPU Bulletin. The mechanical engineering, materials science., n.º 4 (30 de diciembre de 2017): 7–23. http://dx.doi.org/10.15593/2224-9877/2017.4.01.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Chibiryakov, Valerii, Anatolii Stankevich, Olexandr Kosheviy, Dmitriy Levkivskiy, Anna Krasneеva, Dmitriy Poshivach, Anton Chubarev, Oleksyi Shorin, Maryna Yansons y Yuliia Sovich. "NUMERICAL IMPLEMENTATION OF THE MODIFIED METHOD OF LINES". Urban development and spatial planning, n.º 74 (4 de junio de 2020): 341–59. http://dx.doi.org/10.32347/2076-815x.2020.74.341-359.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Rosca, V. E. y V. M. A. Leitāo. "Numerical Implementation of Meshless Methods for Beam Problems". Archives of Civil Engineering 58, n.º 2 (1 de junio de 2012): 175–84. http://dx.doi.org/10.2478/v.10169-012-0010-3.

Texto completo
Resumen
Abstract For solving a partial different equation by a numerical method, a possible alternative may be either to use a mesh method or a meshless method. A flexible computational procedure for solving 1D linear elastic beam problems is presented that currently uses two forms of approximation function (moving least squares and kernel approximation functions) and two types of formulations, namely the weak form and collocation technique, respectively, to reproduce Element Free Galerkin (EFG) and Smooth Particle Hydrodynamics (SPH) meshless methods. The numerical implementation for beam problems of these two formulations is discussed and numerical tests are presented to illustrate the difference between the formulations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Gevorkyan, M. N., A. V. Demidova, T. R. Velieva, A. V. Korol’kova y D. S. Kulyabov. "Analytical-Numerical Implementation of Polyvector Algebra in Julia". Programming and Computer Software 48, n.º 1 (febrero de 2022): 49–58. http://dx.doi.org/10.1134/s0361768822010054.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Abbasbandy, Saeid y Mohammad Ali Fariborzi Araghi. "Numerical Solution of Improper Integrals with Valid Implementation". Mathematical and Computational Applications 7, n.º 1 (1 de abril de 2002): 83–91. http://dx.doi.org/10.3390/mca7010083.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Predescu, Cristian, Dubravko Sabo y J. D. Doll. "Numerical implementation of some reweighted path integral methods". Journal of Chemical Physics 119, n.º 9 (septiembre de 2003): 4641–54. http://dx.doi.org/10.1063/1.1595640.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Cardelli, E., E. Della Torre y E. Pinzaglia. "Numerical implementation of the radial vector hysteresis model". IEEE Transactions on Magnetics 42, n.º 4 (abril de 2006): 527–30. http://dx.doi.org/10.1109/tmag.2006.871945.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Vajda, F. y E. Della Torre. "Efficient numerical implementation of complete-moving-hysteresis models". IEEE Transactions on Magnetics 29, n.º 2 (marzo de 1993): 1532–37. http://dx.doi.org/10.1109/20.250695.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Sandiford, Dan y Louis Moresi. "Improving subduction interface implementation in dynamic numerical models". Solid Earth 10, n.º 3 (28 de junio de 2019): 969–85. http://dx.doi.org/10.5194/se-10-969-2019.

Texto completo
Resumen
Abstract. Numerical subduction models often implement an entrained weak layer (WL) to facilitate decoupling of the slab and upper plate. This approach is attractive in its simplicity, and can provide stable, asymmetric subduction systems that persist for many tens of millions of years. In this study we undertake a methodological analysis of the WL approach, and use these insights to guide improvements to the implementation. The issue that primarily motivates the study is the emergence of significant spatial and temporal thickness variations within the WL. We show that these variations are mainly the response to volumetric flux gradients, caused by the change in boundary conditions as the WL material enters and exits the zone of decoupling. The time taken to reach a quasi-equilibrium thickness profile will depend on the total plate convergence, and is around 7 Myr for the models presented here. During the transient stage, width variations along the WL can exceed 4×, which may impact the effective strength of the interface, through physical effects if the rheology is linear, or simply if the interface becomes inadequately numerically resolved. The transient stage also induces strong sensitivity to model resolution. By prescribing a variable-thickness WL at the outset of the model, and by controlling the limits of the layer thickness during the model evolution, we find improved stability and resolution convergence of the models.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Bratov, V. A., N. A. Kazarinov y Y. V. Petrov. "Numerical implementation of the incubation time fracture criterion". Journal of Physics: Conference Series 653 (11 de noviembre de 2015): 012049. http://dx.doi.org/10.1088/1742-6596/653/1/012049.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Prieur, Jean y Gilles Rahier. "Aeroacoustic integral methods, formulation and efficient numerical implementation". Aerospace Science and Technology 5, n.º 7 (octubre de 2001): 457–68. http://dx.doi.org/10.1016/s1270-9638(01)01123-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Herrmann, Leonard R., Victor Kaliakin, C. K. Shen, Kyran D. Mish y Zheng‐Yu Zhu. "Numerical Implementation of Plasticity Model for Cohesive Soils". Journal of Engineering Mechanics 113, n.º 4 (abril de 1987): 500–519. http://dx.doi.org/10.1061/(asce)0733-9399(1987)113:4(500).

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía