Tesis sobre el tema "Object Based Image Analysis (OBIA)"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Object Based Image Analysis (OBIA)".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Ortega-García, José Antonio. "Forest stand delineation through remote sensing and Object-Based Image Analysis". Thesis, Högskolan i Gävle, Samhällsbyggnad, GIS, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-28005.
Texto completoNo
Chima, C. I. "Monitoring and modelling of urban land use in Abuja Nigeria, using geospatial information technologies". Thesis, Coventry University, 2012. http://curve.coventry.ac.uk/open/items/286e264c-3d26-4448-8049-6f2ef3fda727/1.
Texto completoInomata, Takeshi, Flory Pinzón, José Luis Ranchos, Tsuyoshi Haraguchi, Hiroo Nasu, Juan Carlos Fernandez-Diaz, Kazuo Aoyama y Hitoshi Yonenobu. "Archaeological Application of Airborne LiDAR with Object-Based Vegetation Classification and Visualization Techniques at the Lowland Maya Site of Ceibal, Guatemala". MDPI AG, 2017. http://hdl.handle.net/10150/624959.
Texto completoPedrassoli, Júlio César. "Análise orientada a objeto para detecção de favelas e classificação do uso do solo em Taboão da Serra/SP". Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/8/8135/tde-03052012-085635/.
Texto completoThe accelerated growth of the cities and the reflections of the increase of the urban population has been a constant concern nowadays. In this process, the occurrence of precarious occupancies, mainly in the metropolitan regions, has become one of the most explicit characteristics, describing the logic of occupancy itself, unequal use and right to the territory. The monitoring of these areas, their lineup and expansion, are an increasing need in several places in the world, as the inclusion of these areas in the formal city is considered a trigger for the living conditions improvement of over 100 million people who live in slums all over the world, as the Developments Goals of the Millennium proposed by the United Nations Organization. However, in order to meet the rights to a dignified life of the slums inhabitants, it is necessary to know about them mainly their number and where they are. An important tool related to the beneficial relation among the acquisition time, application cost and possibility of applying again, and transference of knowledge is the use of data from Remote Sensing. These data make it possible to establish the methodologies through the detection of features procedures and classification of the land use for these areas identification. Nevertheless the classical methods of classification cannot obtain, in certain cases, information on the interurban use, in a satisfactory way. In the interim, new paradigms of images classification appear like the Object Based Image Analysis (OBIA) which goes from the defined geographic object to the image segmentation, approaching the object to features of the real world. The application of pertinent rules and context over these objects is possible through specific languages and softwares that allow the transference of human knowledge of photo interpretation and contextual relation to the computing environment. This work aimed at evaluating the use of this classification technique for detection and zoning of slums in Taboão da Serra/SP town using supporting data for the areas characterization, its grades and kinds of precarious conditions. The results show the validity of the technique application.
Martinová, Olga. "Extrakce krajinných prvků z dat dálkového průzkumu". Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2013. http://www.nusl.cz/ntk/nusl-226365.
Texto completoLübker, Tillmann. "Object-based remote sensing for modelling scenarios of rural livelihoods in the highly structured farmland surrounding Kakamega Forest, western Kenya". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-150628.
Texto completoDie vorliegende Arbeit untersucht räumlich-expliziten das stark strukturierte und dicht besiedelte Agrarland um den Kakamega Wald (Westkenia). Dabei kombiniert der interdisziplinäre Ansatz Methoden und Technologien verschiedener Wissenschaftsbereiche: die Fernerkundung mit der objekt-basierten Bildanalyse (OBIA), GIS und die räumlich-explizite Modellierung (Geoinformatik und Geographie) mit sozio- und agro-ökonomische Aspekten (Human- und Sozialwissenschaft) sowie der Kartographie. Zudem steht die Arbeit in Bezug zum Schutz der biologischen Vielfalt (Biologie). Ausgehend von einer Referenzdatenerfassung vor Ort und einer visuellen Bildinterpretation wurden räumlich sehr hochauflösende QuickBird-Satellitenbilddaten, die 466 km² des Agrarlandes abdecken, mit Hilfe von OBIA ausgewertet. In einem integrativen Ansatz wurden dabei statistische Verfahren und Expertenwissen kombiniert, um einen ausgefeilten Regelsatz zur Klassifizierung zu erzeugen. Das Klassifizierungsergebnis unterscheidet 15 Klassen der Landnutzung bzw. -bedeckung; zusammen mit zeitlich extrapolierten und räumlich neu verteilten Bevölkerungsdaten sowie sozio- und agro-ökonomischen Faktoren ermöglichte es, eine räumlich-explizite Typologie des Agrarlandes zu erstellen und Szenarien zum ländlichen Auskommen zu modellieren. Die Agrarlandtypologie unterscheidet zehn Landtypen: 3 Zuckerrohr-dominierte Typen (48% des Gebietes), 3 Tee-dominierte Typen (30%), 2 Übergangstypen (15%), 1 Typ steilen Geländes (2%) und 1 zentralen Typ (5%). Die Szenarien betrachten mögliche zukünftige Entwicklungen der Erträge und Preise der Hauptanbauarten Zuckerrohr, Tee und Mais. Von allen Agrarlandtypen ist der „marginal Zuckerrohr-dominierte Typ“ am besten gerüstet, um zukünftigen Problemen zu begegnen. Bezeichnend für diesen Typ sind – neben einer vergleichsweise geringen Bevölkerungsdichte – ein hoher Anteil an Nahrungsmittelanbau zusammen mit einem gemäßigten Anbau von exportorientierten Agrarprodukten. Als Teil der Forschungsarbeit werden verschiedene neuartige Methoden vorgestellt, u.a. ein neuer konzeptioneller Rahmen für das Kategorisieren von Studien zur Parameteroptimierung, die „area fitness rate“ (AFR) als neue Messgröße für Flächendiskrepanzen, die klassifikations-basierte Nächster-Nachbar Klassifizierung sowie ein Ansatz zum Bestimmen der Güte von OBIA-Klassifizierungen. Schließlich gibt die Arbeit eine Reihe von Empfehlungen und bietet vielversprechende Ausgangspunkte für weiterführende wissenschaftliche Forschungen
Marpu, Prashanth Reddy. "Geographic object-based image analysis". Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2009. http://nbn-resolving.de/urn:nbn:de:bsz:105-5519610.
Texto completoTurcat, Jean-Philippe. "Object-based content representation and analysis for image retrieval". Thesis, Staffordshire University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.394142.
Texto completoVolotão, Carlos Frederico de Sá. "Image segmentation using IHS space and object-based analysis". Instituto Nacional de Pesquisas Espaciais (INPE), 2013. http://urlib.net/sid.inpe.br/mtc-m19/2013/01.21.22.42.
Texto completoSegmentation is an important procedure in remote sensing image analysis, which divides an image into parts with uniform properties and changes the smallest unit of an image from pixel to segmento Some factors produce undesired results in the segmentation of remote sensing imagery and one of such factors is due to illumination: the occurrence of shadows. Lighting affects image segmentation because variations on scene lighting modifies the pixel values in all spectral bands. The concentration of intensity on the sensed signal in one channel produces two other channels, hue and saturation, where the effects of glare, shadows and gradients are minimized. The hue is being used to identify objects that are distinguishable by this attribute, and the same principle of detection is being extended to multi-band images, but it is not suitable for all cases. To improve the process it is being presented a way to produce a saturation-weighted synthetic hue channel for multispectral imagery. The central idea behind this object-based approach is the ability to evaluate and change any segment before finishing the segmentation processo A turning function is a representation of polygons by angles and lengths and it may be analyzed and modified as necessary. Every segment identified as foreground undergoes to analysis and the corresponding segment is subject to changes. To obtain the turning function, the segment is first identified as a blob and then converted into a Freeman's chain co de formato The use of indexes is helpful to categorize shapes and some metrics are being presented. The algorithm is implemented in IDL language and it have two modes: unsupervised and supervised. The unsupervised uses a region growing algorithm with random seeds. The supervised consists on the manual indication of a small area of the object. Besides the enhancements on the algorithms and the proposal of a object-based approach for a chosen segmentation technique, this thesis also proposes a feasible way to make segmentation based on phase extracted from multispectral imagery using any segmentation software in addition to creating a synthetic hue band from the combinations of color compositions of the original imagery.
Li, Yi. "Object and concept recognition for content-based image retrieval /". Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/7006.
Texto completoStals, Jacobus Petrus. "Mapping potential soil salinization using rule based object-oriented image analysis". Thesis, Stellenbosch : University of Stellenbosch, 2007. http://hdl.handle.net/10019.1/2371.
Texto completoSoil salinization is a world wide environmental problem affecting plant growth and agricultural yields. Remote sensing has been used as a tool to detect and/or manage soil salinity. Object-oriented image analysis is a relatively new image analysis technique which allows analysis at different hierarchical scales, the use of relationships between objects and contextual information in the classification process, and the ability to create a rule based classification procedure. The Lower Orange River in South Africa is a region of successful irrigation farming along the river floodplain but also with the potential risk of soil salinization. This research attempted to detect and map areas of potential high soil salinity using digital aerial photography and digital elevation models. Image orthorectification was conducted on the digital aerial photographs. The radiometric variances between photographs made radiometric calibration of the photographs necessary. Radiometric calibration on the photographs was conducted using Landsat 7 satellite images as radiometric correction values, and image segmentation as the correction units for the photographs. After radiometric calibration, object-oriented analysis could be conducted on one analysis region and the developed rule bases applied to the other regions without the need for adjusting parameters. A rule based hierarchical classification was developed to detect vegetation stress from the photographs as well as salinity potential terrain features from the digital elevation models. These rule bases were applied to all analysis blocks. The detected potential high salinity indicators were analyzed spatially with field collected soil data in order to assess the capability of the classifications to detect actual salinization, as well as to assess which indicators were the best indicators of salinity potential. Vegetation stress was not a good indicator of salinity as many other indicators could also cause vegetation stress. Terrain indicators such as depressions in the landscape at a micro scale were the best indicators of potential soil salinization.
Dulin, Mike W. "Identifying and assessing windbreaks in Ford County, Kansas using object-based image analysis". Thesis, Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1517.
Texto completoMühlfellner, Peter. "Selection, Analysis and Implementationof Image-based Feature Extraction Approaches for a Heterogenous, Modular and FPGA-based Architecture for Camera-based Driver Assistance Systems". Thesis, Högskolan i Halmstad, Intelligenta system (IS-lab), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-16377.
Texto completoKorzeniowska, Karolina [Verfasser] y Oliver [Akademischer Betreuer] Korup. "Object-based image analysis for detecting landforms diagnostic of natural hazards / Karolina Korzeniowska ; Betreuer: Oliver Korup". Potsdam : Universität Potsdam, 2017. http://d-nb.info/1218402792/34.
Texto completoHulet, April. "An Object-Based Image Analysis of Treated and Untreated Pinyon and Juniper Woodlands Across the Great Basin". BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3406.
Texto completoNie, Qiong. "Cumulative methods for image based driver assistance systems : applications to egomotion estimation, motion analysis and object detection". Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112095/document.
Texto completoThis thesis is based on the detection of objects from an onboard moving camera by exploiting the monocular approach "c-velocity". This method is inspired by the method called "v-disparity" used in stereovision: both methods aim at detecting objects by approximating objects into plans with different orientations. Such approximation can avoid to estimate the depth in monocularvision. These two approaches, monocular and binocular, allow to transform the complex objet détection problem into a more simple parametric forms (eg. lines) detection in a new space, where these formes can be easily extracted using Hough Transform.The “c-velocity”, to make it effective, requires an accurate computation of optical flow and a good estimation of the focus of expansion (FOE) location. Therefore, we have studied the existing approaches of optical flow estimation and arrived at the conclusion that none of them is really powerful especially on the homogeneous regions such as road surface. In addition, the optical flow estimation methods also struggle to provide a good estimate in the case of huge displacement in the areas close to the camera. We propose in this thesis to exploit both a 3D model of the scene and a rough estimate about the vehicle speed from other integrated sensors. Using a priori knowledge allows to compensate the dominant optical flow and to facilitate the estimation of the rest part by a classical approach. In addition, three different approaches are proposed to detect the focus of expansion. Among them, we propose a novel method for estimating FOE by leveraging the flow norm and the scene structure from an inverse “c-velocity“ process. In addition to improve these preliminary steps, we also propose an acceleration and optimization of the “c-velocity“ algorithm by a multi-thread implementation. Finally, we propose a modification to the original “c-velocity“ approach in order to anticipate a possible cooperation motion/stereo, proposed in perspective, with the “v-disparity“ approach
Kutz, Kain Markus. "Inclusion of Gabor textural transformations and hierarchical structures within an object based analysis of a riparian landscape". Thesis, University of Iowa, 2018. https://ir.uiowa.edu/etd/6167.
Texto completoViksten, Fredrik. "Local Features for Range and Vision-Based Robotic Automation". Doctoral thesis, Linköpings universitet, Informationskodning, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-57333.
Texto completoFourie, Christoffel Ettienne [Verfasser], Sören [Akademischer Betreuer] Hese y Feitosa [Akademischer Betreuer] Raul. "Sample supervised search centric approaches in geographic object-based image analysis / Christoffel Ettienne Fourie. Gutachter: Sören Hese ; Feitosa Raul". Jena : Thüringer Universitäts- und Landesbibliothek Jena, 2015. http://d-nb.info/1080521976/34.
Texto completoFourie, Christoffel [Verfasser], Sören [Akademischer Betreuer] Hese y Feitosa [Akademischer Betreuer] Raul. "Sample supervised search centric approaches in geographic object-based image analysis / Christoffel Ettienne Fourie. Gutachter: Sören Hese ; Feitosa Raul". Jena : Thüringer Universitäts- und Landesbibliothek Jena, 2015. http://d-nb.info/1080521976/34.
Texto completoSlobodan, Dražić. "Shape Based Methods for Quantification and Comparison of Object Properties from Their Digital Image Representations". Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2019. https://www.cris.uns.ac.rs/record.jsf?recordId=107871&source=NDLTD&language=en.
Texto completoУ тези су размотрени развој, побољшање и евалуација метода за квантитативну карактеризацију објеката приказаних дигиталним сликама, као и мере растојања између дигиталних слика. Методе за квантитативну карактеризацију објеката представљених дигиталним сликама се све више користе у применама у којима грешка може имати критичне последице, а традиционалне методе за квантитативну карактеризацију су мале прецизности и тачности. У тези се показује да се коришћењем информације о покривеност пиксела обликом може значајно побољшати прецизност и тачност оцене растојања између две најудаљеније тачке облика мерено у датом правцу. Веома је пожељно да мера растојања између дигиталних слика може да се веже за одређену особину облика и морфолошке операције се користе приликом дефинисања растојања у ту сврху. Ипак, растојања дефинисана на овај начин показују се недовољно осетљива на релевантне податке дигиталних слика који представљају особине облика. У тези се показује да идеја адаптивне математичке морфологије може успешно да се користи да би се превазишао поменути проблем осетљивости растојања дефинисаних користећи морфолошке операције.
U tezi su razmotreni razvoj, poboljšanje i evaluacija metoda za kvantitativnu karakterizaciju objekata prikazanih digitalnim slikama, kao i mere rastojanja između digitalnih slika. Metode za kvantitativnu karakterizaciju objekata predstavljenih digitalnim slikama se sve više koriste u primenama u kojima greška može imati kritične posledice, a tradicionalne metode za kvantitativnu karakterizaciju su male preciznosti i tačnosti. U tezi se pokazuje da se korišćenjem informacije o pokrivenost piksela oblikom može značajno poboljšati preciznost i tačnost ocene rastojanja između dve najudaljenije tačke oblika mereno u datom pravcu. Veoma je poželjno da mera rastojanja između digitalnih slika može da se veže za određenu osobinu oblika i morfološke operacije se koriste prilikom definisanja rastojanja u tu svrhu. Ipak, rastojanja definisana na ovaj način pokazuju se nedovoljno osetljiva na relevantne podatke digitalnih slika koji predstavljaju osobine oblika. U tezi se pokazuje da ideja adaptivne matematičke morfologije može uspešno da se koristi da bi se prevazišao pomenuti problem osetljivosti rastojanja definisanih koristeći morfološke operacije.
Mahmoud, El-Abbas Mustafa Mustafa. "Assessing, monitoring and mapping forest resources in the Blue Nile Region of Sudan using an object-based image analysis approach". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-161511.
Texto completoDa das Waldressourcenmanagement hierarchisch strukturiert ist, beschäftigt sich die vorliegende Arbeit mit der natürlichen Waldbedeckung auf verschiedenen Abstraktionsebenen, das heißt insbesondere mit der Ebene der kategorischen Landnutzung / Landbedeckung (LU/LC) sowie mit der kontinuierlichen empirischen Abschätzung auf lokaler operativer Ebene. Da zurzeit kein Sensor die Anforderungen aller Ebenen der Bewertung von Waldressourcen und von Multisource-Bildmaterialien (d.h. RapidEye, TERRA ASTER und LANDSAT TM) erfüllen kann, wurden zusätzlich andere Formen von Daten und Wissen untersucht und in die Arbeit mit eingebracht. Es wurde eine objekt-basierte Bildanalyse (OBIA) in einer destabilisierten Region des Blauen Nils im Sudan eingesetzt, um nach möglichen Lösungen zu suchen, erforderliche Informationen für die zukünftigen Waldplanung und die Entscheidungsfindung zu sammeln. Außerdem wurden die räumliche Heterogenität, sowie die sehr schnellen Änderungen in der Region untersucht. Dies motiviert nach effizienteren, flexibleren und genaueren Methoden zu suchen, um die gewünschten aktuellen Informationen zu erhalten. Das Konzept von OBIA wurde als Substitution-Analyse-Rahmen vorgeschlagen, um die Mängel vom früheren pixel-basierten Konzept abzumildern. In diesem Sinne untersucht die Studie die beliebtesten Maximum-Likelihood-Klassifikatoren des pixel-basierten Konzeptes als Beispiel für das Verhalten der spektralen Klassifikatoren in dem jeweiligen Datenbereich und der Region. Im Gegensatz dazu analysiert OBIA Fernerkundungsdaten durch den Einbau von Wissen des Analytikers sowie kostenlose Zusatzdaten in einer Art und Weise, die menschliche Intelligenz für die Bildinterpretation als eine reale Darstellung der Funktion simuliert. Als ein Segment einer Basisverarbeitungseinheit wurden verschiedene Kombinationen von Segmentierungskriterien getestet um ähnliche spektrale Werte in Gruppen von relativ homogenen Pixeln zu trennen. An der kategorische Subtraktionsebene wurden Regeln entwickelt und optimale Eigenschaften für jede besondere Klasse extrahiert. Zwei Verfahren (Rule Based (RB) und Nearest Neighbour (NN) Classifier) wurden zugeteilt um die segmentierten Objekte der entsprechenden Klasse zuzuweisen. Außerdem versucht die Studie die Fragen zu beantworten, ob OBIA in feiner räumlicher Auflösung grundsätzlich genauer ist als eine gröbere Auflösung, und wie beide, das pixel-basierte und das OBIA Konzept sich in einer relativen Genauigkeit als eine Funktion der räumlichen Auflösung vergleichen lassen. Diese Arbeit zeigt insbesondere, dass das OBIA Konzept eine fortschrittliche Lösung für die Bildanalyse ist, da die Genauigkeiten - an den verschiedenen Skalen angewandt - im Vergleich mit denen der Pixel-basierten Konzept verbessert wurden. Unterdessen waren die berichteten Ergebnisse der feineren räumlichen Auflösung nicht nur für die beiden Ansätze konsequent hoch, sondern durch das OBIA Konzept deutlich verbessert. Die schnellen Veränderungen und die Heterogenität der Region sowie die unterschiedliche Datenherkunft haben dazu geführt, dass die Umsetzung von Post-Klassifizierungs- Änderungserkennung besser geeignet ist als radiometrische Transformationsmethoden. Basierend auf thematische LU/LC Karten wurden Serien von optimierten Algorithmen entwickelt, um die Dynamik in LU/LC Einheiten darzustellen. Deshalb wurden für Detailänderung "von-bis"-Informationsklassen sowie Veränderungsstatistiken erstellt. Ferner wurden die erzeugten Änderungskarten bewertet, was zeigte, dass die Genauigkeit der Änderungskarten konstant hoch ist. Aggregiert auf die Gemeinde-Ebene bieten Sozialerhebungen der Haushaltsdaten eine umfassende zusätzliche Sichtweise auf die Fernerkundungsdaten. Die vorher festgelegten degradierten und erfolgreich wiederhergestellten Hot Spots wurden untersucht. Die Studie verwendet einen gut gestalteten Fragebogen um Faktoren die die Dynamik der Änderung der Landbedeckung und mögliche Lösungen, die auf der Wahrnehmung der Gemeinden basieren, anzusprechen. Auf der Ebene des operativen strukturellen Waldbestandes wird die Begründung für die Einbeziehung dieser Analysen angegeben um semi-automatische OBIA Metriken zu schätzen, die aus dem Wald-Attribut durch automatisierte Segmentierungsalgorithmen in den Baumkronen abgegrenzt oder Cluster von Kronen Ebenen erworben wird. Korrelations- und Regressionsanalysen wurden angewandt, um die Beziehungen zwischen einer Vielzahl von spektralen und strukturellen Metriken und den aus den Untersuchungsgebieten abgeleiteten Waldattributen zu identifizieren. Die Ergebnisse des OBIA Rahmens zeigen starke Beziehungen und präzise Schätzungen. Die besten Modelle waren mit einem unabhängigen Satz von kreuz-validierten Feldproben ausgestattet, welche hohe Genauigkeiten ergaben. Eine wichtige Frage ist, wie die räumliche Auflösung und die verwendete Bandbreite die Qualität der entwickelten Modelle auch auf der Grundlage der verschiedenen untersuchten Sensoren beeinflussen. Schließlich zeigt die Studie, dass OBIA in der Lage ist, als ein effizienter und genauer Ansatz Kenntnisse über die Landfunktionen zu erlangen, sei es bei operativen Attributen der Waldstruktur oder auch auf der kategorischen LU/LC Ebene. Außerdem zeigt der methodischen Rahmen eine mögliche Lösung um präzise Fakten und Zahlen über die Veränderungsdynamik und ihre Antriebskräfte zu ermitteln
Hast, Isak y Asmelash Mehari. "Automating Geographic Object-Based Image Analysis and Assessing the Methods Transferability : A Case Study Using High Resolution Geografiska SverigedataTM Orthophotos". Thesis, Högskolan i Gävle, Samhällsbyggnad, GIS, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-22570.
Texto completoJohansen, Richard A. "An Automated Approach to Agricultural Tile Drain Detection and Extraction Utilizing High Resolution Aerial Imagery and Object-Based Image Analysis". University of Toledo / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1429280225.
Texto completoPalm, Fredrik. "Urban Vegetation Mapping Using Remote Sensing Techniques : A Comparison of Methods". Thesis, Stockholms universitet, Institutionen för naturgeografi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-117108.
Texto completoDey, Vivek. "A Supervised Approach For The Estimation Of Parameters Of Multiresolution Segementation And Its Application In Building Feature Extraction From VHR Imagery". Thesis, Fredericton: University of New Brunswick, 2011. http://hdl.handle.net/1882/35388.
Texto completoSchwier, Michael [Verfasser], Horst Karl [Akademischer Betreuer] [Gutachter] Hahn, Herbert [Gutachter] Jaeger y Gitta [Gutachter] Domik-Kienegger. "Object-based Image Analysis for Detection and Segmentation Tasks in Biomedical Imaging / Michael Schwier. Betreuer: Horst Karl Hahn. Gutachter: Horst Karl Hahn ; Herbert Jaeger ; Gitta Domik-Kienegger". Bremen : IRC-Library, Information Resource Center der Jacobs University Bremen, 2016. http://d-nb.info/1111884501/34.
Texto completoMyburgh, Gerhard. "The impact of training set size and feature dimensionality on supervised object-based classification : a comparison of three classifiers". Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71655.
Texto completoENGLISH ABSTRACT: Supervised classifiers are commonly used in remote sensing to extract land cover information. They are, however, limited in their ability to cost-effectively produce sufficiently accurate land cover maps. Various factors affect the accuracy of supervised classifiers. Notably, the number of available training samples is known to significantly influence classifier performance and to obtain a sufficient number of samples is not always practical. The support vector machine (SVM) does perform well with a limited number of training samples. But little research has been done to evaluate SVM’s performance for geographical object-based image analysis (GEOBIA). GEOBIA also allows the easy integration of additional features into the classification process, a factor which may significantly influence classification accuracies. As such, two experiments were developed and implemented in this research. The first compared the performances of object-based SVM, maximum likelihood (ML) and nearest neighbour (NN) classifiers using varying training set sizes. The effect of feature dimensionality on classifier accuracy was investigated in the second experiment. A SPOT 5 subscene and a four-class classification scheme were used. For the first experiment, training set sizes ranging from 4-20 per land cover class were tested. The performance of all the classifiers improved significantly as the training set size was increased. The ML classifier performed poorly when few (<10 per class) training samples were used and the NN classifier performed poorly compared to SVM throughout the experiment. SVM was the superior classifier for all training set sizes although ML achieved competitive results for sets of 12 or more training samples per class. Training sets were kept constant (20 and 10 samples per class) for the second experiment while an increasing number of features (1 to 22) were included. SVM consistently produced superior classification results. SVM and NN were not significantly (negatively) affected by an increase in feature dimensionality, but ML’s ability to perform under conditions of large feature dimensionalities and few training areas was limited. Further investigations using a variety of imagery types, classification schemes and additional features; finding optimal combinations of training set size and number of features; and determining the effect of specific features should prove valuable in developing more costeffective ways to process large volumes of satellite imagery. KEYWORDS Supervised classification, land cover, support vector machine, nearest neighbour classification maximum likelihood classification, geographic object-based image analysis
AFRIKAANSE OPSOMMING: Gerigte klassifiseerders word gereeld aangewend in afstandswaarneming om inligting oor landdekking te onttrek. Sulke klassifiseerders het egter beperkte vermoëns om akkurate landdekkingskaarte koste-effektief te produseer. Verskeie faktore het ʼn uitwerking op die akkuraatheid van gerigte klassifiseerders. Dit is veral bekend dat die getal beskikbare opleidingseenhede ʼn beduidende invloed op klassifiseerderakkuraatheid het en dit is nie altyd prakties om voldoende getalle te bekom nie. Die steunvektormasjien (SVM) werk goed met beperkte getalle opleidingseenhede. Min navorsing is egter gedoen om SVM se verrigting vir geografiese objek-gebaseerde beeldanalise (GEOBIA) te evalueer. GEOBIA vergemaklik die integrasie van addisionele kenmerke in die klassifikasie proses, ʼn faktor wat klassifikasie akkuraathede aansienlik kan beïnvloed. Twee eksperimente is gevolglik ontwikkel en geïmplementeer in hierdie navorsing. Die eerste eksperiment het objekgebaseerde SVM, maksimum waarskynlikheids- (ML) en naaste naburige (NN) klassifiseerders se verrigtings met verskillende groottes van opleidingstelle vergelyk. Die effek van kenmerkdimensionaliteit is in die tweede eksperiment ondersoek. ʼn SPOT 5 subbeeld en ʼn vier-klas klassifikasieskema is aangewend. Opleidingstelgroottes van 4-20 per landdekkingsklas is in die eerste eksperiment getoets. Die verrigting van die klassifiseerders het beduidend met ʼn toename in die grootte van die opleidingstelle verbeter. ML het swak presteer wanneer min (<10 per klas) opleidingseenhede gebruik is en NN het, in vergelyking met SVM, deurgaans swak presteer. SVM het die beste presteer vir alle groottes van opleidingstelle alhoewel ML kompeterend was vir stelle van 12 of meer opleidingseenhede per klas. Die grootte van die opleidingstelle is konstant gehou (20 en 10 eenhede per klas) in die tweede eksperiment waarin ʼn toenemende getal kenmerke (1 tot 22) toegevoeg is. SVM het deurgaans beter klassifikasieresultate gelewer. SVM en NN was nie beduidend (negatief) beïnvloed deur ʼn toename in kenmerkdimensionaliteit nie, maar ML se vermoë om te presteer onder toestande van groot kenmerkdimensionaliteite en min opleidingsareas was beperk. Verdere ondersoeke met ʼn verskeidenheid beelde, klassifikasie skemas en addisionele kenmerke; die vind van optimale kombinasies van opleidingstelgrootte en getal kenmerke; en die bepaling van die effek van spesifieke kenmerke sal waardevol wees in die ontwikkelling van meer koste effektiewe metodes om groot volumes satellietbeelde te prosesseer. TREFWOORDE Gerigte klassifikasie, landdekking, steunvektormasjien, naaste naburige klassifikasie, maksimum waarskynlikheidsklassifikasie, geografiese objekgebaseerde beeldanalise
Stammler, Melanie. "Investigating Sand Dune Location, Orientation and Geomorphometry Through GEOBIA-Based Mapping: A Case Study in Northern Sweden". Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-424975.
Texto completoDen första associationen till sanddyner är säkert Sahara snarare än norra Sverige. Ändå är dessa fossila sanddyner också mycket relevanta och intressanta att studera. De kan analyseras i samband med det omgivande landskapet och dess orientering. Dessa egenskaper hjälper till att identifiera mönster i landskapsutveckling. Detta och på grund av dynarnas relativt gamla ålder kan slutsatser om landskapets (in)stabilitet på geologiska tidsskalor dras. Detta är mycket användbart eftersom det kan ge insikter om hur klimatet såg ut under tiden som sanddynerna bildades - perioder där människor ännu inte har bevittnat klimatet. Kunskap som till exempel hur klimatet som rådde för länge sedan såg ut kan användas bland annat för att uppskatta hur landskapet kommer förändras i framtiden till följd av klimatförändringar. Trots dessa användbara egenskaper hos sanddynerna har lite forskning gjorts hittills. Det här examensarbet försöker motverka detta kunskapsgap och kartlägger sanddyner i norra Sverige med hjälp av geografisk objektbaserad bildanalys (geographic object-based image analysis, GEOBIA). Det innebär att bildmaterial och digitala höjdmodeller frigjorda från vegetation automatiskt analyseras med hjälp av algoritmer. Fokus här är inte på att analysera enskilda pixlar. Snarare grupperas pixlar med liknande egenskaper så som lutning (slope), krökning (curvature) och spektralegenskaper. Dessa blir sedan grunden för analysen. Möjliga sanddyner upptäcks semi-automatiskt så att deras position och orientering sedan kan analyseras. Den kunskap som erhållits på detta sätt utgör grunden för vidare forskning. Ett annat mål är att bidra till en djupare förståelse kring landskapsutvecklingen i norra Sverige. Det är viktigt att komma ihåg att detta är ett område som särskilt påverkas av klimatförändringar. En ökad kunskap om landskapets tidigare klimatrespons kan därmed bidra till att förutsäga framtiden för denna region. Förutom att öka kunskapen kring sanddyner i norra Sverige hjälper det här mastersarbetet även till att utvidga användningen av GEOBIA inom geomorfologiska studier.
Ruiz, Luis Fernando Chimelo. "Uma abordagem de classificação da cobertura da terra em imagens obtidas por veículo aéreo não tripulado". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2014. http://hdl.handle.net/10183/111857.
Texto completoNon-metric cameras attached to Unmanned Aerial Vehicles (UAV) enable collection of images with high spatial and temporal resolution. In addition, the cost of operation and maintenance of equipment are reduced. The land cover classification through these images are hampered due to high spectral variability of the targets and the large volume of data generated. These setbacks are contoured using Image Analysis Based on Objects (OBIA) and data mining algorithms. An algorithm used in OBIA are Decision Trees (AD). This technique allows the selection of the most informative attributes as the classification of regions. New AD techniques have been developed and these innovations, were functions inserted to select attributes and to improve classification. One example is a C5.0 algorithm, which has a data reduction function and of boosting. In this context, this paper aims to (i) evaluate the segmentation method for growing regions in images with high spatial resolution, (ii) determine the most important predictive attributes in the discrimination of classes and (iii) evaluate the classifications of regions regarding the attributes selection parameters (winnow) and boosting (trial), which are contained in the C5.0 algorithm. The image segmentation was performed in Spring program, since the regions generated in segmentation were classified by model C5.0 , which is available in the program R. As a result it was identified that the segmentation by region growing provided a high correlation with regions generated by the expert, resulting in Reference Bounded Segments Booster values (RBSB) near 0. The most important features in the construction of models of decision tree are the ratio between the band of green with the blue (r_v_a) and the Digital Elevation Model (DEM). Was not identified improvement in classification accuracy when was increased value of trial parameter. Already winnow parameter enabled a reduction in the number of predictive attributes, with no statistically significant losses in the accuracy of the classification. The boosting function (trial) did not improve the classification of land cover. Also were not found statistically significant differences when winnow selected as true, but was found the benefit of the latter parameter to reducing the dimensionality of the data. Thus, this work contributed to the land cover classification in images collected by UAV, once that were developed algorithms to automate the processes of integration OBIA and decision tree (C5.0).
Nasonova, Sasha. "Estimating Arctic sea ice melt pond fraction and assessing ice type separability during advanced melt". Thesis, Remote Sensing, 2017. https://dspace.library.uvic.ca//handle/1828/9313.
Texto completoGraduate
2019-03-21
Roundy, Darrell B. "Estimating Pinyon and Juniper Cover Across Utah Using NAIP Imagery". BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5575.
Texto completoSalim, Aline. "Caracterização do uso da terra em periferias urbanas utilizando geotecnologias: bacia do Reservatório Guarapiranga". Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/8/8135/tde-05112013-105350/.
Texto completoStudies from cities require a wide look to identify the amount of processes occurring in the production of the urban space. Geo-technologies are commonly used to acquire detailed information of land cover from the urban space. In this context, the objective of this study is to propose methodology for the generation of information from the occupation at the urban peripheries, defining procedures for the analysis of urban areas, to obtain information of the characteristics of this occupation, from high resolution satellite images. The area under study was the district Jardim São Luis, located at the Guarapiranga Reservoir basin, an important water supplier for the São Paulo Metropolitan Region (RMSP), an area of environmental protection and recuperation, according to State legislation. Discussions were made on how the urban space is organized and on the processes of urban occupation in the periphery of RMSP. The methodology developed in this study used remote sensing and GIS techniques and socio-economic data from the last demographic census. The results were presented and the methodology proposed is very promising to be used to update information of the urban space and land management and consequently to improve the quality of life from the population.
Mahmoud, El-Abbas Mustafa Mustafa [Verfasser], Elmar [Akademischer Betreuer] Csaplovics, Elsiddig Elnour [Akademischer Betreuer] Abdalla y Hannelore [Akademischer Betreuer] Kusserow. "Assessing, monitoring and mapping forest resources in the Blue Nile Region of Sudan using an object-based image analysis approach / Mustafa Mahmoud El-Abbas Mustafa. Gutachter: Elmar Csaplovics ; Elnour Abdalla Elsiddig ; Hannelore Kusserow. Betreuer: Elmar Csaplovics". Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://d-nb.info/1069096466/34.
Texto completoLeão, Junior Emerson [UNESP]. "Análise da qualidade da informação produzida por classificação baseada em orientação a objeto e SVM visando a estimativa do volume do reservatório Jaguari-Jacareí". Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/152234.
Texto completoApproved for entry into archive by ALESSANDRA KUBA OSHIRO null (alessandra@fct.unesp.br) on 2017-12-06T10:52:22Z (GMT) No. of bitstreams: 1 leaojunior_e_me_prud.pdf: 4186679 bytes, checksum: ee186b23411343c3e2d782d622226699 (MD5)
Made available in DSpace on 2017-12-06T10:52:22Z (GMT). No. of bitstreams: 1 leaojunior_e_me_prud.pdf: 4186679 bytes, checksum: ee186b23411343c3e2d782d622226699 (MD5) Previous issue date: 2017-04-25
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Considerando o cenário durante a crise hídrica de 2014 e a situação crítica dos reservatórios do sistema Cantareira no estado de São Paulo, este estudo realizado no reservatório Jaguari-Jacareí, consistiu na extração de informações a partir de imagens multiespectrais e análise da qualidade da informação relacionada com a acurácia no cálculo do volume de água do reservatório. Inicialmente, a superfície do espelho d’água foi obtida pela classificação da cobertura da terra a partir de imagens multiespectrais RapidEye tomadas antes e durante a crise hídrica (2013 e 2014, respectivamente), utilizando duas abordagens distintas: classificação orientada a objeto (Object-based Image Analysis - OBIA) e classificação baseada em pixel (Support Vector Machine – SVM). A acurácia do usuário por classe permitiu expressar o erro para detectar a superfície do espelho d’água para cada abordagem de classificação de 2013 e 2014. O segundo componente da estimação do volume foi a representação do relevo submerso, que considerou duas fontes de dados na construção do modelo numérico do terreno (MNT): dados topográficos provenientes de levantamento batimétrico disponibilizado pela Sabesp e o modelo de superfície AW3D30 (ALOS World 3D 30m mesh), para complementar a informação não disponível além da cota 830,13 metros. A comparação entre as duas abordagens de classificação dos tipos de cobertura da terra do entorno do reservatório Jaguari-Jacareí mostrou que SVM resultou em indicadores de acurácia ligeiramente superiores à OBIA, para os anos de 2013 e 2014. Em relação à estimação de volume do reservatório, incorporando a informação do nível de água divulgado pela Sabesp, a abordagem SVM apresentou menor discrepância relativa do que OBIA. Apesar disso, a qualidade da informação produzida na estimação de volume, resultante da propagação da variância associada aos dados envolvidos no processo, ambas as abordagens produziram valores similares de incerteza, mas com uma sutil superioridade de OBIA, para alguns dos cenários avaliados. No geral, os métodos de classificação utilizados nesta dissertação produziram informação acurada e adequada para o monitoramento de recursos hídricos e indicou que a abordagem SVM teve um desempenho sutilmente superior na classificação dos tipos de cobertura da terra, na estimação do volume e em alguns dos cenários considerados na propagação da incerteza.
This study aims to extract information from multispectral images and to analyse the information quality in the water volume estimation of Jaguari-Jacareí reservoir. The presented study of changes in the volume of the Jaguari-Jacareí reservoir was motivated by the critical situation of the reservoirs from Cantareira System in São Paulo State caused by water crisis in 2014. Reservoir area was extracted from RapidEye multispectral images acquired before and during the water crisis (2013 and 2014, respectively) through land cover classification. Firstly, the image classification was carried out in two distinct approaches: object-based (Object-based Image Analysis - OBIA) and pixel-based (Support Vector Machine - SVM) method. The classifications quality was evaluated through thematic accuracy, in which for every technique the user accuracy allowed to express the error for the class representing the water in 2013 and 2014. Secondly, we estimated the volume of the reservoir’s water body, using the numerical terrain model generated from two additional data sources: topographic data from a bathymetric survey, available from Sabesp, and the elevation model AW3D30 (to complement the information in the area where data from Sabesp was not available). When compare the two classification techniques, it was found that in the image classification, SVM performance slightly overcame the OBIA classification technique for 2013 and 2014. In the volume calculation considering the water level estimated from the generated DTM, the result obtained by SVM approach was better in 2013, whereas OBIA approach was more accurate in 2014. Considering the quality of the information produced in the volume estimation, both approaches presented similar values of uncertainty, with the OBIA method slightly less uncertain than SVM. In conclusion, the classification methods used in this dissertation produced accurate information to monitor water resource, but SVM had a subtly superior performance in the classification of land cover types, volume estimation and some of the scenarios considered in the propagation of uncertainty.
Menezes, Diego Pinheiro de. "Regeneração florestal após desmatamento: estudo da região de Santarém, Pará, Brasil". Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/100/100136/tde-15052017-220805/.
Texto completoThe earth surface was modified in the last 50 years more than in any other period of the History, more intense and fast in the tropics by the expansion of human occupation frontiers on the mature forest. The Brazilian Amazon, characterized by alternating extractive economic cycles, exemplifies this process. Between the degraded areas abandonment and the new occupation fronts, forest regeneration takes place. The secondary forest has a recognized importance for the restoration of ecosystem functions and the nutrient stocks lost from the mature forest but ignored for many years of official deforestation rates in the Brazilian Amazon. In this study, an approach using Geographic Object-Based Imaging Analysis (GEOBIA) is presented to classify the stages of secondary succession in an area with near 11,124 km² on Santarém region (Pará State, Brazil). Among the results, 19 different classifications were produced covering the period 1984 to 2016, which allowed identify the reduction of mature forest and secondary forest due to agricultural frontier expansion. Another relevant result was the modeling of a decision tree applicable to surface reflectance images collected by the LANDSAT satellites, processing these classifications attributes in a data mining software
Richards, Mark Andrew. "An intuitive motion-based input model for mobile devices". Queensland University of Technology, 2006. http://eprints.qut.edu.au/16556/.
Texto completoAraujo, Agnes Silva de. "Cobertura da terra intraurbana para inferências sobre a qualidade de vida na cidade de Marília/SP". Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/8/8135/tde-11042016-125248/.
Texto completoThe understanding of intraurban space in cities requires the observation and identification of the relationship between spatial patterns for the unveiling of its contents to understand the processes involved in the production and reproduction of these spaces. Thematic land cover/land use maps and social indicators maps are commonly used to acquire information on the existing spatial patterns, they are an important data source for land planning and management, and hence, are crucial in zoning projects. This research aims to correlate intraurban land cover classification maps from the city of Marília/SP developed from high resolution satellite images using the image analysis based on objects (GEOBIA) method with the indices and social indicators of quality of life, environmental quality, education and socioeconomic level for inferences about the quality of life and socio spatial segregation in the city of Marília/SP. For the spatial distribution and processing of the quantitative and qualitative data, geoprocessing techniques were applied, through the use of a Geographic Information System, statistical techniques and remote sensing, which allowed spatial analysis of data created. The results were presented and the proposed method was demonstrated promising to be applied in updating intraurban space information to support urban planning and land management and, consequently, contribute to improving the population\'s quality of life.
Rougier, Simon. "Apport des images satellites à très haute résolution spatiale couplées à des données géographiques multi-sources pour l’analyse des espaces urbains". Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAH019/document.
Texto completoClimate change presents cities with significant environmental challenges. Urban planners need decision-making tools and a better knowledge of their territory. One objective is to better understand the link between the grey and the green infrastructures in order to analyse and represent them. The second objective is to propose a methodology to map the urban structure at urban fabric scale taking into account the grey and green infrastructures. In current databases, vegetation is not mapped in an exhaustive way. Therefore the first step is to extract tree and grass vegetation using Pléiades satellite images using an object-based image analysis and an active learning classification. Based on those classifications and multi-sources data, an approach based on knowledge discovery in databases is proposed. It is focused on set of indicators mostly coming from urbanism and landscape ecology. The methodology is built on Strasbourg and applied on Rennes to validate and check its reproducibility
Bellón, de la Cruz Beatriz. "Une approche multiscalaire par télédétection pour la cartographie et la caractérisation des systèmes agricoles à l’échelle régionale". Thesis, Paris, AgroParisTech, 2018. http://www.theses.fr/2018AGPT0002.
Texto completo: In a context of regional land-use planning, agricultural systems’ mapping - crop types and cropping practices – allows monitoring of what is being produced, where and how, and therefore represents a key element for regional assessment of the agricultural production and its environmental impact. The production of information on agricultural systems generally requires a lot of data and expertise. This information is thus very heterogeneous in quantity and quality in space and time, the availability and updates being extremely variable between countries and regions. Remote sensing, through its ability to retrieve synoptic spatial information on the state and dynamics of vegetation from satellite images, represents a valuable tool for agricultural monitoring. However, the conversion of images into regional-scale map products remains a field of research for many applications. This thesis presents original methodological developments in a semi-automatic multiscale approach based on the processing and analysis of optical satellite imagery for the mapping and characterization of agricultural systems at regional scale. The approach is composed of two main methods: (i) regional stratification into landscape units and classification of these units to produce a map of agricultural land-use systems; (ii) field-level segmentation and unsupervised classification of the segments by a “landscape-clustering” method to produce a cropping systems’ map. The methods were developed on a region of intensive agriculture, the Brazilian state of Tocantins, where the cultivated area, as well as the main agricultural land-use systems and cropping systems were successfully mapped from an annual NDVI-MODIS time series and a mosaic of Landsat images. The reproducibility of the approach was then assessed in Burkina Faso, where landscapes are shaped by the smallholder agriculture. Only the cultivated area could be mapped with satisfactory results, highlighting the limitations of these methods and the current offer in satellite imagery given the challenging specificities of this type of agriculture for remote sensing. The resulting maps were assessed with ground-truth data and agricultural statistics, and compared to other existing maps. The results of this thesis show the potential of the new method of regional stratification into landscape units which, based on NDVI time series and combined to the unsupervised “landscape-clustering” classification method, contributes to significantly improve discrimination of crop types and agricultural practices, and allows representing the agricultural systems at different levels of spatial organization. The originality of the developed methods lies mainly in the simplicity of their implementation. They are almost exclusively based on satellite data and require little “expert” intervention and external data, which gives them a high reproducibility potential. Thereupon, this thesis contributes, with these novel methods, to the development of generic tools to support large-scale monitoring of agriculture and to provide decision-support products for reasoned land-use planning
Xu, Bo. "Object-based image analysis (OBIA) of vegetation in Great Smoky Mountains National Park". 2007. http://purl.galileo.usg.edu/uga%5Fetd/xu%5Fbo%5F200712%5Fms.
Texto completoLübker, Tillmann. "Object-based remote sensing for modelling scenarios of rural livelihoods in the highly structured farmland surrounding Kakamega Forest, western Kenya: Object-based remote sensing for modelling scenarios of rural livelihoods in the highly structured farmland surrounding Kakamega Forest, western Kenya". Doctoral thesis, 2013. https://tud.qucosa.de/id/qucosa%3A28246.
Texto completoDie vorliegende Arbeit untersucht räumlich-expliziten das stark strukturierte und dicht besiedelte Agrarland um den Kakamega Wald (Westkenia). Dabei kombiniert der interdisziplinäre Ansatz Methoden und Technologien verschiedener Wissenschaftsbereiche: die Fernerkundung mit der objekt-basierten Bildanalyse (OBIA), GIS und die räumlich-explizite Modellierung (Geoinformatik und Geographie) mit sozio- und agro-ökonomische Aspekten (Human- und Sozialwissenschaft) sowie der Kartographie. Zudem steht die Arbeit in Bezug zum Schutz der biologischen Vielfalt (Biologie). Ausgehend von einer Referenzdatenerfassung vor Ort und einer visuellen Bildinterpretation wurden räumlich sehr hochauflösende QuickBird-Satellitenbilddaten, die 466 km² des Agrarlandes abdecken, mit Hilfe von OBIA ausgewertet. In einem integrativen Ansatz wurden dabei statistische Verfahren und Expertenwissen kombiniert, um einen ausgefeilten Regelsatz zur Klassifizierung zu erzeugen. Das Klassifizierungsergebnis unterscheidet 15 Klassen der Landnutzung bzw. -bedeckung; zusammen mit zeitlich extrapolierten und räumlich neu verteilten Bevölkerungsdaten sowie sozio- und agro-ökonomischen Faktoren ermöglichte es, eine räumlich-explizite Typologie des Agrarlandes zu erstellen und Szenarien zum ländlichen Auskommen zu modellieren. Die Agrarlandtypologie unterscheidet zehn Landtypen: 3 Zuckerrohr-dominierte Typen (48% des Gebietes), 3 Tee-dominierte Typen (30%), 2 Übergangstypen (15%), 1 Typ steilen Geländes (2%) und 1 zentralen Typ (5%). Die Szenarien betrachten mögliche zukünftige Entwicklungen der Erträge und Preise der Hauptanbauarten Zuckerrohr, Tee und Mais. Von allen Agrarlandtypen ist der „marginal Zuckerrohr-dominierte Typ“ am besten gerüstet, um zukünftigen Problemen zu begegnen. Bezeichnend für diesen Typ sind – neben einer vergleichsweise geringen Bevölkerungsdichte – ein hoher Anteil an Nahrungsmittelanbau zusammen mit einem gemäßigten Anbau von exportorientierten Agrarprodukten. Als Teil der Forschungsarbeit werden verschiedene neuartige Methoden vorgestellt, u.a. ein neuer konzeptioneller Rahmen für das Kategorisieren von Studien zur Parameteroptimierung, die „area fitness rate“ (AFR) als neue Messgröße für Flächendiskrepanzen, die klassifikations-basierte Nächster-Nachbar Klassifizierung sowie ein Ansatz zum Bestimmen der Güte von OBIA-Klassifizierungen. Schließlich gibt die Arbeit eine Reihe von Empfehlungen und bietet vielversprechende Ausgangspunkte für weiterführende wissenschaftliche Forschungen.:1. Introduction 2. Geodata and reference data 3. Object-based image analysis (OBIA) 4. Optimization of segmentation parameters 5. Feature selection and threshold determination 6. OBIA classification: rule set development and realisation 7. Classification results 8. Spatial farmland typology 9. Spatially explicit planning scenarios of rural livelihoods 10. Discussion
Marpu, Prashanth Reddy [Verfasser]. "Geographic object based image analysis / by Prashanth Reddy Marpu". 2009. http://d-nb.info/994521715/34.
Texto completoYa-ChunLi y 李雅君. "Tunnel cracks detection via Geographical Object-based Image Analysis". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/74yb82.
Texto completo國立成功大學
資源工程學系
107
The inspection of tunnel lining conditions is have been carried out with many technologies, among which LiDAR is the most efficiency method for crack detection. However, it collects an immense amount of point cloud data, which could be handled manually. Automatic data processing didn’t provide enough function in determining the existence of cracks. Moreover, a majority of current tunnel crack detection software use image processing or deep learning to detect abnormalities. These methods require extensive training and time-consuming detection for accuracy of only approximately 80%. Therefore, it is an important issue to ameliorate the problems faced by LiDAR in tunnel crack detection. To improve the efficiency of auto-detection via point clouds form at tunnel linings, a combined routine is established. The point cloud data are then filtered and cropped for visibly discernible cracks to translate into image format. Image recognition for crack detection was then performed by combining image processing with three detection methods: Principal Component Analysis (PCA), Object-Based Image Analysis (OBIA), and Geographic Object-Based Image Analysis (GEOBIA). Crack measurements were produced from these image recognition results and then compared with the actual measurements to determine the level of error. The types of tunnel lining examined in this study are concrete tunnel linings and brick tunnel linings, which were evaluated using the accuracy rate, error rate, false-positive rate, false-negative rate, and Kappa coefficient after recognition via the three detection methods. From the three applied methods, GEOBIA produced the best results. This is because of its automated selection of the scale of image segmentation, along with its image recognition capability that outperforms pixel-based classification due to its implementation of elements in addition to pixels. The identification results of the two types of lining have consistent accuracy rates of over 95% and Kappa coefficients of over 0.85. In terms of measurements, the maximum error of length in the recognition results was between 4–34% and the maximum error of width was between 23–88%; the minimum width detected was 1.1 mm.
Chou, Yu-Jung y 周佑融. "Object-Based Video Coding and Compressed Image Scene Analysis". Thesis, 1996. http://ndltd.ncl.edu.tw/handle/91387120104638036235.
Texto completo國立臺灣大學
電機工程研究所
84
Part I: Object-Based Video Coding Nowadays, conventional approaches are reaching a saturation point so that object-based approaches arise more and more attention and interest. We have developed a novel method toward very low bit rate application which is object-based. Decomposing a image into several objects simulates the function of human vision and helps to decrease the number of the motion vectors compared to MPEG. we have also proposed a method to solve some drawback of object-based motion compensation in this part. As to residue coding, that is, prediction error coding, block-based transform method in conventional algorithm is replaced by a segmentation method to eliminate the artificial blocky effects. At last part of this part, some simulation results are shown and the performance is discussed. Part II: Compressed Image Scene Analysis In the near future, efficient indexing methods will be required to handle rapidly increasing visual information, especially when visual information systems such as video databases are established. Video analysis that partitions the video into clips or extracts interesting frames is a very important initial step for video indexing. In this part, we have developed a novel method for video analysis using the macroblack type information in the MPEG framework. This method exploits the comparison operations performed in the motion estimation procedure in the MPEG framework for detecting the scene changes resulted from motion estimation will follow some specific pattern when scene changes occurs or some effects are applied. Experiments show that our approach can perform very fast scene change, flashlight and caption detection.
Tsai, Bo-Wen y 蔡博文. "Object Tracking and Speed Measurement Based on Stereo Image Analysis". Thesis, 2006. http://ndltd.ncl.edu.tw/handle/75010470503847732242.
Texto completo國立中正大學
電機工程研究所
94
Motion detection and object tracking of dynamic scenes have been widely used in intelligent surveillance systems. Currently, most algorithms take a single video sequence as input for two-dimensional object tracking. In this thesis, we present a three-dimensional motion tracking based on the CAM shift algorithm and stereo image analysis. Furthermore, the motion speed of the dynamic object is obtained using the time intervals for video acquisition. For the fast moving object, motion history images are used for visual tracking and speed estimation. The experimental results have shown that single object tracking can be achieved for some specific application domains.
Martins, Cristiano Louriceira. "Geographic Object Based Image Analysis aplicada a dados Sentinel 2 MSI". Master's thesis, 2021. http://hdl.handle.net/10362/118074.
Texto completoThe object classification method, Geographic Object-Based Image Analysis (GEOBIA) served to classify, using Sentinel 2 MSI data, the types of land use and occupation in the municipality of Almada. For this, a supervised object classification method was used without the use of automatic statistical classifiers and the quality of the final mapping was assessed by calculating the following thematic precision metrics: global precision, percentage of error, precision in the producer, precision in the user, commission error and omission error. Results with global precision > = 80% were considered satisfactory, and by theme, precision in the user and producer equally > = 80%. The overall accuracy was 81%, the error percentage 19% and the topics that met the precision requirements were: 11 Urban fabric (92%; 90%), 12 Industry, commerce and transport (81%; 96%), 141 Urban green spaces (93%; 95%) and the class “331 Beaches, dunes and sands” with user and producer precision of 79% and 87%, was included in the list, as only 1% of accuracy is missing in the user, but have its classification process capable of being automated.
Peng, Shih-Yuan y 彭詩淵. "Analysis and Control for Adjusting Image AcquisitionRate Based on Object Information in Physical and Image Domains". Thesis, 2006. http://ndltd.ncl.edu.tw/handle/73834843845442220249.
Texto completo國立臺灣大學
電機工程學研究所
94
In recent years, applications for 3-D positioning have attracted much attention. In previous applications, there is no strategy to adjust image acquisition rate, therefore, the computational load of real-time 3-D positioning and the memory for storing images in a long time will cost much when images are just captured by a higher rate. However, when objects just keep in a static state or move very slowly, the results of 3-D positioning by higher rate are just nearly the same with the lower rate. This thesis presents three control methods for adjusting image acquisition rate. All these three rate control methods adjust the timing for image acquisition by the calculated results of object velocity. The first control method (Case I) adjusts the image acquisition rate by the information of object velocity in real world. In Case I, all cameras are adjusted to a same image acquisition rate synchronously. The second control method (Case II) adjusts the image acquisition rate by the information of object velocity in image. In Case II, each camera adjusts its image acquisition rate based on its own by the information from its captured images. The third control method (Case III) which can be regarded as a combination of (Case I) and (Case II), also adjusts the image acquisition rate by the information of object velocity in image and let all cameras adjust to same image acquisition rate synchronously. In a limited memory for image storage, according to the rate control methods that proposed in this study, the recorded duration for desired scenario is longer than that with purely high image acquisition rate. In previous 3-D positioning applications, the positioning results are obtained one image by one image. However, according to the rate control methods proposed in this study, the 3-D positioning results of the moments which are not recorded can be predicted by some mathematical methods. Therefore, the computational load for 3-D positioning process can be saved. The thesis also presents the experiments of 3-D positioning processes to compare the three control methods. The image processing steps and methods of image analysis for the 3-D positioning processes used in this thesis will be introduced in the fallowing chapters. At last, experimental results for the three control methods are analyzed and compared.
"Model-based computer vision: motion analysis, motion-based segmentation, 3D object recognition". 1998. http://library.cuhk.edu.hk/record=b5889626.
Texto completoThesis (M.Phil.)--Chinese University of Hong Kong, 1998.
Includes bibliographical references (leaves 143-151).
LIST OF TABLES --- p.vi
LIST OF FIGURES --- p.xii
CHAPTER
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Model-based Motion Analysis --- p.2
Chapter 1.1.1 --- With 3D-to-3D Point Correspondences --- p.4
Chapter 1.1.2 --- With 2D-to-3D Point Correspondences --- p.5
Chapter 1.1.3 --- With 2D-to-2D Point Correspondences --- p.6
Chapter 1.2 --- Motion-based Segmentation --- p.7
Chapter 1.3 --- 3D Object Recognition --- p.8
Chapter 1.4 --- Organization of the Thesis --- p.8
Chapter 2 --- Literature Review and Summary of Contributions --- p.10
Chapter 2.1 --- Model-based Motion Analysis --- p.10
Chapter 2.1.1 --- With 3D-to-3D Point Correspondences --- p.10
Chapter 2.1.2 --- With 2D-to-3D Point Correspondences --- p.13
Chapter 2.1.2.1 --- An Iterative Approach: Lowe's Algorithm --- p.18
Chapter 2.1.2.2 --- A Linear Approach: Faugeras's Algorithm --- p.19
Chapter 2.1.3 --- With 2D-to-2D Point Correspondences --- p.22
Chapter 2.2 --- Motion-based Segmentation --- p.27
Chapter 2.3 --- 3D Object Recognition --- p.28
Chapter 2.4 --- Summary of Contributions --- p.30
Chapter 3 --- Model-based Motion Analysis with 2D-to-3D Point Correspondences --- p.34
Chapter 3.1 --- A new Iterative Algorithm for the Perspective-4-point Problem: TL-algorithm --- p.34
Chapter 3.1.1 --- Algorithm --- p.35
Chapter 3.1.2 --- Experiment --- p.37
Chapter 3.1.2.1 --- Experiment using Synthetic Data --- p.38
Chapter 3.1.2.2 --- Experiment using Real Data --- p.42
Chapter 3.2 --- An Enhancement of Faugeras's Algorithm --- p.42
Chapter 3.2.1 --- Experimental Comparison between the Original Faugeras's Algorithm and the Modified One --- p.44
Chapter 3.2.1.1 --- Experiment One: Fixed Motion --- p.44
Chapter 3.2.1.2 --- Experiment Two: Using Motion Generated Ran- domly --- p.50
Chapter 3.2.2 --- Discussion --- p.54
Chapter 3.3 --- A new Linear Algorithm for the Model-based Motion Analysis: Six-point Algorithm --- p.55
Chapter 3.3.1 --- General Information of the Six-point Algorithm --- p.55
Chapter 3.3.2 --- Original Version of the Six-point Algorithm --- p.56
Chapter 3.3.2.1 --- Linear Solution Part --- p.56
Chapter 3.3.2.2 --- Constraint Satisfaction --- p.58
Use of Representation of Rotations by Quaternion --- p.62
Use of Singular Value Decomposition --- p.62
Determination of the translational matrix --- p.63
Chapter 3.3.3 --- Second Version of the Six-point Algorithm --- p.64
Chapter 3.3.4 --- Experiment --- p.65
Chapter 3.3.4.1 --- With Synthetic Data --- p.66
Experiment One: With Fixed Motion --- p.66
Experiment Two: With Motion Generated Randomly --- p.77
Chapter 3.3.4.2 --- With Real Data --- p.93
Chapter 3.3.5 --- Summary of the Six-Point Algorithm --- p.93
Chapter 3.3.6 --- A Visual Tracking System by using Six-point Algorithm --- p.95
Chapter 3.4 --- Comparison between TL-algorithm and Six-point Algorithm developed --- p.97
Chapter 3.5 --- Summary --- p.102
Chapter 4 --- Motion-based Segmentation --- p.104
Chapter 4.1 --- A new Approach with 3D-to-3D Point Correspondences --- p.104
Chapter 4.1.1 --- Algorithm --- p.105
Chapter 4.1.2 --- Experiment --- p.109
Chapter 4.2 --- A new Approach with 2D-to-3D Point Correspondences --- p.112
Chapter 4.2.1 --- Algorithm --- p.112
Chapter 4.2.2 --- Experiment --- p.116
Chapter 4.2.2.1 --- Experiment using synthetic data --- p.116
Chapter 4.2.2.2 --- Experiment using real image sequence --- p.119
Chapter 4.3 --- Summary --- p.119
Chapter 5 --- 3D Object Recognition --- p.121
Chapter 5.1 --- Proposed Algorithm for the 3D Object Recognition --- p.122
Chapter 5.1.1 --- Hypothesis step --- p.122
Chapter 5.1.2 --- Verification step --- p.124
Chapter 5.2 --- 3D Object Recognition System --- p.125
Chapter 5.2.1 --- System in Matlab: --- p.126
Chapter 5.2.2 --- System in Visual C++ --- p.129
Chapter 5.3 --- Experiment --- p.131
Chapter 5.3.1 --- System in Matlab --- p.132
Chapter 5.3.2 --- System in Visual C++ --- p.136
Chapter 5.4 --- Summary --- p.139
Chapter 6 --- Conclusions --- p.140
REFERENCES --- p.142
APPENDIX
Chapter A --- Representation of Rotations by Quaternion --- p.152
Chapter B --- Constrained Optimization --- p.154
Ya-ChingHsu y 許雅菁. "Applying Object-based Image Analysis Technique and Oblique Aerial Imagery for Urban Area Classification". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/37986426021245989235.
Texto completo國立成功大學
測量及空間資訊學系碩博士班
101
With the evolution of three dimensional GIS (Geospatial Information Systems) and digital map, nowadays, cyber-city modeling becomes a major topic in related research. We can take in every city at a glance with the 3D views on the network platform and implement some spatial assessment through the cyber-city. Comparing to the 2D maps, 3D maps provide much more information and intuitive visual response. In recent years, with the development of image matching technique and camera system, cyber-city models can be reconstructed through the multi-view aerial image. In addition to use the vertical aerial image only, the oblique views provide both the top and side information of the surface objects. For this reason, the multi-view aerial images are often utilized in building modeling researches such as façade texturing and building model reconstruction. Moreover, we can also acquire amount surface points from those images with the dense image matching technique. Comparing to the aerial LiDAR points, this kind of point cloud is much cheaper and denser. In our study, we performed an object-based image classification rule set on multi-view aerial imagery in urban area to extract the semantic information of the cyber-city. The images are finally classified into Grass, Tree, Façade, Roof, Road, Window and Others classes with a hierarchical coarse to fine rule set. For classifying the surface object more correctly, we also utilized the photogrammetric point cloud which generated by the multi-view imagery to produce the auxiliary height information. Over the last decade, the object-based image analysis (OBIA) has substituted the pixel-based classification method gradually. With the multiresolution image segmentation algorithm, objects are produced by merging the pixels with shape and color homogeneity. The object contains more features such as texture or shape indices in identifying the target class that lead the classification result closer to the human interpretation result, whereas the pixel only with spectral information. In the classification, the image will separate into several parts at first, namely the “objects”, through image segmentation algorithm. Then, we defined a coarse to fine rule set to classify the objects hierarchically according to the spectrum, geometry and class-related features indices. The auxiliary feature layers which include the original image, “height map” and “gradient map” are applied for detecting the target class. Besides, we also add the beneficial “edge map” in segmentation layers. Considered that the “height map” and “gradient map” are come from the photogrammetric point cloud, we also verified their reliability and correctness when comparing to the ALS (Airborne Laser Scanning) point cloud. Our experiment result shows the overall accuracy can achieve 81% and the kappa index is 0.75 which proved that the proposed classification method has a high percent correctness, especially in separating the roof, road and façade from the severe relief displacement successfully. Moreover, the semantic classification result is significant for cyber-city modeling and 3D GIS applications.