Literatura académica sobre el tema "OMEGA laser facility"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "OMEGA laser facility".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "OMEGA laser facility"
Ping, Yuan y Federica Coppari. "Laser shock XAFS studies at OMEGA facility". High Pressure Research 36, n.º 3 (2 de julio de 2016): 303–14. http://dx.doi.org/10.1080/08957959.2016.1196203.
Texto completoNiemann, C., G. Antonini, S. Compton, S. H. Glenzer, D. Hargrove, J. D. Moody, R. K. Kirkwood et al. "Transmitted laser beam diagnostic at the Omega laser facility". Review of Scientific Instruments 75, n.º 10 (octubre de 2004): 4171–73. http://dx.doi.org/10.1063/1.1787602.
Texto completoKelly, J. H., L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. J. Kessler et al. "OMEGA EP: High-energy petawatt capability for the OMEGA laser facility". Journal de Physique IV (Proceedings) 133 (junio de 2006): 75–80. http://dx.doi.org/10.1051/jp4:2006133015.
Texto completoCampbell, E. M., T. C. Sangster, V. N. Goncharov, J. D. Zuegel, S. F. B. Morse, C. Sorce, G. W. Collins et al. "Direct-drive laser fusion: status, plans and future". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, n.º 2189 (7 de diciembre de 2020): 20200011. http://dx.doi.org/10.1098/rsta.2020.0011.
Texto completoBOEHLY, T. R., A. BABUSHKIN, D. K. BRADLEY, R. S. CRAXTON, J. A. DELETTREZ, R. EPSTEIN, T. J. KESSLER et al. "Laser uniformity and hydrodynamic stability experiments at the OMEGA laser facility". Laser and Particle Beams 18, n.º 1 (enero de 2000): 11–19. http://dx.doi.org/10.1017/s0263034600181029.
Texto completoFroula, D. H., V. Rekow, C. Sorce, K. Piston, R. Knight, S. Alvarez, R. Griffith et al. "3ω transmitted beam diagnostic at the Omega Laser Facility". Review of Scientific Instruments 77, n.º 10 (octubre de 2006): 10E507. http://dx.doi.org/10.1063/1.2221911.
Texto completoRosen, P. A., J. M. Foster, R. J. R. Williams, B. H. Wilde, R. F. Coker, B. Blue, T. S. Perry et al. "Laboratory-astrophysics jet experiments at the omega laser facility". Journal de Physique IV (Proceedings) 133 (junio de 2006): 1019–23. http://dx.doi.org/10.1051/jp4:2006133206.
Texto completoSoures, John M. "The Omega Upgrade laser facility for direct-drive experiements". Journal of Fusion Energy 10, n.º 4 (diciembre de 1991): 295–98. http://dx.doi.org/10.1007/bf01052126.
Texto completoSoures, J. M., R. L. McCrory, T. R. Boehly, R. S. Craxton, S. D. Jacobs, J. H. Kelly, T. J. Kessler et al. "OMEGA Upgrade laser for direct-drive target experiments". Laser and Particle Beams 11, n.º 2 (junio de 1993): 317–21. http://dx.doi.org/10.1017/s0263034600004912.
Texto completoBennett, Guy R. "Advanced one-dimensional x-ray microscope for the Omega Laser Facility". Review of Scientific Instruments 70, n.º 1 (enero de 1999): 608–12. http://dx.doi.org/10.1063/1.1149433.
Texto completoTesis sobre el tema "OMEGA laser facility"
Casey, Daniel Thomas. "Diagnosing inertial confinement fusion implosions at OMEGA and the NIF Using novel neutron spectrometry". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/76813.
Texto completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 139-148).
A novel neutron spectrometer, called the Magnetic Recoil Spectrometer (MRS), was designed, built, and implemented on the OMEGA laser facility and the National Ignition Facility (NIF) to measure the neutron spectra from inertial confinement fusion (ICF) implosions. Using the MRS, the down-scattered neutron (DSn) spectrum has been used to infer the areal density ([rho]R) of ICF implosions for the first time. The DSn technique is essential for diagnosing high [rho]R (>180mg/cm²) cryogenic deuterium-tritium (DT) implosions, where most other methods fail. The MRS has helped to guide the cryogenic campaign toward the highest [rho]Rs ever achieved at OMEGA. In addition, the MRS is currently being used to diagnose the DSn spectrum from cryogenic implosions at the NIF during the beginning phases of the National Ignition Campaign (NIC). MRS data have already been essential for tuning these implosions to the highest [rho]Rs ever achieved in an ICF implosion (>1 g/cm²), and thus for guiding the NIC toward the realization of thermonuclear ignition. The first measurements of the T(t,2n)⁴He (TT) neutron spectrum in DT implosions at OMEGA have also been conducted using the MRS. The TT-neutron (TTn) spectrum was measured at low reactant central-mass energies of ~23 keV. The results from these measurements indicate that the TT reaction proceeds primarily through the direct three-body reaction channel, which is in contrast to the results obtained in higher energy accelerator experiments. Measurements of the TTn and DD proton yields were also conducted and compared to the DT neutron yield in DT implosions. From these measurements, it is concluded that the DD yield is anomalously low and the TTn yield is anomalously high, relative to the DT yield. These results have been explained by a stratification of the fuel in the core of an ICF implosion.
by Daniel Thomas Casey.
Ph.D.
Rojas, Jimmy A. (Rojas Herrera). "Impact of x-ray dose on the response of CR-39 nuclear track detector to 1-5.5 MeV alphas and 0.5-9.1 MeV protons for spectroscopy at the OMEGA Laser Facility and the National Ignition Facility". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/106770.
Texto completoPage 47 blank. Cataloged from PDF version of thesis.
Includes bibliographical references (pages 45-46).
The CR-39 nuclear track detector is used in many nuclear diagnostics fielded at inertial confinement fusion (ICF) facilities. Large x-ray fluences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to protons and alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 30 and 8keV Cu-K[alpha] and K[beta] x-rays. The CR-39 detectors were then exposed to 1-5.5 MeV alphas or 0.5- 9.1 MeV protons. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those not exposed to x-rays: for example, a dose of 3.0±0.1 Gy causes a decrease of (19±2)% in the track diameter of a 5.5 MeV alpha, while a dose of 6.0±0.1 Gy results in a decrease of (29±1)% in the track diameter of a 3.0 MeV proton. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual effect, due to changes in track etch rate and dependent on incident particle energy, was characterized by an empirical formula.
by Jimmy A. Rojas.
S.B.
Lafon, Marion. "Étude du schéma d'allumage par choc en fusion par confinement inertiel". Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14403/document.
Texto completoThe Shock Ignition (SI) scheme is an alternative to classical ignition schemes in Inertial Confinement Fusion. Its singularity relies on the relaxation of constraints during the compression phase and fulfilment of ignition conditions by launching a short and intense laser pulse (~500 ps, ~300 TW) on the preassembled fuel at the end of the implosion.In this thesis, it has been established that the SI process leads to a non-isobaric fuel configuration at the ignition time thus modifying the ignition criteria of Deuterium-Tritium (DT) against the conventional schemes. A gain model has been developed and gain curves have been infered and numerically validated. This hydrodynamical modeling has demonstrated that the SI process allows higher gain and lower ignition energy threshold than conventional ignition due to the high hot spot pressure at ignition time resulting from the ignitor shock propagation.The radiative hydrodynamic CHIC code developed at the CELIA laboratory has been used to determine parametric dependences describing the optimal conditions for target design leading to ignition. These numerical studies have enlightened the potential of SI with regards to saving up laser energy, obtain high gains but also to safety margins and ignition robustness.Finally, the results of the first SI experiments performed in spherical geometry on the OMEGA laser facility (NY, USA) are presented. An interpretation of the experimental data is proposed from mono and bidimensional hydrodynamic simulations. Then, different trails are explored to account for the differences observed between experimental and numerical data and alternative solutions to improve performances are suggested
Actas de conferencias sobre el tema "OMEGA laser facility"
Le Pape, S., L. Divol, S. Ross, S. Wilks, P. Amendt, L. Berzak Hopkins, G. Huser, J. Moody, A. J. Mackinnon y N. Meezan. "Plasma interpenatration study on the omega laser facility". En 2016 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2016. http://dx.doi.org/10.1109/plasma.2016.7533964.
Texto completoLi, C. K., F. H. Seguin, J. A. Frenje, R. Rygg, J. L. DeCiantis, C. D. Chen, R. D. Petrasso et al. "Charged Particle Diagnostics on the Omega Laser Facility". En IEEE Conference Record - Abstracts. 2005 IEEE International Conference on Plasma Science. IEEE, 2005. http://dx.doi.org/10.1109/plasma.2005.359475.
Texto completoKatz, J., W. R. Donaldson, R. Huff, E. M. Hill, J. H. Kelly, J. Kwiatkowski y R. B. Brannon. "3ω beam timing diagnostic for the OMEGA laser facility". En SPIE Optical Engineering + Applications, editado por Jeffrey A. Koch y Gary P. Grim. SPIE, 2015. http://dx.doi.org/10.1117/12.2189394.
Texto completoDorrer, C., D. Irwin, A. Consentino y J. Qiao. "Contrast Measurements of Kilojoule Laser Pulses at the Omega EP Laser Facility". En Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/cleo.2010.jthe117.
Texto completoOkishev, Andrey V., Mark D. Skeldon, Robert L. Keck y Wolf D. Seka. "New high-bandwidth all-solid-state pulse-shaping system for the OMEGA laser facility". En Laser Optics 2000, editado por Alexander A. Andreev y Vladimir E. Yashin. SPIE, 2001. http://dx.doi.org/10.1117/12.418784.
Texto completoOkishev, Andrey V., Mark D. Skeldon y Wolf Seka. "A Highly Stable, Diode-Pumped Master Oscillator for the OMEGA Laser Facility". En Advanced Solid State Lasers. Washington, D.C.: OSA, 2001. http://dx.doi.org/10.1364/assl.1999.me5.
Texto completoOkishev, A. V., M. D. Skeldon, R. L. Keck y W. Seka. "All-solid-state optical pulse shaper for the OMEGA laser fusion facility". En Advanced Solid State Lasers. Washington, D.C.: OSA, 2000. http://dx.doi.org/10.1364/assl.2000.mb3.
Texto completoOkishev, Audrey V., Devon J. Battaglia, Ildar A. Begishev y Jonathan D. Zuegel. "Highly stable, diode-pumped, cavity-dumped Nd:YLF regenerative amplifier for the OMEGA laser fusion facility". En Advanced Solid State Lasers. Washington, D.C.: OSA, 2002. http://dx.doi.org/10.1364/assl.2002.wb12.
Texto completoDorrer, C. "Characterization of a High-Contrast Front-End Prototype for the Omega EP Laser Facility". En CLEO: Science and Innovations. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/cleo_si.2011.cwg2.
Texto completoOkishev, Andrey V., John R. Marciante y Jonathan D. Zuegel. "A novel discrete-arbitrary-picket pulse-shaping system for the OMEGA laser fusion facility". En International Quantum Electronics Conference. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/iqec.2004.itui11.
Texto completoInformes sobre el tema "OMEGA laser facility"
Loomis, Eric Nicholas. Summaries of FY13 LANL experimental campaigns at the OMEGA Laser Facility. Office of Scientific and Technical Information (OSTI), octubre de 2013. http://dx.doi.org/10.2172/1095887.
Texto completoLoomis, Eric Nicholas, John F. Benage, Rahul C. Shah, Andreas Klein, Kirk A. Flippo, Yong Ho Kim, James A. Cobble y Gary P. Grim. Summaries of FY12 LANL Experimental Campaigns at the OMEGA Laser Facility. Office of Scientific and Technical Information (OSTI), octubre de 2012. http://dx.doi.org/10.2172/1053121.
Texto completoMcCoy, Chad. FY20 Sandia National Laboratories Dynamic Materials Experiments at the Omega Laser Facility. Office of Scientific and Technical Information (OSTI), noviembre de 2020. http://dx.doi.org/10.2172/1817316.
Texto completoNguyen, Khanh. Nonlinear Saturation of Cross-Beam Energy Transfer in Top9 Experiments on the Omega Laser Facility [Slides]. Office of Scientific and Technical Information (OSTI), marzo de 2021. http://dx.doi.org/10.2172/1770087.
Texto completoAll Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility. Office of Scientific and Technical Information (OSTI), julio de 2000. http://dx.doi.org/10.2172/763047.
Texto completo