Artículos de revistas sobre el tema "Out-of-distribution generalization"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Out-of-distribution generalization".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Ye, Nanyang, Lin Zhu, Jia Wang, et al. "Certifiable Out-of-Distribution Generalization." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 9 (2023): 10927–35. http://dx.doi.org/10.1609/aaai.v37i9.26295.
Texto completoLiu, Bowen, Haoyang Li, Shuning Wang, Shuo Nie, and Shanghang Zhang. "Subgraph Aggregation for Out-of-Distribution Generalization on Graphs." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 18 (2025): 18763–71. https://doi.org/10.1609/aaai.v39i18.34065.
Texto completoYuan, Lingxiao, Harold S. Park, and Emma Lejeune. "Towards out of distribution generalization for problems in mechanics." Computer Methods in Applied Mechanics and Engineering 400 (October 2022): 115569. http://dx.doi.org/10.1016/j.cma.2022.115569.
Texto completoLiu, Anji, Hongming Xu, Guy Van den Broeck, and Yitao Liang. "Out-of-Distribution Generalization by Neural-Symbolic Joint Training." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 10 (2023): 12252–59. http://dx.doi.org/10.1609/aaai.v37i10.26444.
Texto completoYu, Yemin, Luotian Yuan, Ying Wei, et al. "RetroOOD: Understanding Out-of-Distribution Generalization in Retrosynthesis Prediction." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 1 (2024): 374–82. http://dx.doi.org/10.1609/aaai.v38i1.27791.
Texto completoDu, Hongyi, Xuewei Li, and Minglai Shao. "Graph out-of-distribution generalization through contrastive learning paradigm." Knowledge-Based Systems 315 (April 2025): 113316. https://doi.org/10.1016/j.knosys.2025.113316.
Texto completoXu, Yiming, Bin Shi, Zhen Peng, Huixiang Liu, Bo Dong, and Chen Chen. "Out-of-Distribution Generalization on Graphs via Progressive Inference." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 12 (2025): 12963–71. https://doi.org/10.1609/aaai.v39i12.33414.
Texto completoZhu, Lin, Xinbing Wang, Chenghu Zhou, and Nanyang Ye. "Bayesian Cross-Modal Alignment Learning for Few-Shot Out-of-Distribution Generalization." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 9 (2023): 11461–69. http://dx.doi.org/10.1609/aaai.v37i9.26355.
Texto completoLavda, Frantzeska, and Alexandros Kalousis. "Semi-Supervised Variational Autoencoders for Out-of-Distribution Generation." Entropy 25, no. 12 (2023): 1659. http://dx.doi.org/10.3390/e25121659.
Texto completoZhang, Xiao, Sunhao Dai, Jun Xu, Yong Liu, and Zhenhua Dong. "AdaO2B: Adaptive Online to Batch Conversion for Out-of-Distribution Generalization." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 21 (2025): 22596–604. https://doi.org/10.1609/aaai.v39i21.34418.
Texto completoSu, Hang, and Wei Wang. "An Out-of-Distribution Generalization Framework Based on Variational Backdoor Adjustment." Mathematics 12, no. 1 (2023): 85. http://dx.doi.org/10.3390/math12010085.
Texto completoCao, Linfeng, Aofan Jiang, Wei Li, Huaying Wu, and Nanyang Ye. "OoDHDR-Codec: Out-of-Distribution Generalization for HDR Image Compression." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 1 (2022): 158–66. http://dx.doi.org/10.1609/aaai.v36i1.19890.
Texto completoLi, Jiacheng, and Min Yang. "Dual-branch neural operator for enhanced out-of-distribution generalization." Engineering Analysis with Boundary Elements 171 (February 2025): 106082. https://doi.org/10.1016/j.enganabound.2024.106082.
Texto completoDeng, Bin, and Kui Jia. "Counterfactual Supervision-Based Information Bottleneck for Out-of-Distribution Generalization." Entropy 25, no. 2 (2023): 193. http://dx.doi.org/10.3390/e25020193.
Texto completoAshok, Arjun, Chaitanya Devaguptapu, and Vineeth N. Balasubramanian. "Learning Modular Structures That Generalize Out-of-Distribution (Student Abstract)." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 12905–6. http://dx.doi.org/10.1609/aaai.v36i11.21589.
Texto completoZou, Xin, and Weiwei Liu. "Coverage-Guaranteed Prediction Sets for Out-of-Distribution Data." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 15 (2024): 17263–70. http://dx.doi.org/10.1609/aaai.v38i15.29673.
Texto completoBai, Haoyue, Rui Sun, Lanqing Hong, et al. "DecAug: Out-of-Distribution Generalization via Decomposed Feature Representation and Semantic Augmentation." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 8 (2021): 6705–13. http://dx.doi.org/10.1609/aaai.v35i8.16829.
Texto completoRen, Yifei, and Pouya Bashivan. "How well do models of visual cortex generalize to out of distribution samples?" PLOS Computational Biology 20, no. 5 (2024): e1011145. http://dx.doi.org/10.1371/journal.pcbi.1011145.
Texto completoFan, Caoyun, Wenqing Chen, Jidong Tian, Yitian Li, Hao He, and Yaohui Jin. "Unlock the Potential of Counterfactually-Augmented Data in Out-Of-Distribution Generalization." Expert Systems with Applications 238 (March 2024): 122066. http://dx.doi.org/10.1016/j.eswa.2023.122066.
Texto completoRamachandran, Sai Niranjan, Rudrabha Mukhopadhyay, Madhav Agarwal, C. V. Jawahar, and Vinay Namboodiri. "Understanding the Generalization of Pretrained Diffusion Models on Out-of-Distribution Data." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 13 (2024): 14767–75. http://dx.doi.org/10.1609/aaai.v38i13.29395.
Texto completoJia, Tianrui, Haoyang Li, Cheng Yang, Tao Tao, and Chuan Shi. "Graph Invariant Learning with Subgraph Co-mixup for Out-of-Distribution Generalization." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 8 (2024): 8562–70. http://dx.doi.org/10.1609/aaai.v38i8.28700.
Texto completoZhang, Lily H., and Rajesh Ranganath. "Robustness to Spurious Correlations Improves Semantic Out-of-Distribution Detection." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 12 (2023): 15305–12. http://dx.doi.org/10.1609/aaai.v37i12.26785.
Texto completoZhang, Jiaqiang, and Songcan Chen. "Expand Horizon: Graph Out-of-Distribution Generalization via Multi-Level Environment Inference." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 12 (2025): 13233–41. https://doi.org/10.1609/aaai.v39i12.33444.
Texto completoHuang, Kunze, Luyao Tang, Yuxuan Yuan, et al. "Open world out-of-distribution generalization via dream open and sustain close." Knowledge-Based Systems 327 (October 2025): 114128. https://doi.org/10.1016/j.knosys.2025.114128.
Texto completoGwon, Kyungpil, and Joonhyuk Yoo. "Out-of-Distribution (OOD) Detection and Generalization Improved by Augmenting Adversarial Mixup Samples." Electronics 12, no. 6 (2023): 1421. http://dx.doi.org/10.3390/electronics12061421.
Texto completoQian, Quan, Xuezhong Chen, Jingdong Chen, and Yi Qin. "Common distribution discrepancy knowledge distilling: A new out-of-distribution generalization framework for machinery RUL prediction." Mechanical Systems and Signal Processing 237 (August 2025): 113079. https://doi.org/10.1016/j.ymssp.2025.113079.
Texto completoBoccato, Tommaso, Alberto Testolin, and Marco Zorzi. "Learning Numerosity Representations with Transformers: Number Generation Tasks and Out-of-Distribution Generalization." Entropy 23, no. 7 (2021): 857. http://dx.doi.org/10.3390/e23070857.
Texto completoChen, Minghui, Cheng Wen, Feng Zheng, Fengxiang He, and Ling Shao. "VITA: A Multi-Source Vicinal Transfer Augmentation Method for Out-of-Distribution Generalization." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 1 (2022): 321–29. http://dx.doi.org/10.1609/aaai.v36i1.19908.
Texto completoMaier, Anatol, and Christian Riess. "Reliable Out-of-Distribution Recognition of Synthetic Images." Journal of Imaging 10, no. 5 (2024): 110. http://dx.doi.org/10.3390/jimaging10050110.
Texto completoXin, Shiji, Yifei Wang, Jingtong Su, and Yisen Wang. "On the Connection between Invariant Learning and Adversarial Training for Out-of-Distribution Generalization." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 9 (2023): 10519–27. http://dx.doi.org/10.1609/aaai.v37i9.26250.
Texto completoMadan, Spandan, Mingran Cao, Will Xiao, Hanspeter Pfister, and Gabriel Kreiman. "Out-of-Distribution generalization behavior of DNN-based encoding models for the visual cortex." Journal of Vision 24, no. 10 (2024): 1148. http://dx.doi.org/10.1167/jov.24.10.1148.
Texto completoHassan, A., S. A. Dar, P. B. Ahmad, and B. A. Para. "A new generalization of Aradhana distribution: Properties and applications." Journal of Applied Mathematics, Statistics and Informatics 16, no. 2 (2020): 51–66. http://dx.doi.org/10.2478/jamsi-2020-0009.
Texto completoChen, Zhe, Zhiquan Ding, Xiaoling Zhang, Xin Zhang, and Tianqi Qin. "Improving Out-of-Distribution Generalization in SAR Image Scene Classification with Limited Training Samples." Remote Sensing 15, no. 24 (2023): 5761. http://dx.doi.org/10.3390/rs15245761.
Texto completoSha, Naijun. "A New Inference Approach for Type-II Generalized Birnbaum-Saunders Distribution." Stats 2, no. 1 (2019): 148–63. http://dx.doi.org/10.3390/stats2010011.
Texto completoZhou, Pengyang, Chaochao Chen, Weiming Liu, et al. "FedGOG: Federated Graph Out-of-Distribution Generalization with Diffusion Data Exploration and Latent Embedding Decorrelation." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 21 (2025): 22965–73. https://doi.org/10.1609/aaai.v39i21.34459.
Texto completoDas, Siddhant, and Markus Nöth. "Times of arrival and gauge invariance." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477, no. 2250 (2021): 20210101. http://dx.doi.org/10.1098/rspa.2021.0101.
Texto completoSharifi-Noghabi, Hossein, Parsa Alamzadeh Harjandi, Olga Zolotareva, Colin C. Collins, and Martin Ester. "Out-of-distribution generalization from labelled and unlabelled gene expression data for drug response prediction." Nature Machine Intelligence 3, no. 11 (2021): 962–72. http://dx.doi.org/10.1038/s42256-021-00408-w.
Texto completoBogin, Ben, Sanjay Subramanian, Matt Gardner, and Jonathan Berant. "Latent Compositional Representations Improve Systematic Generalization in Grounded Question Answering." Transactions of the Association for Computational Linguistics 9 (2021): 195–210. http://dx.doi.org/10.1162/tacl_a_00361.
Texto completoZhi Tan, Zhi Tan, and Zhao-Fei Teng Zhi Tan. "Image Domain Generalization Method based on Solving Domain Discrepancy Phenomenon." 電腦學刊 33, no. 3 (2022): 171–85. http://dx.doi.org/10.53106/199115992022063303014.
Texto completoVasiliuk, Anton, Daria Frolova, Mikhail Belyaev, and Boris Shirokikh. "Limitations of Out-of-Distribution Detection in 3D Medical Image Segmentation." Journal of Imaging 9, no. 9 (2023): 191. http://dx.doi.org/10.3390/jimaging9090191.
Texto completoYu, Bowen, Yuhong Liu, Xin Wu, Jing Ren, and Zhibin Zhao. "Trustworthy diagnosis of Electrocardiography signals based on out-of-distribution detection." PLOS ONE 20, no. 2 (2025): e0317900. https://doi.org/10.1371/journal.pone.0317900.
Texto completoNguyen, Hai Van, Jau-Uei Chen, and Tan Bui-Thanh. "A model-constrained discontinuous Galerkin Network (DGNet) for compressible Euler equations with out-of-distribution generalization." Computer Methods in Applied Mechanics and Engineering 440 (May 2025): 117912. https://doi.org/10.1016/j.cma.2025.117912.
Texto completoLee, Ingyun, Wooju Lee, and Hyun Myung. "Domain Generalization with Vital Phase Augmentation." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 4 (2024): 2892–900. http://dx.doi.org/10.1609/aaai.v38i4.28070.
Texto completoHe, Rundong, Yue Yuan, Zhongyi Han, et al. "Exploring Channel-Aware Typical Features for Out-of-Distribution Detection." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 11 (2024): 12402–10. http://dx.doi.org/10.1609/aaai.v38i11.29132.
Texto completoDing, Kun, Haojian Zhang, Qiang Yu, Ying Wang, Shiming Xiang, and Chunhong Pan. "Weak Distribution Detectors Lead to Stronger Generalizability of Vision-Language Prompt Tuning." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 2 (2024): 1528–36. http://dx.doi.org/10.1609/aaai.v38i2.27918.
Texto completoSimmachan, Teerawat, and Wikanda Phaphan. "Generalization of Two-Sided Length Biased Inverse Gaussian Distributions and Applications." Symmetry 14, no. 10 (2022): 1965. http://dx.doi.org/10.3390/sym14101965.
Texto completoNain, Philippe. "On a generalization of the preemptive resume priority." Advances in Applied Probability 18, no. 1 (1986): 255–73. http://dx.doi.org/10.2307/1427245.
Texto completoNain, Philippe. "On a generalization of the preemptive resume priority." Advances in Applied Probability 18, no. 01 (1986): 255–73. http://dx.doi.org/10.1017/s0001867800015652.
Texto completoZhang, Weifeng, Zhiyuan Wang, Kunpeng Zhang, Ting Zhong, and Fan Zhou. "DyCVAE: Learning Dynamic Causal Factors for Non-stationary Series Domain Generalization (Student Abstract)." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 13 (2023): 16382–83. http://dx.doi.org/10.1609/aaai.v37i13.27051.
Texto completoChen, Zhengyu, Teng Xiao, Kun Kuang, et al. "Learning to Reweight for Generalizable Graph Neural Network." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 8 (2024): 8320–28. http://dx.doi.org/10.1609/aaai.v38i8.28673.
Texto completo