Artículos de revistas sobre el tema "Out-of-distribution generalization"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Out-of-distribution generalization".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Ye, Nanyang, Lin Zhu, Jia Wang, et al. "Certifiable Out-of-Distribution Generalization." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 9 (2023): 10927–35. http://dx.doi.org/10.1609/aaai.v37i9.26295.
Texto completoLiu, Bowen, Haoyang Li, Shuning Wang, Shuo Nie, and Shanghang Zhang. "Subgraph Aggregation for Out-of-Distribution Generalization on Graphs." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 18 (2025): 18763–71. https://doi.org/10.1609/aaai.v39i18.34065.
Texto completoYuan, Lingxiao, Harold S. Park, and Emma Lejeune. "Towards out of distribution generalization for problems in mechanics." Computer Methods in Applied Mechanics and Engineering 400 (October 2022): 115569. http://dx.doi.org/10.1016/j.cma.2022.115569.
Texto completoLiu, Anji, Hongming Xu, Guy Van den Broeck, and Yitao Liang. "Out-of-Distribution Generalization by Neural-Symbolic Joint Training." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 10 (2023): 12252–59. http://dx.doi.org/10.1609/aaai.v37i10.26444.
Texto completoYu, Yemin, Luotian Yuan, Ying Wei, et al. "RetroOOD: Understanding Out-of-Distribution Generalization in Retrosynthesis Prediction." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 1 (2024): 374–82. http://dx.doi.org/10.1609/aaai.v38i1.27791.
Texto completoDu, Hongyi, Xuewei Li, and Minglai Shao. "Graph out-of-distribution generalization through contrastive learning paradigm." Knowledge-Based Systems 315 (April 2025): 113316. https://doi.org/10.1016/j.knosys.2025.113316.
Texto completoXu, Yiming, Bin Shi, Zhen Peng, Huixiang Liu, Bo Dong, and Chen Chen. "Out-of-Distribution Generalization on Graphs via Progressive Inference." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 12 (2025): 12963–71. https://doi.org/10.1609/aaai.v39i12.33414.
Texto completoZhu, Lin, Xinbing Wang, Chenghu Zhou, and Nanyang Ye. "Bayesian Cross-Modal Alignment Learning for Few-Shot Out-of-Distribution Generalization." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 9 (2023): 11461–69. http://dx.doi.org/10.1609/aaai.v37i9.26355.
Texto completoLavda, Frantzeska, and Alexandros Kalousis. "Semi-Supervised Variational Autoencoders for Out-of-Distribution Generation." Entropy 25, no. 12 (2023): 1659. http://dx.doi.org/10.3390/e25121659.
Texto completoZhang, Xiao, Sunhao Dai, Jun Xu, Yong Liu, and Zhenhua Dong. "AdaO2B: Adaptive Online to Batch Conversion for Out-of-Distribution Generalization." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 21 (2025): 22596–604. https://doi.org/10.1609/aaai.v39i21.34418.
Texto completoSu, Hang, and Wei Wang. "An Out-of-Distribution Generalization Framework Based on Variational Backdoor Adjustment." Mathematics 12, no. 1 (2023): 85. http://dx.doi.org/10.3390/math12010085.
Texto completoCao, Linfeng, Aofan Jiang, Wei Li, Huaying Wu, and Nanyang Ye. "OoDHDR-Codec: Out-of-Distribution Generalization for HDR Image Compression." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 1 (2022): 158–66. http://dx.doi.org/10.1609/aaai.v36i1.19890.
Texto completoLi, Jiacheng, and Min Yang. "Dual-branch neural operator for enhanced out-of-distribution generalization." Engineering Analysis with Boundary Elements 171 (February 2025): 106082. https://doi.org/10.1016/j.enganabound.2024.106082.
Texto completoDeng, Bin, and Kui Jia. "Counterfactual Supervision-Based Information Bottleneck for Out-of-Distribution Generalization." Entropy 25, no. 2 (2023): 193. http://dx.doi.org/10.3390/e25020193.
Texto completoAshok, Arjun, Chaitanya Devaguptapu, and Vineeth N. Balasubramanian. "Learning Modular Structures That Generalize Out-of-Distribution (Student Abstract)." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 12905–6. http://dx.doi.org/10.1609/aaai.v36i11.21589.
Texto completoZou, Xin, and Weiwei Liu. "Coverage-Guaranteed Prediction Sets for Out-of-Distribution Data." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 15 (2024): 17263–70. http://dx.doi.org/10.1609/aaai.v38i15.29673.
Texto completoBai, Haoyue, Rui Sun, Lanqing Hong, et al. "DecAug: Out-of-Distribution Generalization via Decomposed Feature Representation and Semantic Augmentation." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 8 (2021): 6705–13. http://dx.doi.org/10.1609/aaai.v35i8.16829.
Texto completoRen, Yifei, and Pouya Bashivan. "How well do models of visual cortex generalize to out of distribution samples?" PLOS Computational Biology 20, no. 5 (2024): e1011145. http://dx.doi.org/10.1371/journal.pcbi.1011145.
Texto completoFan, Caoyun, Wenqing Chen, Jidong Tian, Yitian Li, Hao He, and Yaohui Jin. "Unlock the Potential of Counterfactually-Augmented Data in Out-Of-Distribution Generalization." Expert Systems with Applications 238 (March 2024): 122066. http://dx.doi.org/10.1016/j.eswa.2023.122066.
Texto completoRamachandran, Sai Niranjan, Rudrabha Mukhopadhyay, Madhav Agarwal, C. V. Jawahar, and Vinay Namboodiri. "Understanding the Generalization of Pretrained Diffusion Models on Out-of-Distribution Data." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 13 (2024): 14767–75. http://dx.doi.org/10.1609/aaai.v38i13.29395.
Texto completoJia, Tianrui, Haoyang Li, Cheng Yang, Tao Tao, and Chuan Shi. "Graph Invariant Learning with Subgraph Co-mixup for Out-of-Distribution Generalization." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 8 (2024): 8562–70. http://dx.doi.org/10.1609/aaai.v38i8.28700.
Texto completoZhang, Lily H., and Rajesh Ranganath. "Robustness to Spurious Correlations Improves Semantic Out-of-Distribution Detection." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 12 (2023): 15305–12. http://dx.doi.org/10.1609/aaai.v37i12.26785.
Texto completoZhang, Jiaqiang, and Songcan Chen. "Expand Horizon: Graph Out-of-Distribution Generalization via Multi-Level Environment Inference." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 12 (2025): 13233–41. https://doi.org/10.1609/aaai.v39i12.33444.
Texto completoGwon, Kyungpil, and Joonhyuk Yoo. "Out-of-Distribution (OOD) Detection and Generalization Improved by Augmenting Adversarial Mixup Samples." Electronics 12, no. 6 (2023): 1421. http://dx.doi.org/10.3390/electronics12061421.
Texto completoQian, Quan, Xuezhong Chen, Jingdong Chen, and Yi Qin. "Common distribution discrepancy knowledge distilling: A new out-of-distribution generalization framework for machinery RUL prediction." Mechanical Systems and Signal Processing 237 (August 2025): 113079. https://doi.org/10.1016/j.ymssp.2025.113079.
Texto completoBoccato, Tommaso, Alberto Testolin, and Marco Zorzi. "Learning Numerosity Representations with Transformers: Number Generation Tasks and Out-of-Distribution Generalization." Entropy 23, no. 7 (2021): 857. http://dx.doi.org/10.3390/e23070857.
Texto completoChen, Minghui, Cheng Wen, Feng Zheng, Fengxiang He, and Ling Shao. "VITA: A Multi-Source Vicinal Transfer Augmentation Method for Out-of-Distribution Generalization." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 1 (2022): 321–29. http://dx.doi.org/10.1609/aaai.v36i1.19908.
Texto completoMaier, Anatol, and Christian Riess. "Reliable Out-of-Distribution Recognition of Synthetic Images." Journal of Imaging 10, no. 5 (2024): 110. http://dx.doi.org/10.3390/jimaging10050110.
Texto completoXin, Shiji, Yifei Wang, Jingtong Su, and Yisen Wang. "On the Connection between Invariant Learning and Adversarial Training for Out-of-Distribution Generalization." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 9 (2023): 10519–27. http://dx.doi.org/10.1609/aaai.v37i9.26250.
Texto completoMadan, Spandan, Mingran Cao, Will Xiao, Hanspeter Pfister, and Gabriel Kreiman. "Out-of-Distribution generalization behavior of DNN-based encoding models for the visual cortex." Journal of Vision 24, no. 10 (2024): 1148. http://dx.doi.org/10.1167/jov.24.10.1148.
Texto completoHassan, A., S. A. Dar, P. B. Ahmad, and B. A. Para. "A new generalization of Aradhana distribution: Properties and applications." Journal of Applied Mathematics, Statistics and Informatics 16, no. 2 (2020): 51–66. http://dx.doi.org/10.2478/jamsi-2020-0009.
Texto completoChen, Zhe, Zhiquan Ding, Xiaoling Zhang, Xin Zhang, and Tianqi Qin. "Improving Out-of-Distribution Generalization in SAR Image Scene Classification with Limited Training Samples." Remote Sensing 15, no. 24 (2023): 5761. http://dx.doi.org/10.3390/rs15245761.
Texto completoSha, Naijun. "A New Inference Approach for Type-II Generalized Birnbaum-Saunders Distribution." Stats 2, no. 1 (2019): 148–63. http://dx.doi.org/10.3390/stats2010011.
Texto completoZhou, Pengyang, Chaochao Chen, Weiming Liu, et al. "FedGOG: Federated Graph Out-of-Distribution Generalization with Diffusion Data Exploration and Latent Embedding Decorrelation." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 21 (2025): 22965–73. https://doi.org/10.1609/aaai.v39i21.34459.
Texto completoDas, Siddhant, and Markus Nöth. "Times of arrival and gauge invariance." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477, no. 2250 (2021): 20210101. http://dx.doi.org/10.1098/rspa.2021.0101.
Texto completoSharifi-Noghabi, Hossein, Parsa Alamzadeh Harjandi, Olga Zolotareva, Colin C. Collins, and Martin Ester. "Out-of-distribution generalization from labelled and unlabelled gene expression data for drug response prediction." Nature Machine Intelligence 3, no. 11 (2021): 962–72. http://dx.doi.org/10.1038/s42256-021-00408-w.
Texto completoBogin, Ben, Sanjay Subramanian, Matt Gardner, and Jonathan Berant. "Latent Compositional Representations Improve Systematic Generalization in Grounded Question Answering." Transactions of the Association for Computational Linguistics 9 (2021): 195–210. http://dx.doi.org/10.1162/tacl_a_00361.
Texto completoZhi Tan, Zhi Tan, and Zhao-Fei Teng Zhi Tan. "Image Domain Generalization Method based on Solving Domain Discrepancy Phenomenon." 電腦學刊 33, no. 3 (2022): 171–85. http://dx.doi.org/10.53106/199115992022063303014.
Texto completoVasiliuk, Anton, Daria Frolova, Mikhail Belyaev, and Boris Shirokikh. "Limitations of Out-of-Distribution Detection in 3D Medical Image Segmentation." Journal of Imaging 9, no. 9 (2023): 191. http://dx.doi.org/10.3390/jimaging9090191.
Texto completoYu, Bowen, Yuhong Liu, Xin Wu, Jing Ren, and Zhibin Zhao. "Trustworthy diagnosis of Electrocardiography signals based on out-of-distribution detection." PLOS ONE 20, no. 2 (2025): e0317900. https://doi.org/10.1371/journal.pone.0317900.
Texto completoNguyen, Hai Van, Jau-Uei Chen, and Tan Bui-Thanh. "A model-constrained discontinuous Galerkin Network (DGNet) for compressible Euler equations with out-of-distribution generalization." Computer Methods in Applied Mechanics and Engineering 440 (May 2025): 117912. https://doi.org/10.1016/j.cma.2025.117912.
Texto completoLee, Ingyun, Wooju Lee, and Hyun Myung. "Domain Generalization with Vital Phase Augmentation." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 4 (2024): 2892–900. http://dx.doi.org/10.1609/aaai.v38i4.28070.
Texto completoHe, Rundong, Yue Yuan, Zhongyi Han, et al. "Exploring Channel-Aware Typical Features for Out-of-Distribution Detection." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 11 (2024): 12402–10. http://dx.doi.org/10.1609/aaai.v38i11.29132.
Texto completoDing, Kun, Haojian Zhang, Qiang Yu, Ying Wang, Shiming Xiang, and Chunhong Pan. "Weak Distribution Detectors Lead to Stronger Generalizability of Vision-Language Prompt Tuning." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 2 (2024): 1528–36. http://dx.doi.org/10.1609/aaai.v38i2.27918.
Texto completoSimmachan, Teerawat, and Wikanda Phaphan. "Generalization of Two-Sided Length Biased Inverse Gaussian Distributions and Applications." Symmetry 14, no. 10 (2022): 1965. http://dx.doi.org/10.3390/sym14101965.
Texto completoNain, Philippe. "On a generalization of the preemptive resume priority." Advances in Applied Probability 18, no. 1 (1986): 255–73. http://dx.doi.org/10.2307/1427245.
Texto completoNain, Philippe. "On a generalization of the preemptive resume priority." Advances in Applied Probability 18, no. 01 (1986): 255–73. http://dx.doi.org/10.1017/s0001867800015652.
Texto completoZhang, Weifeng, Zhiyuan Wang, Kunpeng Zhang, Ting Zhong, and Fan Zhou. "DyCVAE: Learning Dynamic Causal Factors for Non-stationary Series Domain Generalization (Student Abstract)." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 13 (2023): 16382–83. http://dx.doi.org/10.1609/aaai.v37i13.27051.
Texto completoChen, Zhengyu, Teng Xiao, Kun Kuang, et al. "Learning to Reweight for Generalizable Graph Neural Network." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 8 (2024): 8320–28. http://dx.doi.org/10.1609/aaai.v38i8.28673.
Texto completoWang, Da, Lin Li, Wei Wei, Qixian Yu, Jianye Hao, and Jiye Liang. "Improving Generalization in Offline Reinforcement Learning via Latent Distribution Representation Learning." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 20 (2025): 21053–61. https://doi.org/10.1609/aaai.v39i20.35402.
Texto completo