Literatura académica sobre el tema "Pathwise approach"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Pathwise approach".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Pathwise approach"

1

Kühn, C., A. E. Kyprianou, and K. van Schaik. "Pricing Israeli options: a pathwise approach." Stochastics 79, no. 1-2 (2007): 117–37. http://dx.doi.org/10.1080/17442500600976442.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Willinger, Walter. "A pathwise approach to stochastic integration." Stochastic Processes and their Applications 26 (1987): 236. http://dx.doi.org/10.1016/0304-4149(87)90177-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Cattiaux, Patrick. "A Pathwise Approach of Some Classical Inequalities." Potential Analysis 20, no. 4 (2004): 361–94. http://dx.doi.org/10.1023/b:pota.0000009847.84908.6f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Abdullin, Marat Airatovich, Niyaz Salavatovich Ismagilov, and Farit Sagitovich Nasyrov. "One dimensional stochastic differential equations: pathwise approach." Ufimskii Matematicheskii Zhurnal 5, no. 4 (2013): 3–15. http://dx.doi.org/10.13108/2013-5-4-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Korytowski, Adam, and Maciej Szymkat. "Necessary Optimality Conditions for a Class of Control Problems with State Constraint." Games 12, no. 1 (2021): 9. http://dx.doi.org/10.3390/g12010009.

Texto completo
Resumen
An elementary approach to a class of optimal control problems with pathwise state constraint is proposed. Based on spike variations of control, it yields simple proofs and constructive necessary conditions, including some new characterizations of optimal control. Two examples are discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Jin, Xing, Dan Luo, and Xudong Zeng. "Dynamic Asset Allocation with Uncertain Jump Risks: A Pathwise Optimization Approach." Mathematics of Operations Research 43, no. 2 (2018): 347–76. http://dx.doi.org/10.1287/moor.2017.0854.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

BOUHADOU, S., and Y. OUKNINE. "STOCHASTIC EQUATIONS OF PROCESSES WITH JUMPS." Stochastics and Dynamics 14, no. 01 (2013): 1350006. http://dx.doi.org/10.1142/s0219493713500068.

Texto completo
Resumen
We consider one-dimensional stochastic differential equations driven by white noises and Poisson random measure. We introduce new techniques based on local time prove new results on pathwise uniqueness and comparison theorems. Our approach is very easy to handle and do not need any approximation approach. Similar equations without jumps were studied in the same context by [8, 12] and other authors.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Catuogno, Pedro, and Christian Olivera. "Renormalized-generalized solutions for the KPZ equation." Infinite Dimensional Analysis, Quantum Probability and Related Topics 17, no. 04 (2014): 1450027. http://dx.doi.org/10.1142/s0219025714500271.

Texto completo
Resumen
This work introduces a new notion of solution for the KPZ equation, in particular, our approach encompasses the Cole–Hopf solution. We set in the context of the distribution theory the proposed results by Bertini and Giacomin from the mid '90s. This new approach provides a pathwise notion of solution as well as a structured approximation theory. The developments are based on regularization arguments from the theory of distributions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Bianchi, A., A. Gaudillière, and P. Milanesi. "On Soft Capacities, Quasi-stationary Distributions and the Pathwise Approach to Metastability." Journal of Statistical Physics 181, no. 3 (2020): 1052–86. http://dx.doi.org/10.1007/s10955-020-02618-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Westphal, U., and T. Schwartz. "Farthest points and monotone operators." Bulletin of the Australian Mathematical Society 58, no. 1 (1998): 75–92. http://dx.doi.org/10.1017/s0004972700032019.

Texto completo
Resumen
We apply the theory of monotone operators to study farthest points in closed bounded subsets of real Banach spaces. This new approach reveals the intimate connection between the farthest point mapping and the subdifferential of the farthest distance function. Moreover, we prove that a typical exception set in the Baire category sense is pathwise connected. Stronger results are obtained in Hilbert spaces.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía