Literatura académica sobre el tema "Periodic Unfolding Method"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Periodic Unfolding Method".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Periodic Unfolding Method"

1

Cioranescu, D., A. Damlamian, and G. Griso. "The Periodic Unfolding Method in Homogenization." SIAM Journal on Mathematical Analysis 40, no. 4 (2008): 1585–620. http://dx.doi.org/10.1137/080713148.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Cioranescu, D., A. Damlamian, P. Donato, G. Griso, and R. Zaki. "The Periodic Unfolding Method in Domains with Holes." SIAM Journal on Mathematical Analysis 44, no. 2 (2012): 718–60. http://dx.doi.org/10.1137/100817942.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

DIMINNIE, DAVID C., and RICHARD HABERMAN. "ACTION AND PERIOD OF HOMOCLINIC AND PERIODIC ORBITS FOR THE UNFOLDING OF A SADDLE-CENTER BIFURCATION." International Journal of Bifurcation and Chaos 13, no. 11 (2003): 3519–30. http://dx.doi.org/10.1142/s0218127403008569.

Texto completo
Resumen
At a saddle-center bifurcation for Hamiltonian systems, the homoclinic orbit is cusp shaped at the nonlinear nonhyperbolic saddle point. Near but before the bifurcation, orbits are periodic corresponding to the unfolding of the homoclinic orbit, while after the bifurcation a double homoclinic orbit is formed with a local and global branch. The saddle-center bifurcation is dynamically unfolded due to a slowly varying potential. Near the unfolding of the homoclinic orbit, the period and action are analyzed. Asymptotic expansions for the action, period and dissipation are obtained in an overlap r
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Cioranescu, Doina, Alain Damlamian, and Riccardo De Arcangelis. "Homogenization of Quasiconvex Integrals via the Periodic Unfolding Method." SIAM Journal on Mathematical Analysis 37, no. 5 (2006): 1435–53. http://dx.doi.org/10.1137/040620898.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Cioranescu, Doina, Alain Damlamian, and Riccardo De Arcangelis. "Homogenization of nonlinear integrals via the periodic unfolding method." Comptes Rendus Mathematique 339, no. 1 (2004): 77–82. http://dx.doi.org/10.1016/j.crma.2004.03.028.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Avila, Jake, and Bituin Cabarrubias. "Periodic unfolding method for domains with very small inclusions." Electronic Journal of Differential Equations 2023, no. 01-?? (2023): 85. http://dx.doi.org/10.58997/ejde.2023.85.

Texto completo
Resumen
This work creates a version of the periodic unfolding method suitable for domains with very small inclusions in \(\mathbb{R}^N\) for \(N\geq 3\). In the first part, we explore the properties of the associated operators. The second part involves the application of the method in obtaining the asymptotic behavior of a stationary heat dissipation problem depending on the parameter \( \gamma < 0\). In particular, we consider the cases when \(\gamma \in (-1,0)\), \( \gamma < -1\) and \(\gamma = -1\). We also include here the corresponding corrector results for the solution of the problem, to c
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Sánchez-Ochoa, F., Francisco Hidalgo, Miguel Pruneda, and Cecilia Noguez. "Unfolding method for periodic twisted systems with commensurate Moiré patterns." Journal of Physics: Condensed Matter 32, no. 2 (2019): 025501. http://dx.doi.org/10.1088/1361-648x/ab44f0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Ptashnyk, Mariya. "Locally Periodic Unfolding Method and Two-Scale Convergence on Surfaces of Locally Periodic Microstructures." Multiscale Modeling & Simulation 13, no. 3 (2015): 1061–105. http://dx.doi.org/10.1137/140978405.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Cioranescu, D., A. Damlamian, G. Griso, and D. Onofrei. "The periodic unfolding method for perforated domains and Neumann sieve models." Journal de Mathématiques Pures et Appliquées 89, no. 3 (2008): 248–77. http://dx.doi.org/10.1016/j.matpur.2007.12.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Donato, P., K. H. Le Nguyen, and R. Tardieu. "The periodic unfolding method for a class of imperfect transmission problems." Journal of Mathematical Sciences 176, no. 6 (2011): 891–927. http://dx.doi.org/10.1007/s10958-011-0443-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!