Siga este enlace para ver otros tipos de publicaciones sobre el tema: Phonon.

Libros sobre el tema "Phonon"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores mejores libros para su investigación sobre el tema "Phonon".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore libros sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Sild, Olev y Kristjan Haller, eds. Zero-Phonon Lines. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73638-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Bron, Walter E., ed. Nonequilibrium Phonon Dynamics. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2501-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

E, Bron Walter y North Atlantic Treaty Organization. Scientific Affairs Division., eds. Nonequilibrium phonon dynamics. New York: Plenum Press, 1985.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

E, Bron Walter y NATO Scientific Affairs Division, eds. Nonequilibrium phonon dynamics. New York: Plenum published in cooperation with NATO Scientific Affairs Division, 1985.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Nicholas, R. J. The magnetophonon effect. Oxford, England: Pergamon Press, 1985.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Sun, Chang Q. Electron and Phonon Spectrometrics. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3176-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Gurevich, V. L. Transport in phonon systems. Amsterdam: North-Holland, 1986.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Shindé, Subhash L. y Gyaneshwar P. Srivastava, eds. Length-Scale Dependent Phonon Interactions. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-8651-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Kress, W. Phonon dispersion curves, one-phonon densities of states and impurity vibrations of metallic systems. Karlsruhe: Fachinformationszentrum Karlsruhe, 1987.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Meissner, Michael y Robert O. Pohl, eds. Phonon Scattering in Condensed Matter VII. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84888-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Anderson, Ansel C. y James P. Wolfe, eds. Phonon Scattering in Condensed Matter V. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82912-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Kato, Takashi. Electron-phonon interactions in novel nanoelectronics. New York: Nova Science, 2009.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Li, Hai-Peng y Rui-Qin Zhang. Phonon Thermal Transport in Silicon-Based Nanomaterials. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2637-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

1933-, Challis L. J., ed. Electron-phonon interaction in low-dimensional structures. Oxford: Oxford University Press, 2003.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

S, Hunklinger, Ludwig W. 1929-, Weiss G. 1952- y International Conference on Phonon Scattering in Condensed Matter (6th : 1989 : Heidelberg, Germany), eds. Phonons '89: Proceedings of the third International Conference on Phonon Physics and the sixth International Conference on Phonon Scattering in Condensed Matter, Heidelberg, 21-25 August, 1989, Federal Republic of Germany. Singapore: World Scientific, 1990.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Torres, C. M. Sotomayor, J. P. Leburton y Jordi Pascual. Phonons in semiconductor nanostructures. Dordrecht: Springer, 1993.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

1949-, Leburton J. P., Pascual Jordi 1949-, Sotomayor Torres C. M, North Atlantic Treaty Organization. Scientific Affairs Division. y NATO Advanced Research Workshop on Phonons in Semiconductor Nanostructures (1992 : San Felíu de Guixols, Spain), eds. Phonons in semiconductor nanostructures. Dordrecht: Kluwer Academic, 1993.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Rizzi, Valerio. Real-Time Quantum Dynamics of Electron–Phonon Systems. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96280-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Aynajian, Pegor. Electron-Phonon Interaction in Conventional and Unconventional Superconductors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14968-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Oron-Carl, Matti. Electron-phonon coupling in single-walled carbon nanotubes. Karlsruhe, [Germany]: Forschungszentrum Karlsruhe, 2006.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

service), SpringerLink (Online, ed. Electron-Phonon Interaction in Conventional and Unconventional Superconductors. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Hamada, Masato. Theory of Generation and Conversion of Phonon Angular Momentum. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4690-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

International Conference on Phonon Physics (4th 1995 Sapporo, Japan). Phonons 95: Proceedings of the combined conference of the 4thInternational Conference on Phonon Physics and the 8th International Conference on Phonon Scattering in Condensed Matter held in Sapporo, Japan, 23-28 July 1995. Editado por Nakayama Tsuneyoshi, Tamura Shin-ichiro, Yagi Toshirou y International Conference on Phonon Scattering in Condensed Matter, (8th : 1995 : Sapporo, Japan). Amsterdam: North Holland, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Kasii͡an, A. I. Kineticheskie ėffekty v poluprovodnikakh razlichnoĭ razmernosti. Kishinev: "Shtiint͡sa", 1989.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

O, Silʹd y Khaller K. Ė, eds. Zero-phonon lines and spectral hole burning in spectroscopy and photochemistry. Berlin: Springer-Verlag, 1988.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

I͡Anson, I. K. Atlas mikrokontaknykh spektrov ėlektron-fononnogo vzaimodeĭstvii͡a v metallakh: Spravochnik. Kiev: Nauk. dumka, 1986.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Khotkevich, A. V. y I. K. Yanson. Atlas of Point Contact Spectra of Electron-Phonon Interactions in Metals. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2265-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Sild, Olev. Zero-Phonon Lines: And Spectral Hole Burning in Spectroscopy and Photochemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Suwa, Hidemaro. Geometrically Constructed Markov Chain Monte Carlo Study of Quantum Spin-phonon Complex Systems. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54517-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Bron, Walter E. Nonequilibrium Phonon Dynamics. Springer London, Limited, 2013.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Bron, Walter. Nonequilibrium Phonon Dynamics. Springer, 1985.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Nonequilibrium Phonon Dynamics. Springer, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Haller, Kristjan. Zero-Phonon Lines. Island Press, 1988.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Kuleyev, Igor Gaynitdinovich, Ivan Igorevich Kuleyev, Sergey Mikhailovich Bakharev y Vladimir Vasilyevich Ustinov. Phonon Focusing and Phonon Transport: In Single-Crytal Nanostructures. de Gruyter GmbH, Walter, 2020.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Kuleyev, Igor Gaynitdinovich, Ivan Igorevich Kuleyev, Sergey Mikhailovich Bakharev y Vladimir Vasilyevich Ustinov. Phonon Focusing and Phonon Transport: In Single-Crytal Nanostructures. de Gruyter GmbH, Walter, 2020.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Kuleyev, Igor Gaynitdinovich, Ivan Igorevich Kuleyev, Sergey Mikhailovich Bakharev y Vladimir Vasilyevich Ustinov. Phonon Focusing and Phonon Transport: In Single-Crytal Nanostructures. de Gruyter GmbH, Walter, 2020.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Challis, L. Phonon Scattering in Solids. Springer, 2013.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Sun, Chang Q. Electron and Phonon Spectrometrics. Springer Singapore Pte. Limited, 2021.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Sun, Chang Q. Electron and Phonon Spectrometrics. Springer Singapore Pte. Limited, 2020.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Transport in phonon systems. Amsterdam: North-Holland, 1986.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Phonon Scattering in Solids. Springer, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Shindé, Subhash L. y G. P. Srivastava. Length-Scale Dependent Phonon Interactions. Springer New York, 2016.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Shindé, Subhash L. y Gyaneshwar P. Srivastava. Length-Scale Dependent Phonon Interactions. Springer London, Limited, 2013.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Shindé, Subhash L. y Gyaneshwar P. Srivastava. Length-Scale Dependent Phonon Interactions. Springer, 2013.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Claus, R., L. Merten y J. Brandmüller. Light Scattering by Phonon-Polaritons. Springer, 2006.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Horing, Norman J. Morgenstern. Interacting Electron–Hole–Phonon System. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0011.

Texto completo
Resumen
Chapter 11 employs variational differential techniques and the Schwinger Action Principle to derive coupled-field Green’s function equations for a multi-component system, modeled as an interacting electron-hole-phonon system. The coupled Fermion Green’s function equations involve five interactions (electron-electron, hole-hole, electron-hole, electron-phonon, and hole-phonon). Starting with quantum Hamilton equations of motion for the various electron/hole creation/annihilation operators and their nonequilibrium average/expectation values, variational differentiation with respect to particle sources leads to a chain of coupled Green’s function equations involving differing species of Green’s functions. For example, the 1-electron Green’s function equation is coupled to the 2-electron Green’s function (as earlier), also to the 1-electron/1-hole Green’s function, and to the Green’s function for 1-electron propagation influenced by a nontrivial phonon field. Similar remarks apply to the 1-hole Green’s function equation, and all others. Higher order Green’s function equations are derived by further variational differentiation with respect to sources, yielding additional couplings. Chapter 11 also introduces the 1-phonon Green’s function, emphasizing the role of electron coupling in phonon propagation, leading to dynamic, nonlocal electron screening of the phonon spectrum and hybridization of the ion and electron plasmons, a Bohm-Staver phonon mode, and the Kohn anomaly. Furthermore, the single-electron Green’s function with only phonon coupling can be rewritten, as usual, coupled to the 2-electron Green’s function with an effective time-dependent electron-electron interaction potential mediated by the 1-phonon Green’s function, leading to the polaron as an electron propagating jointly with its induced lattice polarization. An alternative formulation of the coupled Green’s function equations for the electron-hole-phonon model is applied in the development of a generalized shielded potential approximation, analysing its inverse dielectric screening response function and associated hybridized collective modes. A brief discussion of the (theoretical) origin of the exciton-plasmon interaction follows.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Phonon Physics The Cutting Edge. Elsevier, 1995. http://dx.doi.org/10.1016/s1874-5628(06)x8011-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Horton, G. K. y Alexei A. Maradudin. Phonon Physics the Cutting Edge. Elsevier Science & Technology Books, 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Claus, R., L. Merten y J. Brandmüller. Light Scattering by Phonon-Polaritons. Springer, 2013.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Yamamoto, Takahiro, Kazuyuki Watanabe y Satoshi Watanabe. Thermal transport of small systems. Editado por A. V. Narlikar y Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.6.

Texto completo
Resumen
This article focuses on the phonon transport or thermal transport of small systems, including quasi-one-dimensional systems such as carbon nanotubes. The Fourier law well describes the thermal transport phenomena in normal bulk materials. However, it is no longer valid when the sample dimension reduces down to below the mean-free path of phonons. In such a small system, the phonons propagate coherently without interference with other phonons. The article first considers the Boltzmann–Peierls formula of diffusive phonon transport before discussing coherent phonon transport, with emphasis on the Landauer formulation of phonon transport, ballistic phonon transport and quantized thermal conductance, numerical calculation of the phonon-transmission function, and length dependence of the thermal conductance.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía