Siga este enlace para ver otros tipos de publicaciones sobre el tema: Plant immunty.

Artículos de revistas sobre el tema "Plant immunty"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Plant immunty".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Hou, Shuguo, Yifei Yang, Daoji Wu y Chao Zhang. "Plant immunity". Plant Signaling & Behavior 6, n.º 6 (junio de 2011): 794–99. http://dx.doi.org/10.4161/psb.6.6.15143.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Lewis, Jennifer D. "Plant immunity". Seminars in Cell & Developmental Biology 56 (agosto de 2016): 122–23. http://dx.doi.org/10.1016/j.semcdb.2016.07.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Nobori, Tatsuya, André C. Velásquez, Jingni Wu, Brian H. Kvitko, James M. Kremer, Yiming Wang, Sheng Yang He y Kenichi Tsuda. "Transcriptome landscape of a bacterial pathogen under plant immunity". Proceedings of the National Academy of Sciences 115, n.º 13 (12 de marzo de 2018): E3055—E3064. http://dx.doi.org/10.1073/pnas.1800529115.

Texto completo
Resumen
Plant pathogens can cause serious diseases that impact global agriculture. The plant innate immunity, when fully activated, can halt pathogen growth in plants. Despite extensive studies into the molecular and genetic bases of plant immunity against pathogens, the influence of plant immunity in global pathogen metabolism to restrict pathogen growth is poorly understood. Here, we developed RNA sequencing pipelines for analyzing bacterial transcriptomes in planta and determined high-resolution transcriptome patterns of the foliar bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana with a total of 27 combinations of plant immunity mutants and bacterial strains. Bacterial transcriptomes were analyzed at 6 h post infection to capture early effects of plant immunity on bacterial processes and to avoid secondary effects caused by different bacterial population densities in planta. We identified specific “immune-responsive” bacterial genes and processes, including those that are activated in susceptible plants and suppressed by plant immune activation. Expression patterns of immune-responsive bacterial genes at the early time point were tightly linked to later bacterial growth levels in different host genotypes. Moreover, we found that a bacterial iron acquisition pathway is commonly suppressed by multiple plant immune-signaling pathways. Overexpression of a P. syringae sigma factor gene involved in iron regulation and other processes partially countered bacterial growth restriction during the plant immune response triggered by AvrRpt2. Collectively, this study defines the effects of plant immunity on the transcriptome of a bacterial pathogen and sheds light on the enigmatic mechanisms of bacterial growth inhibition during the plant immune response.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Maksimov, I. V. y R. M. Khairullin. "Plant immunity and plant microbiome". Agrarian science 327, n.º 2 (2019): 40–44. http://dx.doi.org/10.32634/0869-8155-2019-326-2-40-44.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Pruitt, Rory N., Andrea A. Gust y Thorsten Nürnberger. "Plant immunity unified". Nature Plants 7, n.º 4 (30 de marzo de 2021): 382–83. http://dx.doi.org/10.1038/s41477-021-00903-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Ngou, Bruno Pok Man, Pingtao Ding y Jonathan D. G. Jones. "Channeling plant immunity". Cell 184, n.º 13 (junio de 2021): 3358–60. http://dx.doi.org/10.1016/j.cell.2021.05.035.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Jamison, Judy. "Boosting plant immunity". Nature Biotechnology 18, n.º 7 (julio de 2000): 703. http://dx.doi.org/10.1038/77240.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Jung, Su-Jin, Hong Gil Lee y Pil Joon Seo. "Membrane-triggered plant immunity". Plant Signaling & Behavior 9, n.º 9 (16 de julio de 2014): e29729. http://dx.doi.org/10.4161/psb.29729.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Mengiste, Tesfaye. "Plant Immunity to Necrotrophs". Annual Review of Phytopathology 50, n.º 1 (8 de septiembre de 2012): 267–94. http://dx.doi.org/10.1146/annurev-phyto-081211-172955.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Alderton, Gemma. "Networks in plant immunity". Science 360, n.º 6395 (21 de junio de 2018): 1310.12–1312. http://dx.doi.org/10.1126/science.360.6395.1310-l.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Trujillo, Marco y Ken Shirasu. "Ubiquitination in plant immunity". Current Opinion in Plant Biology 13, n.º 4 (1 de agosto de 2010): 402–8. http://dx.doi.org/10.1016/j.pbi.2010.04.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Fehervari, Zoltan. "Turning on plant immunity". Nature Immunology 13, n.º 4 (19 de marzo de 2012): 315. http://dx.doi.org/10.1038/ni.2272.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Campos, Marcelo L., Jin-Ho Kang y Gregg A. Howe. "Jasmonate-Triggered Plant Immunity". Journal of Chemical Ecology 40, n.º 7 (28 de junio de 2014): 657–75. http://dx.doi.org/10.1007/s10886-014-0468-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Zheng, Xiyin, Yiqing Li y Yule Liu. "Plant Immunity against Tobamoviruses". Viruses 16, n.º 4 (29 de marzo de 2024): 530. http://dx.doi.org/10.3390/v16040530.

Texto completo
Resumen
Tobamoviruses are a group of plant viruses that pose a significant threat to agricultural crops worldwide. In this review, we focus on plant immunity against tobamoviruses, including pattern-triggered immunity (PTI), effector-triggered immunity (ETI), the RNA-targeting pathway, phytohormones, reactive oxygen species (ROS), and autophagy. Further, we highlight the genetic resources for resistance against tobamoviruses in plant breeding and discuss future directions on plant protection against tobamoviruses.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Bjornson, Marta y Cyril Zipfel. "Plant immunity: Crosstalk between plant immune receptors". Current Biology 31, n.º 12 (junio de 2021): R796—R798. http://dx.doi.org/10.1016/j.cub.2021.04.080.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

van Wersch, Solveig, Lei Tian, Ryan Hoy y Xin Li. "Plant NLRs: The Whistleblowers of Plant Immunity". Plant Communications 1, n.º 1 (enero de 2020): 100016. http://dx.doi.org/10.1016/j.xplc.2019.100016.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

van Wersch, Solveig, Lei Tian, Ryan Hoy y Xin Li. "Plant NLRs: The Whistleblowers of Plant Immunity". Plant Communications 1, n.º 4 (julio de 2020): 100090. http://dx.doi.org/10.1016/j.xplc.2020.100090.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Song, Handa, Borong Lin, Qiuling Huang, Longhua Sun, Jiansong Chen, Lili Hu, Kan Zhuo y Jinling Liao. "The Meloidogyne graminicola effector MgMO289 targets a novel copper metallochaperone to suppress immunity in rice". Journal of Experimental Botany 72, n.º 15 (11 de mayo de 2021): 5638–55. http://dx.doi.org/10.1093/jxb/erab208.

Texto completo
Resumen
Abstract Recent studies have reported that plant-parasitic nematodes facilitate their infection by suppressing plant immunity via effectors, but the inhibitory mechanisms remain poorly understood. This study found that a novel effector MgMO289 is exclusively expressed in the dorsal esophageal gland of Meloidogyne graminicola and is up-regulated at parasitic third-/fourth-stage juveniles. In planta silencing of MgMO289 substantially increased plant resistance to M. graminicola. Moreover, we found that MgMO289 interacts with a new rice copper metallochaperone heavy metal-associated plant protein 04 (OsHPP04), and that rice cytosolic COPPER/ZINC -SUPEROXIDE DISMUTASE 2 (cCu/Zn-SOD2) is the target of OsHPP04. Rice plants overexpressing OsHPP04 or MgMO289 exhibited an increased susceptibility to M. graminicola and a higher Cu/Zn-SOD activity, but lower O2•− content, when compared with wild-type plants. Meanwhile, immune response assays showed that MgMO289 could suppress host innate immunity. These findings reveal a novel pathway for a plant pathogen effector that utilizes the host O2•−-scavenging system to eliminate O2•− and suppress plant immunity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Laflamme, Bradley, Maggie Middleton, Timothy Lo, Darrell Desveaux y David S. Guttman. "Image-Based Quantification of Plant Immunity and Disease". Molecular Plant-Microbe Interactions® 29, n.º 12 (diciembre de 2016): 919–24. http://dx.doi.org/10.1094/mpmi-07-16-0129-ta.

Texto completo
Resumen
Measuring the extent and severity of disease is a critical component of plant pathology research and crop breeding. Unfortunately, existing visual scoring systems are qualitative, subjective, and the results are difficult to transfer between research groups, while existing quantitative methods can be quite laborious. Here, we present plant immunity and disease image-based quantification (PIDIQ), a quantitative, semi-automated system to rapidly and objectively measure disease symptoms in a biologically relevant context. PIDIQ applies an ImageJ-based macro to plant photos in order to distinguish healthy tissue from tissue that has yellowed due to disease. It can process a directory of images in an automated manner and report the relative ratios of healthy to diseased leaf area, thereby providing a quantitative measure of plant health that can be statistically compared with appropriate controls. We used the Arabidopsis thaliana–Pseudomonas syringae model system to show that PIDIQ is able to identify both enhanced plant health associated with effector-triggered immunity as well as elevated disease symptoms associated with effector-triggered susceptibility. Finally, we show that the quantitative results provided by PIDIQ correspond to those obtained via traditional in planta pathogen growth assays. PIDIQ provides a simple and effective means to nondestructively quantify disease from whole plants and we believe it will be equally effective for monitoring disease on excised leaves and stems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

YOSHIHISA, Ayaka, Keita SHIMADA, Satomi YOSHIMURA, Koji YAMAGUCHI y Tsutomu KAWASAKI. "Frontier Of Plant Immune Research: Activation of Plant Immunity and Inhibitory Mechanism of Plant Immunity by Pathogens". KAGAKU TO SEIBUTSU 58, n.º 7 (1 de julio de 2020): 396–403. http://dx.doi.org/10.1271/kagakutoseibutsu.58.396.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Yamaguchi, Koji y Tsutomu Kawasaki. "Pathogen- and plant-derived peptides trigger plant immunity". Peptides 144 (octubre de 2021): 170611. http://dx.doi.org/10.1016/j.peptides.2021.170611.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Huang, Min, Zilin Wu, Jingxin Li, Yuyu Ding, Shilin Chen y Xiangyang Li. "Plant Protection against Viruses: An Integrated Review of Plant Immunity Agents". International Journal of Molecular Sciences 24, n.º 5 (23 de febrero de 2023): 4453. http://dx.doi.org/10.3390/ijms24054453.

Texto completo
Resumen
Plant viruses are an important class of pathogens that seriously affect plant growth and harm crop production. Viruses are simple in structure but complex in mutation and have thus always posed a continuous threat to agricultural development. Low resistance and eco-friendliness are important features of green pesticides. Plant immunity agents can enhance the resilience of the immune system by activating plants to regulate their metabolism. Therefore, plant immune agents are of great importance in pesticide science. In this paper, we review plant immunity agents, such as ningnanmycin, vanisulfane, dufulin, cytosinpeptidemycin, and oligosaccharins, and their antiviral molecular mechanisms and discuss the antiviral applications and development of plant immunity agents. Plant immunity agents can trigger defense responses and confer disease resistance to plants, and the development trends and application prospects of plant immunity agents in plant protection are analyzed in depth.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

S, Ghosh. "Immune Modulation in Goats by Plant Derived Melatonin: A Review". Journal of Natural & Ayurvedic Medicine 6, n.º 3 (5 de julio de 2022): 1–8. http://dx.doi.org/10.23880/jonam-16000357.

Texto completo
Resumen
The basic structure of melatonin is evolutionarily conserved. Hence, it was speculated that melatonin may be present in different animals (from unicellular to multi-cellular) and even in plants. Melatonin in plans is generally regarded as phytomelatonin. Like the role of melatonin in animals, phyto-melatonin can perform a number of functions like attenuation of apoptosis, prevention of free radical generation, protection against UV irradiation etc. But, unlike phyto-estrogen, the role of phyto-melatonin in animals is totally an unexplored area. Hence, aim of the present study was to note the role of phytomelatonin in maintenance of general health and immunity of goats. To fulfil the aim, we supplemented the goats with phytomelatonin rich diet i.e. corn (Zea mays) which is having 1.4 ng/gm of dry weight of tissue and they are also edible to goats. We noted significantly high level of body weight, hematological (AST, ALT level, total RBC count and %Hb), immunological (TLC, %LC, %SR of PBMCs), metabolic (plasma glucose, cholesterol, HDL, LDL, protein levels and HDL: LDL ration), free radical (SOD, catalase, GPx levels), hormonal (estrogen, melatonin), cytokine (IL-6 and TNF-α) levels and significantly low level of MDA. However, plasma testosterone was unaffected upon phyto-melatonin treatment. Thus, for the first time role of phytomelatonin as a protective molecule with improving effect on the health and immunity of Indian goat Capra hircusis being proposed, as the effect of phyto-melatonin supplementation can be brought back to normal and this dietary supplement might be utilizing the similar pathway as commercial melatonin. There are so many less expensive and readily available sources of phyto-melatonin that requires the proper knowledge of exploitation of these sources for extreme benefit for animals as well as for the human beings in near or far future.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Yang, Shengming, Fang Tang y Hongyan Zhu. "Alternative Splicing in Plant Immunity". International Journal of Molecular Sciences 15, n.º 6 (10 de junio de 2014): 10424–45. http://dx.doi.org/10.3390/ijms150610424.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Li, Lei. "My journey studying plant immunity". Cell Host & Microbe 30, n.º 4 (abril de 2022): 463–65. http://dx.doi.org/10.1016/j.chom.2022.03.009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Han, Xiaowei y Kenichi Tsuda. "Evolutionary footprint of plant immunity". Current Opinion in Plant Biology 67 (junio de 2022): 102209. http://dx.doi.org/10.1016/j.pbi.2022.102209.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Zhichkin, K. A., V. V. Nosov y L. N. Zhichkina. "Plant immunity and crop insurance". Economy of agricultural and processing enterprises, n.º 5 (2021): 38–42. http://dx.doi.org/10.31442/0235-2494-2021-0-5-38-42.

Texto completo
Resumen
Agricultural insurance with state support (in crop production) creates conditions for stable and effective activity in the cultivation of basic agricultural crops, which is especially important in conditions of uncertain weather factors typical for the risky agriculture zone, which includes the Samara region. Dry summers, frosty winters with a minimum of precipitation make agricultural production largely dependent on natural and climatic factors. The study purpose is to substantiate the need to take into account the characteristics of individual varieties when insuring agricultural crops with state support. It is necessary to solve the following tasks: - to formulate the biological characteristics of individual varieties of agricultural crops; - to classify all emergencies according to the type of impact on plants; - substantiate (using the spring barley example) the need to correct the existing approach when signing agricultural insurance contracts with state support in crop production. When developing an insurance algorithm, it is necessary to take into account the breeding potential of both agricultural crops and individual varieties associated with their genetic characteristics. The widespread use of the achievements of genetics, realized in the form of the formation of plant immunity, makes it possible to achieve a significant degree of resistance to abiotic and biotic factors that have a compensated and uncompensated nature. As can be seen from the presented calculation, it cannot be said that the presence of a variety in the State Register of Breeding Achievements is a prerequisite for its successful cultivation. Therefore, it is necessary for each agricultural crop to identify a number of features, the presence of which makes this variety resistant to the totality of all factors of the given microregion.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Macho, Alberto P. y Carmen R. Beuzón. "Insights into plant immunity signaling". Plant Signaling & Behavior 5, n.º 12 (diciembre de 2010): 1590–93. http://dx.doi.org/10.4161/psb.5.12.13843.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Kozyrovska, N. O. "Mechanisms of plant innate immunity". Biopolymers and Cell 22, n.º 2 (20 de marzo de 2006): 91–101. http://dx.doi.org/10.7124/bc.000721.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Bolouri Moghaddam, M. R. y W. Van den Ende. "Sugars and plant innate immunity". Journal of Experimental Botany 63, n.º 11 (2 de mayo de 2012): 3989–98. http://dx.doi.org/10.1093/jxb/ers129.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Shamrai, S. N. "Plant immune system: Basal immunity". Cytology and Genetics 48, n.º 4 (julio de 2014): 258–71. http://dx.doi.org/10.3103/s0095452714040057.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Kangasjärvi, Saijaliisa. "Pic1, counteracting plant immunity signalling". Biochemical Journal 476, n.º 16 (28 de agosto de 2019): 2347–50. http://dx.doi.org/10.1042/bcj20190369.

Texto completo
Resumen
Abstract Plants are equipped with versatile pattern recognition receptors (PRRs), which monitor their external environment and elicit defensive measures upon detection of potential risk for disease. Inside the cell, receptor-like cytoplasmic kinases (RLCKs) are key components of PRR signalling, but their molecular functions and regulatory interactions are not yet fully understood. In tomato, two RLCKs, Pti1a and Pti1b, are important signalling components that relay early defence signals elicited by bacterial flagellin, a conserved pattern common to various pathogenic and non-pathogenic microbes. An important question to resolve is how plant immune reactions are regulated to prevent unnecessary defensive measures. A recent paper published in the Biochemical Journal by Giska and Martin [Biochem. J. (2019) 476, 1621–1635] reports the identification and biochemical characterization of a new tomato (Solanum lycopersicum) protein phosphatase that negatively controls early defence signalling. The phosphatase, termed pattern-triggered immunity inhibiting PP2C 1 (Pic1), negatively controls the signalling function of Pti1b and therefore holds a central position in the defence signalling network. The Pti1b–Pic1 kinase–phosphatase interaction provides mechanistic insights that forward our understanding of protein phosphatases and their importance in plant immunity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

TADAMURA, Kazuki y Kenji NAKAHARA. "Plant Innate Immunity against Viruses". KAGAKU TO SEIBUTSU 52, n.º 12 (2014): 805–13. http://dx.doi.org/10.1271/kagakutoseibutsu.52.805.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Wu, Chih-Hang, Lida Derevnina y Sophien Kamoun. "Receptor networks underpin plant immunity". Science 360, n.º 6395 (21 de junio de 2018): 1300–1301. http://dx.doi.org/10.1126/science.aat2623.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

ALVAREZ, MARÍA E., FLORENCIA NOTA y DAMIÁN A. CAMBIAGNO. "Epigenetic control of plant immunity". Molecular Plant Pathology 11, n.º 4 (1 de junio de 2010): 563–76. http://dx.doi.org/10.1111/j.1364-3703.2010.00621.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Pitsili, Eugenia, Ujjal J. Phukan y Nuria S. Coll. "Cell Death in Plant Immunity". Cold Spring Harbor Perspectives in Biology 12, n.º 6 (15 de octubre de 2019): a036483. http://dx.doi.org/10.1101/cshperspect.a036483.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Pieterse, Corné M. J., Dieuwertje Van der Does, Christos Zamioudis, Antonio Leon-Reyes y Saskia C. M. Van Wees. "Hormonal Modulation of Plant Immunity". Annual Review of Cell and Developmental Biology 28, n.º 1 (10 de noviembre de 2012): 489–521. http://dx.doi.org/10.1146/annurev-cellbio-092910-154055.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Moore, John W., Gary J. Loake y Steven H. Spoel. "Transcription Dynamics in Plant Immunity". Plant Cell 23, n.º 8 (agosto de 2011): 2809–20. http://dx.doi.org/10.1105/tpc.111.087346.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Tsuda, Kenichi y Imre E. Somssich. "Transcriptional networks in plant immunity". New Phytologist 206, n.º 3 (26 de enero de 2015): 932–47. http://dx.doi.org/10.1111/nph.13286.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Howe, Gregg A. y Georg Jander. "Plant Immunity to Insect Herbivores". Annual Review of Plant Biology 59, n.º 1 (junio de 2008): 41–66. http://dx.doi.org/10.1146/annurev.arplant.59.032607.092825.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Hausladen, A. y J. S. Stamler. "Nitric oxide in plant immunity". Proceedings of the National Academy of Sciences 95, n.º 18 (1 de septiembre de 1998): 10345–47. http://dx.doi.org/10.1073/pnas.95.18.10345.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Gu, Yangnan, Raul Zavaliev y Xinnian Dong. "Membrane Trafficking in Plant Immunity". Molecular Plant 10, n.º 8 (agosto de 2017): 1026–34. http://dx.doi.org/10.1016/j.molp.2017.07.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Schneider, David S. "Plant Immunity and Film Noir". Cell 109, n.º 5 (mayo de 2002): 537–40. http://dx.doi.org/10.1016/s0092-8674(02)00764-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Shirasu, Ken, Richard A. Dixon y Chris Lamb. "Signal transduction in plant immunity". Current Opinion in Immunology 8, n.º 1 (febrero de 1996): 3–7. http://dx.doi.org/10.1016/s0952-7915(96)80097-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Yun, Hye Sup y Chian Kwon. "Vesicle trafficking in plant immunity". Current Opinion in Plant Biology 40 (diciembre de 2017): 34–42. http://dx.doi.org/10.1016/j.pbi.2017.07.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Seay, Montrell, Shalaka Patel y Savithramma P. Dinesh-Kumar. "Autophagy and plant innate immunity". Cellular Microbiology 8, n.º 6 (junio de 2006): 899–906. http://dx.doi.org/10.1111/j.1462-5822.2006.00715.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Egorov, Ts A. y T. I. Odintsova. "Defense peptides of plant immunity". Russian Journal of Bioorganic Chemistry 38, n.º 1 (enero de 2012): 1–9. http://dx.doi.org/10.1134/s1068162012010062.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

James, Andrew. "Plant immunity. Methods and protocols". Annals of Botany 111, n.º 1 (enero de 2013): viii. http://dx.doi.org/10.1093/aob/mcs272.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Jung, Ho Won, Timothy J. Tschaplinski, Lin Wang, Jane Glazebrook y Jean T. Greenberg. "Priming in Systemic Plant Immunity". Science 324, n.º 5923 (3 de abril de 2009): 89–91. http://dx.doi.org/10.1126/science.1170025.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Schroeder, Frank C. "How bacteria subvert plant immunity". Science 388, n.º 6744 (18 de abril de 2025): 252–53. https://doi.org/10.1126/science.adx0288.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía