Literatura académica sobre el tema "Plant proteomics. Plants Angiosperms Dimorphism (Plants)"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Plant proteomics. Plants Angiosperms Dimorphism (Plants)".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Plant proteomics. Plants Angiosperms Dimorphism (Plants)"

1

Barrett, Spencer C. H. y Andrea L. Case. "The ecology and evolution of gender strategies in plants: the example of Australian Wurmbea (Colchicaceae)". Australian Journal of Botany 54, n.º 5 (2006): 417. http://dx.doi.org/10.1071/bt05151.

Texto completo
Resumen
Angiosperms possess diverse sexual systems, often with different combinations of hermaphroditic, pistillate and staminate flowers. Despite this sexual diversity, most populations are either monomorphic or dimorphic with respect to gender strategy, where gender refers to the relative contribution that individuals make to fitness through female and male function. An important problem in evolutionary biology is to determine how and why variation in gender strategies originates and is maintained. Wurmbea (Colchicaceae), a genus of insect-pollinated geophytes, has recently become the focus of ecological and evolutionary studies aimed at understanding these issues. Phylogenetic reconstructions suggest dispersal from Africa to Australia, then New Zealand, and multiple transitions between monomorphic and dimorphic sexual systems within Australia. Microevolutionary studies of W. dioica and W. biglandulosa, two wide-ranging taxa with monomorphic and dimorphic populations, provide insights into the selective mechanisms governing transitions between sexual systems. Dimorphic populations of these taxa likely comprise independent origins of dimorphism via the gynodioecious pathway by invasion of females into monomorphic populations. Shifts in pollination biology and flower size, and their consequent effects on mating patterns, may have contributed to the evolution of gender dimorphism. Pollinator-mediated selfing and inbreeding depression provide a sufficient fertility advantage for females to be maintained in dimorphic populations. Once dimorphism establishes, increasing gender specialisation is associated with invasion of more arid environments. Inbreeding avoidance, particularly under stressful ecological conditions, is the most likely selective mechanism maintaining gender dimorphism in Wurmbea. We conclude our review by suggesting avenues for future research that might provide a more comprehensive picture of the evolution of gender strategies in Wurmbea.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Basantani, Mahesh y Alka Srivastava. "Plant glutathione transferases — a decade falls short". Canadian Journal of Botany 85, n.º 5 (mayo de 2007): 443–56. http://dx.doi.org/10.1139/b07-033.

Texto completo
Resumen
The glutathione transferase (GST) superfamily in plants has been subdivided into eight classes, seven of which (phi, tau, zeta, theta, lambda, dehydroascorbate reductase, and tetrachlorohydroquinone dehalogenase) are soluble and one is microsomal. Since their identification in plants in 1970, these enzymes have been well established as phase II detoxification enzymes that perform several other essential functions in plant growth and development. These enzymes catalyze nucleophilic conjugation of the reduced form of the tripeptide glutathione to a wide variety of hydrophobic, electrophilic, and usually cytotoxic substrates. In plants, the conjugated product is either sequestered in the vacuole or transferred to the apoplast. The GSTs of phi and tau classes, which are plant-specific and the most abundant, are chiefly involved in xenobiotic metabolism. Zeta- and theta-class GSTs have very restricted activities towards xenobiotics. Theta-class GSTs are glutathione peroxidases and are involved in oxidative-stress metabolism, whereas zeta-class GSTs act as glutathione-dependent isomerases and catalyze the glutathione-dependent conversion of maleylacetoacetate to fumarylacetoacetate. Zeta-class GSTs participate in tyrosine catabolism. Dehydroascorbate reductase- and lambda-class GSTs function as thioltransferases. Microsomal-class GSTs are members of the MAPEG (membrane-associated proteins in eicosanoid and glutathione metabolism) superfamily. A plethora of studies utilizing both proteomics and genomics approaches have greatly helped in revealing the functional diversity exhibited by these enzymes. The three-dimensional structure of some of the members of the family has been described and this has helped in elucidating the mechanism of action and active-site amino-acid residues of these enzymes. Although a large amount of information is available on this complex enzyme superfamily, more research is necessary to answer additional questions such as, why are phi- and tau-class GSTs more abundant than GSTs from other classes? What functions do phi- and tau-class GSTs perform in plant taxa other than angiosperms? Do more GST classes exist? Future studies on GSTs should focus on these aspects.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Carlquist, Sherwin. "How wood evolves: a new synthesis". Botany 90, n.º 10 (octubre de 2012): 901–40. http://dx.doi.org/10.1139/b2012-048.

Texto completo
Resumen
Recent advances in wood physiology, molecular phylogeny, and ultrastructure (chiefly scanning electron microscopy, SEM), as well as important new knowledge in traditional fields, provide the basis for a new vision of how wood evolves. Woody angiosperms have, in the main, shifted from conductive safety to conductive efficiency (with many variations and modifications) and from ability to resist cavitation (low vulnerability) to ability to refill vessels. The invention of the vessel was a kind of dimorphism (vessel elements plus tracheids) that permitted division of labor and many kinds of wood repatterning that suit conductive safety–efficiency trade-offs. Angiosperms were primarily adapted to mesic habitats but were not failures or “unstable.” They have survived to the present in such habitats well, along with older structural adaptations (e.g., the scalariform perforation plate) that are still suited to such habitats. These “primitive” features are evident in earlier branchings of phylogenetic trees based on multiple genes. Older features may still be functional and thus persist, although newer formulations are overriding in effect. There are, however, numerous instances of “breakouts” in a number of clades (ecological iterations and bursts of speciation and diversification related to new ways of dealing with water economy), whereas in other branchings, other clades show ecological stasis over long periods of time. Newer physiological and anatomical mechanisms have permitted entry into habitats with marked fluctuation in moisture availability. Wood evolves progressively, and literal character state reversal may be unusual: genomic and developmental information holds answers to these changes. Wood is a complex tissue, and each of the histological components shows polymorphism as an evolutionary mechanism. Cell types within wood evolve collaboratively. Shifts in wood features (e.g., simplification of the scalariform perforation plate) are commonly homoplastic. Manifold changes in habit and in leaf physiology, morphology, and anatomy accompany wood evolution, and wood should be studied with relationship to real-world ecology, information that cannot be gleaned from literature or other secondary sources. Heterochrony (protracted juvenilism, accelerated adulthood) characterizes angiosperm xylem extensively, far more so than in other vascular plants, and these mechanisms have resulted in many remarkable changes (e.g., monocots have permanently juvenile xylem, woody trees represent accelerated adulthood). Understanding the many successful features of angiosperm wood evolution must ultimately rest on syntheses.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Lang, Annick S., Thies Gehrmann y Nils Cronberg. "Genetic Diversity and Population Structure in Bryophyte With Facultative Nannandry". Frontiers in Plant Science 12 (7 de abril de 2021). http://dx.doi.org/10.3389/fpls.2021.517547.

Texto completo
Resumen
Among plants, gender dimorphism occurs in about 10% of all angiosperms and more than 50% of all moss taxa, with dwarf males (DM) found exclusively in some unisexual mosses. In this study, we explore the role of male dwarfism as a reproductive strategy in the widespread acrocarpous moss Dicranum scoparium, which has facultative male dwarfism, having both dwarf males (DMs) and normal-sized males (NMs). We retrieved 119 SNP markers from transcriptomes which were used to genotype 403 samples from 11 sites at seven localities in southern Sweden. Our aims were to compare the genetic variability and genetic structure of sexually reproducing populations at different geographic levels (cushion, site, and locality) and compare in particular the relative contribution of females, dwarf males and normal-sized males to the observed genetic diversity. The numbers of DMs differed strongly between sites, but when present, they usually outnumbered both females and NMs. Low genetic differentiation was found at locality level. Genetic differentiation was strongest between cushions for females and NMs and within cushions for DMs indicating small scale structuring and sometimes inbreeding. NMs were more clonal than either DMs or females. Genetic diversity was similar between females and DMs, but lower for NMs. Two haplotypes were shared between females and DMs and one haplotype was shared between a DM and a NM. In conclusion, our results show that DMs and NMs play different roles in reproduction, inbreeding may occur at cushion level, but gene flow is high enough to prevent substantial genetic drift.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Plant proteomics. Plants Angiosperms Dimorphism (Plants)"

1

Khosravi, Davood. "Proteome analysis of sexual organs in Turnera and Piriqueta /". 2003. http://wwwlib.umi.com/cr/yorku/fullcit?pNQ99195.

Texto completo
Resumen
Thesis (Ph.D.)--York University, 2003. Graduate Programme in Biology.
Typescript. Includes bibliographical references. Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://wwwlib.umi.com/cr/yorku/fullcit?pNQ99195
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Plant proteomics. Plants Angiosperms Dimorphism (Plants)"

1

Jeyapragash, Danaraj, Ayyappan Saravanakumar y Mariasingarayan Yosuva. "Seagrass Metabolomics: A New Insight towards Marine Based Drug Discovery". En Metabolomics - Methodology and Applications in Medical Sciences and Life Sciences. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97875.

Texto completo
Resumen
Metabolomics is one of the new field of “Omics” approach and the youngest triad of system biology, which provides a broad prospective of how metabolic networks are controlled and indeed emerged as a complementary tool to functional genomics with well-established technologies for genomics, transcriptomics and proteomics. Though, metabolite profiling has been carried out for decades, owing to decisive mechanism of a molecule regulation, the importance of some metabolites in human regimen and their use as diagnostic markers is now being recognized. Plant metabolomics therefore aims to highlight the characterization of metabolite pool of a plant tissue in response to its environment. Seagrassses, a paraphyletic group of marine hydrophilous angiosperms which evolved three to four times from land plants back to the sea. Seagrasses share a number of analogous acquired metabolic adaptations owing to their convergent evolution, but their secondary metabolism varied among the four families that can be considered as true seagrasses. From a chemotaxonomic point of view, numerous specialized metabolites have often been studied in seagrasses. Hence, this chapter focus the metabolome of seagrasses in order to explore their bioactive properties and the recent advancements adopted in analytical technology platforms to study the non-targeted metabolomics of seagrasses using OMICS approach.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía