Literatura académica sobre el tema "Porous composite electrode"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Porous composite electrode".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Porous composite electrode"
Okafor, Patricia y Jude Iroh. "Electrochemical Properties of Porous Graphene/Polyimide-Nickel Oxide Hybrid Composite Electrode Material". Energies 14, n.º 3 (23 de enero de 2021): 582. http://dx.doi.org/10.3390/en14030582.
Texto completoFeller, Claudia, Stefan Furche y Markus Eberstein. "Development and characterization of glass matrix composites as porous coating film of a solid state reference electrode". Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2012, CICMT (1 de septiembre de 2012): 000200–000207. http://dx.doi.org/10.4071/cicmt-2012-tp46.
Texto completoKim, Jisu, Youn-Ji Heo, Jin-Yong Hong y Sung-Kon Kim. "Preparation of Porous Carbon Nanofibers with Tailored Porosity for Electrochemical Capacitor Electrodes". Materials 13, n.º 3 (5 de febrero de 2020): 729. http://dx.doi.org/10.3390/ma13030729.
Texto completoSombatmankhong, Korakot y Adrian C. Fisher. "Development of Porous Polypyrrole Electrode for Fuel Cell Applications". Key Engineering Materials 545 (marzo de 2013): 77–81. http://dx.doi.org/10.4028/www.scientific.net/kem.545.77.
Texto completoWang, Qing, Xiao Nan Zhang, Xiao Di Huo, Ren Hui Zhang y Jian Feng Dai. "Study of Nanocrystalline ZnO and Zn2TiO4 Film Electrode with ZnPc Dye and PbS Quantum Dots Composite Sensitization". Advanced Materials Research 287-290 (julio de 2011): 2217–20. http://dx.doi.org/10.4028/www.scientific.net/amr.287-290.2217.
Texto completoRiyanto, Riyanto, Mohamed Rozali Othman y Jumat Salimon. "ELECTROCHEMICAL OXIDATION OF ETHANOL USING Ni-Co-PVC COMPOSITE ELECTRODE". Indonesian Journal of Chemistry 11, n.º 1 (12 de julio de 2011): 75–84. http://dx.doi.org/10.22146/ijc.21424.
Texto completoHo, M. Y. y Poi Sim Khiew. "Heat-Treated Fe3O4 - Activated Carbon Nanocomposite for High Performance Electrochemical Capacitor". Advanced Materials Research 894 (febrero de 2014): 349–54. http://dx.doi.org/10.4028/www.scientific.net/amr.894.349.
Texto completoKalinina, Elena y Elena Pikalova. "Opportunities, Challenges and Prospects for Electrodeposition of Thin-Film Functional Layers in Solid Oxide Fuel Cell Technology". Materials 14, n.º 19 (26 de septiembre de 2021): 5584. http://dx.doi.org/10.3390/ma14195584.
Texto completoLu, Mi, Yongzhi Mao, Jian Wang, Yongfeng Hu y Jigang Zhou. "Surface heterogeneity in Li0.5CoO2 within a porous composite electrode". Chemical Communications 54, n.º 60 (2018): 8320–23. http://dx.doi.org/10.1039/c8cc03238f.
Texto completoYu, Mei Hui, Hui Min Meng y Ying Xue. "Nano-Mesh Structured Mn-Based Oxide/Conducting Polymer Composite Electrode for Supercapacitor". Materials Science Forum 859 (mayo de 2016): 104–8. http://dx.doi.org/10.4028/www.scientific.net/msf.859.104.
Texto completoTesis sobre el tema "Porous composite electrode"
Bodén, Andreas. "The anode and the electrolyte in the MCFC". Doctoral thesis, KTH, Kemiteknik, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4382.
Texto completoEtt av den svenska regeringens mål är att öka användandet av förnyelsebara bränslen och bränslen från biomassa. Bränsleceller och framförallt MCFC är användbara för dessa typer av bränslen. Den svenska marknaden kan dra fördelar av MCFC på två sätt; ökad bränsleutnyttjandegrad och utnyttjande av producerad värme för fjärrvärme. De flesta kommersiella MCFC-systemen idag är optimerade för användning av metan. Möjligheten att använda biomassa på den svenska marknaden gör det viktigt att studera hur MCFC kan anpassas eller optimeras för bra prestanda och låg degradering för användning med gas från biomassa eller andra förnyelsebara bränslen. Fokus i denna avhandling är på metoder som kan användas för att undersöka och utvärdera MCFC-elektroder och -elektrolyter med förnyelsebara bränslen, dvs. gaser innehållande CO2. Metoderna och resultaten är både experimentella och matematiskt modellerade. Målet med denna avhandling är att bättre förstå hur anodens prestanda beror på användningen av olika bränslen. Anodens kinetik och vattengasskiftreaktionen har studerats liksom möjligheten att förlänga cellens livstid genom att öka den initiala mängden elektrolyt medelst användning av anoden som reservoar. Effekten av segregation av katjoner i elektrolyten under last har också undersökts. Om gassammansättningen är i jämvikt enligt vattengasskiftreaktionen vid inloppet till strömtilledaren kommer gassammansättningen att vara nära uniform inuti elektroden. Om ingående gas inte är i jämvikt kommer stora koncentrationsgradienter uppkomma i strömtilledaren och påverka gassammansättningen i elektroden. Omsättningen med avseende på vattenskiftreaktionen av gasen i flödeskanalen verkar vara beroende av gasens flödeshastighet. För en anod som används i en uppfuktad blandning av vätgas och koldioxid som inte är i jämvikt befanns det att Ni har en viss löslighet i (Li/Na)2CO3. För att kunna använda anoden som reservoar för elektrolyt för att förlänga livstiden för MCFC skall anodens porstorleksfördelning överensstämma med katodens och ha en bimodal porstorleksfördelning för att ge en tillräckligt god prestanda i ett så stort elektrolytfyllnadsgradsintervall som möjligt. Modelleringsresultat för segregering av katjoner i elektrolyten under drift visar att litiumjoner anrikas i anoden för båda typerna av elektrolyt som används i MCFC. Elektrolytkoncentrationsförändringarna är små men kan behövas tas i beaktande vid långa driftstider. Denna avhandlings resultat kan användas för att bättre förstå hur MCFC skall anpassas för drift med förnyelsebara bränslen och hur elektroder kan utformas för att förlänga livstiden.
QC 20100630
Desprez, Valérie. "Caractérisations, applications et modélisation d'électrodes modifiées par des hydrogels : laponite-oligosilsesquioxanes(-enzyme)". Université Joseph Fourier (Grenoble), 1997. http://www.theses.fr/1997GRE10108.
Texto completoLetant, Sonia. "Transfert d'excitation dans les nanocomposites à base de silicium poreux". Université Joseph Fourier (Grenoble), 1998. http://www.theses.fr/1998GRE10117.
Texto completoSilveira, Tayla Fernanda Serantoni da [UNESP]. "Materiais porosos e compósitos quimicamente modificados com zircônio (IV) e ácido fosfórico: preparação e aplicações eletroanalíticas". Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/143944.
Texto completoApproved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-09-22T19:25:56Z (GMT) No. of bitstreams: 1 silveira_tfs_dr_ilha.pdf: 3776119 bytes, checksum: f41033634a5f96850f7c666ece861568 (MD5)
Made available in DSpace on 2016-09-22T19:25:56Z (GMT). No. of bitstreams: 1 silveira_tfs_dr_ilha.pdf: 3776119 bytes, checksum: f41033634a5f96850f7c666ece861568 (MD5) Previous issue date: 2016-08-16
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
O presente trabalho descreve as propriedades espectroscópicas e eletroanalíticas de um composto formado entre o Zr (IV) e ácido fosfórico (ZrP), bem como um espongilito inorganofuncionalizado com Zr (IV) (EZr). Em uma primeira etapa, os materiais foram preparados e caracterizados empregando diferentes técnicas, tais como: Espectroscopia de fotoelétrons excitados por raios-X (XPS), Espectroscopia na região do infravermelho (FTIR), Ressonância magnética nuclear no estado sólido (RMN), Microscopia eletrônica de varredura (MEV), Energia dispersiva de raios-X (EDS), Difração de raios-X (DRX), Análise termogravimétrica (TGA) e Análise de área superficial e porosidade. Em uma segunda etapa, realizou-se um estudo sobre as propriedades eletroquímicas desses materiais após a formação de compósitos com complexos metálicos de hexacianoferrato (ZrPAgH e EZrCuH), utilizando um eletrodo de pasta de grafite. O eletrodo de pasta de grafite contendo ZrPAgH mostrou-se sensível a concentrações de hidrazina e também a compostos sulfidrílicos, tais como: N-acetilcisteína, L-cisteína e L-glutationa. O eletrodo de pasta de grafite contendo EZrCuH foi aplicado na detecção de N-acetilcisteína, L-cisteína, nitrito, piridoxina e hidrazina, com sucesso.
The present work describes the electroanalytical and spectroscopic properties of a compound formed from Zr (IV) and phosphoric acid (ZrP), as well as a inorganofunctionalized spongolite with Zr (IV) (EZr). On a first stage, the materials were prepared and characterized using different techniques such as: X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), Solid state nuclear magnetic resonance (NMR), Scanning electron microscopy (SEM), Energy dispersive X-ray (EDS), X-ray diffraction (XRD), Thermogravimetric analysis (TGA) and Analysis of surface area and porosity. On a second stage, it was carried out a study on the electrochemical properties of these materials after forming composites with metal complexes hexacyanoferrate (ZrPAgH and EZrCuH), using a graphite paste electrode. The graphite paste electrode containing ZrPAgH was sensitive to hydrazine concentrations as well as sulfhydryl compounds, such as: N-acetylcysteine, L-cysteine and L-glutathione. The graphite paste electrode containing EZrCuH was applied to the detection of N-acetylcysteine, L-cysteine, nitrite, pyridoxine and hydrazine, with success.
FAPESP: 2013/08495-9
Silveira, Tayla Fernanda Serantoni da. "Materiais porosos e compósitos quimicamente modificados com zircônio (IV) e ácido fosfórico : preparação e aplicações eletroanalíticas /". Ilha Solteira, 2016. http://hdl.handle.net/11449/143944.
Texto completoResumo: O presente trabalho descreve as propriedades espectroscópicas e eletroanalíticas de um composto formado entre o Zr (IV) e ácido fosfórico (ZrP), bem como um espongilito inorganofuncionalizado com Zr (IV) (EZr). Em uma primeira etapa, os materiais foram preparados e caracterizados empregando diferentes técnicas, tais como: Espectroscopia de fotoelétrons excitados por raios-X (XPS), Espectroscopia na região do infravermelho (FTIR), Ressonância magnética nuclear no estado sólido (RMN), Microscopia eletrônica de varredura (MEV), Energia dispersiva de raios-X (EDS), Difração de raios-X (DRX), Análise termogravimétrica (TGA) e Análise de área superficial e porosidade. Em uma segunda etapa, realizou-se um estudo sobre as propriedades eletroquímicas desses materiais após a formação de compósitos com complexos metálicos de hexacianoferrato (ZrPAgH e EZrCuH), utilizando um eletrodo de pasta de grafite. O eletrodo de pasta de grafite contendo ZrPAgH mostrou-se sensível a concentrações de hidrazina e também a compostos sulfidrílicos, tais como: N-acetilcisteína, L-cisteína e L-glutationa. O eletrodo de pasta de grafite contendo EZrCuH foi aplicado na detecção de N-acetilcisteína, L-cisteína, nitrito, piridoxina e hidrazina, com sucesso.
Doutor
CHANG, CHIA-CHIA y 張家嘉. "Application of Cerium Oxide/Silicon Dioxide/Ordered Porous Carbon Composite Electrode in Supercapacitor". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/59rt3f.
Texto completo國立勤益科技大學
化工與材料工程系
107
Supercapacitor is an emerging electric storage device that has been widely applied in various fields, such as consumer electronics, wearable electronics, electric vehicles and micro energy storage components. According to the charge storage mechanism, supercapacitors can be divided into three major types. Electrical double layer capacitor (EDLC) is known for its high specific power density. It generates capacitance by charge carrier adsorption/desorption on the interface between the electrode and the electrolyte. Second, owing to the Faradic reaction, pseudo-capacitors have higher energy density but lower power density than the former one. Third, it is a hybrid capacitor that combines the advantages of both an electric double layer capacitor and a pseudo capacitor. This research is dedicated to the development of ordered mesoporous carbon materials, silicon dioxide and rare earth oxide (CeO2) composites as electrodes for supercapacitors. It is desirable to use the hydrophilic property of Silicon dioxide to help absorb the aqueous electrolyte, thereby increasing the ion transport capacity and achieving the effect of lifting the capacitor, the biggest bright spot of cerium oxide is that during the charge and discharge process, a rapid redox reaction occurs between trivalent cerium and tetravalent cerium, which generates oxygen vacancies and increases conductivity. On the other hand, in recent years, a large number of carbon materials have been used in the research of supercapacitors, and they have achieved outstanding results. This is because they have good stability and conductivity, and this study uses mesoporous carbon materials. CMK-3, a highly regular structure with high specific surface area and adjustable pore characteristics, has also received much attention in the field of electrode materials. For in the ex-situ analysis, Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), Transmission electron microscope (TEM) analysis were adopted to identify the surface morphology, crystal structure, and microstructure of the composite. Nitrogen adsorption-desorption analysis (BET at 77K) was used to analyze the porosity of each specimen. For the in the in-situ test, Chronopotentiometry (CP) was conducted by potentiostat (model: CHI 6273E) to understand the charge and discharge properties. Ragone plot was drawn to further analyze the resistance properties. Based on above analyses, the effect macropores/mespores and the CeO2/HPC ratios on charge-discharge performance were investigated.
Penki, Tirupathi Rao. "High Capacity Porous Electrode Materials of Li-ion Batteries". Thesis, 2014. http://hdl.handle.net/2005/2907.
Texto completoDu, Hong-Siang y 杜弘翔. "Electrodeposited Porous MnCoOx / SSM Composite Electrodes for Rechargeable Zn-Air Batteries". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/89643230582251512356.
Texto completo南臺科技大學
機械工程系
105
In the rising awareness of environmental protection and the light/thin requirements for 3C products, the disadvantage of primary batteries due to one-time usage to harm the environment makes reusable secondary batteries to become the best choice for storage devices. During discharge of secondary batteries, chemical energy can be converted into electrical energy. During charging, electrical energy will be restored into chemical energy. With the benefit of recycling, secondary batteries are widely used in daily supplies and industries. Traditionally, composite electrodes are prepared using active materials mixed with a conductive agent and a polymer binder into a paste. The paste is then coated onto a substrate as an electrode, with a so-called paste-coating method. There exist some problems for the paste-coating method. For example, the overall capacity and the volumetric capacity of the electrode are significantly sacrificed due to the usage of large- amounts of binder and conductive agent during electrode fabrication. To overcome the disadvantages, we use a binder-free method, named as electrodeposition. Electro-deposition is a low-temperature and low-cost process, which allows controlling the deposition conditions to obtain desirable film thickness without a binder. In this study, mesoporous manganese-cobalt oxides (MnCoOx) spinel films were prepared directly on a conductive stainless steel mesh (SSM) substrate via electrodeposition and an annealing treatment as air/oxygen-diffusion cathode electrode of air battery electrodes. Single potentiostatic electrodeposition (SPE) , were used. For SPE, the potential of 0.6 V was applied for 60 s, 150 s and 300 s and the samples were named as S(MCO/SSM)-1 min, S(MCO/SSM)-2.5 min, and S(MCO/SSM)-5 min, respectively. The electrodeposition mode markedly influenced the surface morphological, textural, and electrochemical properties of the MnCoOx / SSM electrodes. XRD results indicated that the formation of a dual-phase mixture of MnO2 and MnCo2O4 was found. The MnCoOx / SSM electrodes via SPE mode had a best electrochemical performance. The good electrochemical performance and excellent stability of the SPE mode electrodes can be ascribed to its hierarchical structure and high surface area, which facilitates electrolyte ion intercalation and deintercalation at the electrode/electrolyte interface and mitigates volume change during repeated long-term charge/discharge cycling.
Chen, Fang-Yi y 陳芳儀. "Preparation of Ni-Zn-Co-S/3D porous Ni composite electrodes for supercapacitor applications". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/4s5emx.
Texto completo國立中興大學
化學工程學系所
107
In this study, a three-dimensional porous nickel (3D Ni) as the substrate was synthesized via cathodic electrodeposition, followed by a facile two-step strategy that involved the hydrothermal growth of ZnCo-precursor on the 3D Ni and subsequent transformation into Ni-Zn-Co-S through the sulfurization process. The study would include two parts. The first part, Ni-Zn-Co-S was grown directly on the 3D Ni with different deposition times as composite electrodes for supercapacitors. The results indicated that the Ni-Zn-Co-S/3D Ni-6 electrode exhibited the high specific capacitance of 1079.93 F g-1 at the current density of 1 A g-1 due to synergistic effect of the multi-metal and the highly porous architecture. The Ni-Zn-Co-S/3D Ni-6 electrode had good electrochemical properties, and the second part of the study was based on this result. The second part, Ni-Zn-Co-S with different concentrations were grown directly on the 3D Ni-6 as composite electrodes for supercapacitors. The results indicated that the Ni-Zn-Co-S-0.5/3D Ni-6 electrode showed an excellent specific capacitance of 1510.81 F g-1 at the current density of 1 A g-1 with a good cycling stability after 1000 cycles. The remarkable electrochemical performance was attributed to the highly porous and uniform sheet-like architecture, which provided abundant electroactive sites and facilitated transportation of ions/electrons. The results of above analysis demonstrated that Ni-Zn-Co-S-0.5/3D Ni-6 was a promising electrode material for supercapacitors.
Farhad, Siamak. "Performance Simulation of Planar Solid Oxide Fuel Cells". Thesis, 2011. http://hdl.handle.net/10012/6252.
Texto completoCapítulos de libros sobre el tema "Porous composite electrode"
Atlung, S. "Porous and Composite Electrodes for Solid State Batteries". En Solid State Batteries, 129–61. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5167-9_11.
Texto completoCheng, Chuan. "Charge-Induced Reversible Bending in Anodic Porous Alumina–Aluminum Composites". En Electro-Chemo-Mechanics of Anodic Porous Alumina Nano-Honeycombs: Self-Ordered Growth and Actuation, 129–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47268-2_8.
Texto completoHai, Chunxi, Hideo Watanabe, Takashi Shirai, Masayoshi Fuji, Feng Wang, Jingjun Liu y Minoru Takahashi. "Chemical Reductive Preparation of Ni Decorated Conductive Porous Alumina Composite and Its Electro-Performance in Alkaline Solution". En Ceramic Transactions Series, 249–54. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470917145.ch36.
Texto completoLaxman Jadhav, Amar, Sharad Laxman Jadhav y Anamika Vitthal Kadam. "Effect of Different Metals Doped in Nickel Oxide Nanomaterials on Electrochemical Capacitive Performance". En Supercapacitors [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99326.
Texto completoKoshevoi, Veniamin, Anton Belorus, Ilya Pleshanov, Anton Timchenko, Roman Denisenko, Daniyar Sherimov y Ekaterina Vodkailo. "Study of Composite Structures Based on a Porous Silicon Matrix and Nanoparticles Ag/Zno Used as Non-Invasive Highly Sensitive Biosensor Devices". En Composite Materials. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.92850.
Texto completoKubade, Pravin R., Amol N. Patil y Hrushikesh B. Kulkarni. "Structure Properties Relationship Studies of Vinyl Ester Hybrid Syntactic Foam". En Handbook of Research on Advancements in Manufacturing, Materials, and Mechanical Engineering, 368–94. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-4939-1.ch018.
Texto completoActas de conferencias sobre el tema "Porous composite electrode"
Smerdov, Rostislav S. "Composite Porous Silicon Materials for Emission Electrode Synthesis". En 2019 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech). IEEE, 2019. http://dx.doi.org/10.1109/eexpolytech.2019.8906841.
Texto completoXie, X. y X. Xue. "A Modeling Study of Porous Electrode Property Effects on Solid Oxide Fuel Cell Performance". En ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85244.
Texto completoP, Shabeeba, Mohammed Shahin Thayyil y M. P. Pillai. "Synthesis and fabrication of porous activated carbon/nano ZnO composite electrode for supercapacitor". En DAE SOLID STATE PHYSICS SYMPOSIUM 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4980260.
Texto completoYu, Tzyy-Lung Leon, Shih-Hao Liu, Hsiu-Li Lin y Po-Hao Su. "Nafion/PBI Nanofiber Composite Membranes for Fuel Cells Applications". En ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33025.
Texto completoRecknagle, Kurtis P., Emily M. Ryan y Moe A. Khaleel. "Numerical Modeling of the Distributed Electrochemistry and Performance of Solid Oxide Fuels Cells". En ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64232.
Texto completoFang, Xudong y Donggang Yao. "An Overview of Solid-Like Electrolytes for Supercapacitors". En ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64069.
Texto completoBaek, Seung-Wook, Joongmyeon Bae y Jung Hyun Kim. "Oxygen Reduction Mechanism at Sm0.5Sr0.5CoO3−δ/Sm0.2Ce0.8O1.9 Composite Cathode for Solid Oxide Fuel Cell". En ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/fuelcell2008-65059.
Texto completoYuan, Jinliang, Masoud Rokni y Bengt Sunde´n. "Gas Flow and Heat Transfer Analysis for an Anode Duct in Reduced Temperature SOFCs". En ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2003. http://dx.doi.org/10.1115/fuelcell2003-1721.
Texto completoYuan, Jinliang y Bengt Sunde´n. "Effects of Various Reactions on the Gas Flow and Heat Transfer in an Anode Duct of ITSOFCs". En ASME 2005 3rd International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2005. http://dx.doi.org/10.1115/fuelcell2005-74012.
Texto completoOla, Oluwafunmilola y Yanqiu Zhu. "Two-Dimensional WS2/g-C3N4 Layered Heterostructures With Enhanced Pseudocapacitive and Electrocatalytic Properties". En ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23137.
Texto completoInformes sobre el tema "Porous composite electrode"
Marschilok, Amy C. Porous Ag/P/C Composite Electrodes: A New Approach for Metal Air Batteries. Fort Belvoir, VA: Defense Technical Information Center, febrero de 2012. http://dx.doi.org/10.21236/ada565200.
Texto completo