Siga este enlace para ver otros tipos de publicaciones sobre el tema: Purpurin-18.

Artículos de revistas sobre el tema "Purpurin-18"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Purpurin-18".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Yoon, Il, Ho-Sung Park, Bing Cun Cui, Jung-Hwa Kim, and Young-Key Shim. "Synthesis and Photodynamic Activities of Pyrazolyl and Cyclopropyl Derivatives of Purpurin-18 Methyl Ester and Purpurin-18-N-butylimide." Bulletin of the Korean Chemical Society 32, no. 1 (2011): 169–74. http://dx.doi.org/10.5012/bkcs.2011.32.1.169.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Pavlíčková, Vladimíra, Jan Škubník, Michal Jurášek, and Silvie Rimpelová. "Advances in Purpurin 18 Research: On Cancer Therapy." Applied Sciences 11, no. 5 (2021): 2254. http://dx.doi.org/10.3390/app11052254.

Texto completo
Resumen
How to make cancer treatment more efficient and enhance the patient’s outcome? By multimodal therapy, theranostics, or personalized medicine? These are questions asked by scientists and doctors worldwide. However, finding new unique approaches and options for cancer treatment as well as new selective therapeutics is very challenging. More frequently, researchers “go back in time” and use already known and well-described compounds/drugs, the structure of which further derivatize to “improve” their properties, extend the use of existing drugs to new indications, or even to obtain a completely no
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Pavlíčková, Vladimíra, Silvie Rimpelová, Michal Jurášek, et al. "PEGylated Purpurin 18 with Improved Solubility: Potent Compounds for Photodynamic Therapy of Cancer." Molecules 24, no. 24 (2019): 4477. http://dx.doi.org/10.3390/molecules24244477.

Texto completo
Resumen
Purpurin 18 derivatives with a polyethylene glycol (PEG) linker were synthesized as novel photosensitizers (PSs) with the goal of using them in photodynamic therapy (PDT) for cancer. These compounds, derived from a second-generation PS, exhibit absorption at long wavelengths; considerable singlet oxygen generation and, in contrast to purpurin 18, have higher hydrophilicity due to decreased logP. Together, these properties make them potentially ideal PSs. To verify this, we screened the developed compounds for cell uptake, intracellular localization, antitumor activity and induced cell death ty
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Yoon, Il, Ho Sung Park, Bing Cun Cui, Jung Hwa Kim, and Young Key Shim. "ChemInform Abstract: Synthesis and Photodynamic Activities of Pyrazolyl and Cyclopropyl Derivatives of Purpurin-18 Methyl Ester and Purpurin-18-N-butylimide." ChemInform 42, no. 22 (2011): no. http://dx.doi.org/10.1002/chin.201122105.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Drogat, Nicolas, Matthieu Barrière, Robert Granet, Vincent Sol, and Pierre Krausz. "High yield preparation of purpurin-18 from Spirulina maxima." Dyes and Pigments 88, no. 1 (2011): 125–27. http://dx.doi.org/10.1016/j.dyepig.2010.05.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Liu, Ranran, Jungang Yin, Jiazhu Li, et al. "Halogenation Reaction of Purpurin-18 and Synthesis of Chlorin Derivatives." Chinese Journal of Organic Chemistry 32, no. 03 (2012): 544. http://dx.doi.org/10.6023/cjoc1105231.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Nguyen, Minh Hieu, Binh Duong Le, Anh Tuan Mai, et al. "Some characteristics of purpurin-18synthesised from chlorophyll a of Spirulina." Ministry of Science and Technology, Vietnam 63, no. 11 (2021): 40–43. http://dx.doi.org/10.31276/vjst.63(11).40-43.

Texto completo
Resumen
Research and synthesis of photosensitive purpurin 18 (Pp-18) from nature is one of the topics that many research groups are interested in and developing. In this study, the authors defined some characteristics of Pp-18 synthesised from chlorophyll a - a substance isolated from Spirulina. The results showed that Pp-18 had good dispersion in acetone at 478.5 nm (R2=0.98285) and reached 98%. Fluorescence spectroscopy of Pp-18 in acetone was measured at a concentration of 70 ppm, wavelengths 365.39, 417.62, and 557.96 nm. The fluorescence lifetime of Pp-18 in acetone solution was 2.85 ns.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Pogorilyy, Viktor, Anna Plyutinskaya, Nikita Suvorov, et al. "The First Selenoanhydride in the Series of Chlorophyll a Derivatives, Its Stability and Photoinduced Cytotoxicity." Molecules 26, no. 23 (2021): 7298. http://dx.doi.org/10.3390/molecules26237298.

Texto completo
Resumen
In this work, we obtained the first selenium-containing chlorin with a chalcogen atom in exlocycle E. It was shown that the spectral properties were preserved in the target compound and the stability increased at two different pH values, in comparison with the starting purpurin-18. The derivatives have sufficiently high fluorescence and singlet oxygen quantum yields. The photoinduced cytotoxicity of sulfur- and selenium-anhydrides of chlorin p6 studied for the first time in vitro on the S37 cell line was found to be two times higher that of purpurin-18 and purpurinimide studied previously. Mor
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Bitapi, Mandal, and Das Saurabh. "Electrochemical reduction of purpurin, its Mn(II) complex in DMF and aqueous-DMF mixed solvent: A cyclic voltammetric study." Journal of Indian Chemical Society Vol. 97, No. 12a, Dec 2020 (2020): 2633–42. https://doi.org/10.5281/zenodo.5656100.

Texto completo
Resumen
Department of Chemistry (Inorganic Section), Jadavpur University, Kolkata-700 032, India <em>E-mail:</em> dasrsv@yahoo.in <em>Manuscript received online 18 November 2020, revised and accepted 26 December 2020</em> Purpurin studied in pure and aqueous-dimethyl formamide (DMF) medium undergoes successive two one-electron reductions accompanied by comproportionation generating semiquinone radical anion realized by considering either complete reduction of it by two-electrons or reversing the scan immediately after reduction by one electron in cyclic voltammetry experiments. Difference in the oxida
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Liu, Hongyao, Guohua Zhu, Ranran Liu, Yingxue Jin, Caixia Qi, and Jinjun Wang. "Chemical Modifications of Purpurin-18 and Synthesis of Chlorophyllous Chlorins Derivatives." Chinese Journal of Organic Chemistry 35, no. 6 (2015): 1320. http://dx.doi.org/10.6023/cjoc201410003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Lkhagvadulam, Byambajav, Jung Hwa Kim, Il Yoon, and Young Key Shim. "Synthesis and photodynamic activities of novel water soluble purpurin-18-N-methyl-D-glucamine photosensitizer and its gold nanoparticles conjugate." Journal of Porphyrins and Phthalocyanines 16, no. 04 (2012): 331–40. http://dx.doi.org/10.1142/s1088424612500708.

Texto completo
Resumen
A new type of water soluble ionic photosensitizer (PS), purpurin-18-N-methyl-D-glucamine (Pu-18-NMGA) has been synthesized and it was conjugated into gold nanoparticles (GNPs) stabilized by the PS without adding any particular reducing agents and surfactants. In vitro anticancer efficacy of the PS and its PS–GNPs conjugate against A549 lung cancer cell lines was evaluated. The PS–GNPs conjugate based on water-soluble Pu-18-NMGA afforded good PDT efficacy which was three times greater than that of the water-soluble PS.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Cui, Bing Cun, Min-Uk Cha, Jia Zhu Li, Ho-Sung Park, Il Yoon, and Young-Key Shim. "Efficient Synthesis and in vitro PDT Effect of Purpurin-18-N-Aminoimides." Bulletin of the Korean Chemical Society 31, no. 11 (2010): 3313–17. http://dx.doi.org/10.5012/bkcs.2010.31.11.3313.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Ocampo, Rubén, and Daniel J. Repeta. "Structural determination of purpurin-18 (as methyl ester) from sedimentary organic matter." Organic Geochemistry 30, no. 2-3 (1999): 189–93. http://dx.doi.org/10.1016/s0146-6380(98)00214-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Olshevskaya, V. A., A. N. Savchenko, G. V. Golovina, et al. "New boronated derivatives of purpurin-18: Synthesis and intereaction with serum albumin." Doklady Chemistry 435, no. 2 (2010): 328–33. http://dx.doi.org/10.1134/s0012500810120050.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Walker, Ian, David I. Vernon, and Stanley B. Brown. "The solid-phase conjugation of purpurin-18 with a synthetic targeting peptide." Bioorganic & Medicinal Chemistry Letters 14, no. 2 (2004): 441–43. http://dx.doi.org/10.1016/j.bmcl.2003.10.041.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

NDZIMBOU, Luce Janice, Frédérique BREGIER, Gautier M. A. NDONG NTOUTOUTME, and Vincent SOL. "Purpurin-18 imide derivative synthesis and functionalization for the photodynamic cancer therapy." Photodiagnosis and Photodynamic Therapy 41 (March 2023): 103479. http://dx.doi.org/10.1016/j.pdpdt.2023.103479.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Wang, Peng, Ze Yang, Jazhu Li, Nannan Yao, and Jinjun Wang. "Aminolysis Reaction of Purpurin-18 and Synthesis of Chlorin Derivatives Related to Chlorophyll." Chinese Journal of Organic Chemistry 32, no. 2 (2012): 368. http://dx.doi.org/10.6023/cjoc1107031.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Liu, Ranran, Lumin Wang, Jungang Yin, et al. "Synthesis of Benzimidazolo-Fused Purpurin-18 Derivatives with the Basic Skeleton of Chlorophyll." Chinese Journal of Organic Chemistry 32, no. 2 (2012): 318. http://dx.doi.org/10.6023/cjoc1107064.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Ji, Jianye, Shangwen Xia, Lili Zhao, Jiazhu Li, Caixia Qi, and Jinjun Wang. "Chemical Reaction of Purpurin-18 Imide and Synthesis of Chlorins Related to Chlorophyll." Chinese Journal of Organic Chemistry 33, no. 7 (2013): 1457. http://dx.doi.org/10.6023/cjoc201301044.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Liang, Boying, Yang Liu, Xisen Xu, Yingxue Jin, Caixia Qi, and Jinjun Wang. "Modifications for Peripheral Structures of Purpurin-18 and Synthesis of Chlorophyllous Chlorin Derivatives." Chinese Journal of Organic Chemistry 33, no. 11 (2013): 2357. http://dx.doi.org/10.6023/cjoc201305006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Ji, Jianye, Jungang Yin, Lili Zhao, Nannan Yao, Caixia Qi, and Jinjun Wang. "Hydroxyla(acyla)tion of Purpurin-18 Imide and Synthesis of Chlorophyllous Chlorin Derivatives." Chinese Journal of Organic Chemistry 34, no. 11 (2014): 2262. http://dx.doi.org/10.6023/cjoc201405009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Liu, Fuxian, Xingping Zhou, Zhilong Chen, Peng Huang, Xiaqin Wang, and Yong Zhou. "Preparation of purpurin-18 loaded magnetic nanocarriers in cottonseed oil for photodynamic therapy." Materials Letters 62, no. 17-18 (2008): 2844–47. http://dx.doi.org/10.1016/j.matlet.2008.01.123.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Golovina, G. V., F. N. Novikov, V. A. Ol’shevskaya, V. N. Kalinin, A. A. Shtil, and V. A. Kuzmin. "Complex formation of Zn-, Ni-, and Pd-derivatives of purpurin-18 with serum albumin." Russian Journal of Physical Chemistry A 86, no. 11 (2012): 1756–58. http://dx.doi.org/10.1134/s003602441211012x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Zhang, Ying, Hongyue Zhang, Zhiqiang Wang, and Yingxue Jin. "pH-Sensitive graphene oxide conjugate purpurin-18 methyl ester photosensitizer nanocomplex in photodynamic therapy." New Journal of Chemistry 42, no. 16 (2018): 13272–84. http://dx.doi.org/10.1039/c8nj00439k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Kozyrev, Andrei N., Gang Zheng, Elizabeth Lazarou, Thomas J. Dougherty, Kevin M. Smith, and Ravindra K. Pandey. "Syntheses of emeraldin and purpurin-18 analogs as target-specific photosensitizers for photodynamic therapy." Tetrahedron Letters 38, no. 19 (1997): 3335–38. http://dx.doi.org/10.1016/s0040-4039(97)00621-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Cui, Bing Cun, Min Uk Cha, Jia Zhu Li, Ho Sung Park, Il Yoon, and Young Key Shim. "ChemInform Abstract: Efficient Synthesis and in vitro PDT Effect of Purpurin-18-N-aminoimides." ChemInform 42, no. 10 (2011): no. http://dx.doi.org/10.1002/chin.201110112.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Lkhagvadulam, Byambajav, Jung Hwa Kim, Il Yoon, and Young Key Shim. "Size-Dependent Photodynamic Activity of Gold Nanoparticles Conjugate of Water Soluble Purpurin-18-N-Methyl-D-Glucamine." BioMed Research International 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/720579.

Texto completo
Resumen
Gold nanoparticles (GNPs) conjugates of water soluble ionic photosensitizer (PS), purpurin-18-N-methyl-D-glucamine (Pu-18-NMGA), were synthesized using various molar ratios between HAuCl4and Pu-18-NMGA without adding any particular reducing agents and surfactants. The PS-GNPs conjugates showed long wavelength absorption of range 702–762 nm, and their different shapes and diameters depend on the molar ratios used in the synthesis.In vitroanticancer efficacy of the PS-GNPs conjugates was investigated by MTT assay against A549 cells, resulting in higher photodynamic activity than that of the free
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Stefano, Anna Di, Anna Ettorre, Silverio Sbrana, Cinzia Giovani, and Paolo Neri. "Purpurin-18 in Combination with Light Leads to Apoptosis or Necrosis in HL60 Leukemia Cells¶." Photochemistry and Photobiology 73, no. 3 (2007): 290–96. http://dx.doi.org/10.1562/0031-8655(2001)0730290picwll2.0.co2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Stefano, Anna Di, Anna Ettorre, Silverio Sbrana, Cinzia Giovani, and Paolo Neri. "Purpurin-18 in Combination with Light Leads to Apoptosis or Necrosis in HL60 Leukemia Cells¶." Photochemistry and Photobiology 73, no. 3 (2001): 290. http://dx.doi.org/10.1562/0031-8655(2001)073<0290:picwll>2.0.co;2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Lee, Shwn-Ji H., Nadine Jagerovic, and Kevin M. Smith. "Use of the chlorophyll derivative, purpurin-18, for syntheses of sensitizers for use in photodynamic therapy." Journal of the Chemical Society, Perkin Transactions 1, no. 19 (1993): 2369. http://dx.doi.org/10.1039/p19930002369.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Byambajav, Lkhagvadulam, Kim Jung Hua, IL Yoon, and ShimYoung Key. "Synthesis and characterization of gold nanoparticles based on water-soluble Purpurin-18-N-methyl-d-glucamine." Photodiagnosis and Photodynamic Therapy 8, no. 2 (2011): 209. http://dx.doi.org/10.1016/j.pdpdt.2011.03.284.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Sharma, Sulbha, Alok Dube, Biplab Bose, and Pradeep K. Gupta. "Pharmacokinetics and phototoxicity of purpurin-18 in human colon carcinoma cells using liposomes as delivery vehicles." Cancer Chemotherapy and Pharmacology 57, no. 4 (2005): 500–506. http://dx.doi.org/10.1007/s00280-005-0072-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Liu, Yang, Sang Hyeob Lee, Woo Kyoung Lee, and Il Yoon. "Ionic Liquid‐dependent Gold Nanoparticles of Purpurin‐18 for Cellular Imaging and Photodynamic Therapy In Vitro." Bulletin of the Korean Chemical Society 41, no. 2 (2019): 230–33. http://dx.doi.org/10.1002/bkcs.11943.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Yeo, Sooho, Hyeon Ho Song, Min Je Kim, Seokhyeon Hong, Il Yoon, and Woo Kyoung Lee. "Synthesis and Design of Purpurin-18-Loaded Solid Lipid Nanoparticles for Improved Anticancer Efficiency of Photodynamic Therapy." Pharmaceutics 14, no. 5 (2022): 1064. http://dx.doi.org/10.3390/pharmaceutics14051064.

Texto completo
Resumen
Purpurin-18 (P18) is one of the essential photosensitizers used in photodynamic therapy (PDT), but its hydrophobicity causes easy coalescence and poor bioavailability. This study aimed to synthesize P18 and design P18-loaded solid lipid nanoparticles (SLNs) to improve its bioavailability. The characteristics of the synthesized P18 and SLNs were evaluated by particle characteristics and release studies. The effects of P18 were evaluated using the 1,3-diphenylisobenzofuran (DPBF) assay as a nonbiological assay and a phototoxicity assay against HeLa and A549 cell lines as a biological assay. The
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Chkair, Rayan, Justine Couvez, Frédérique Brégier, et al. "Activity of Hydrophilic, Biocompatible, Fluorescent, Organic Nanoparticles Functionalized with Purpurin-18 in Photodynamic Therapy for Colorectal Cancer." Nanomaterials 14, no. 19 (2024): 1557. http://dx.doi.org/10.3390/nano14191557.

Texto completo
Resumen
Photodynamic therapy (PDT) is a clinically approved, non-invasive therapy currently used for several solid tumors, triggering cell death through the generation of reactive oxygen species (ROS). However, the hydrophobic nature of most of the photosensitizers used, such as chlorins, limits the overall effectiveness of PDT. To address this limitation, the use of nanocarriers seems to be a powerful approach. From this perspective, we have recently developed water-soluble and biocompatible, fluorescent, organic nanoparticles (FONPs) functionalized with purpurin-18 and its derivative, chlorin p6 (Cp
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Yeo, Sooho, Huiqiang Wu, Young Kyu Song, Hyeonjeong Kim, Il Yoon, and Woo Kyoung Lee. "Development of nanostructured lipid carriers loaded with purpurin-18 N propargylimide methyl ester to improve photodynamic therapy." Journal of Drug Delivery Science and Technology 107 (May 2025): 106767. https://doi.org/10.1016/j.jddst.2025.106767.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Yeo, Sooho, Huiqiang Wu, Il Yoon, Hye-Soo Kim, Young Kyu Song, and Woo Kyoung Lee. "Enhanced Photodynamic Therapy Efficacy through Solid Lipid Nanoparticle of Purpurin-18-N-Propylimide Methyl Ester for Cancer Treatment." International Journal of Molecular Sciences 25, no. 19 (2024): 10382. http://dx.doi.org/10.3390/ijms251910382.

Texto completo
Resumen
Photodynamic therapy (PDT) is an innovative cancer treatment that utilizes light. When light irradiates, purpurin-18-N-propylimide methyl ester (P18 N PI ME) generates reactive oxygen species that destroy cancer cells. The hydrophobic nature of P18 N PI ME presents challenges regarding its aggregation in the body, which can affect its effectiveness. This study aimed to enhance the bioavailability and effectiveness of cancer treatment by synthesizing P18 N PI ME and formulating P18 N PI ME-loaded solid lipid nanoparticles (SLNs). The efficacy of PDT was estimated using the 1,3-diphenylisobenzof
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Zheng, Gang, William R. Potter, Adam Sumlin, Thomas J. Dougherty, and Ravindra K. Pandey. "Photosensitizers related to purpurin-18- N -alkylimides: a comparative in vivo tumoricidal ability of ester versus amide functionalities." Bioorganic & Medicinal Chemistry Letters 10, no. 2 (2000): 123–27. http://dx.doi.org/10.1016/s0960-894x(99)00649-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Wang, J. J., Y. F. Yin, and Z. Yang. "Synthesis of purpurin-18 imide derivatives from chlorophyll-a and -b by modifications and functionalizations along their peripheries." Journal of the Iranian Chemical Society 10, no. 3 (2012): 583–91. http://dx.doi.org/10.1007/s13738-012-0194-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

LEE, S. J. H., N. JAGEROVIC, and K. M. SMITH. "ChemInform Abstract: Use of the Chlorophyll Derivative, Purpurin-18, for Syntheses of Sensitizers for Use in Photodynamic Therapy." ChemInform 25, no. 4 (2010): no. http://dx.doi.org/10.1002/chin.199404214.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Yeo, Sooho, Huiqiang Wu, Il Yoon, and Woo Kyoung Lee. "Enhanced photodynamic therapy using purpurin-18-N-aminoimide methyl ester-Loaded nanostructured lipid carriers for effective cancer treatment." Colloids and Surfaces A: Physicochemical and Engineering Aspects 725 (November 2025): 137732. https://doi.org/10.1016/j.colsurfa.2025.137732.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Jain, Beena, Abha Uppal, Kaustuv Das, Alok Dube, and Pradeep Kumar Gupta. "Conversion of purpurin 18 to chlorin P6 in the presence of silica, liposome and polymeric nanoparticles: A spectroscopic study." Journal of Molecular Structure 1060 (February 2014): 24–29. http://dx.doi.org/10.1016/j.molstruc.2013.12.019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Roeslan, Moehamad Orliando, Thaweephol Dechatiwongse Na Ayudhya, Boon-ek Yingyongnarongkul, and Sittichai Koontongkaew. "Anti-biofilm, nitric oxide inhibition and wound healing potential of purpurin-18 phytyl ester isolated from Clinacanthus nutans leaves." Biomedicine & Pharmacotherapy 113 (May 2019): 108724. http://dx.doi.org/10.1016/j.biopha.2019.108724.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Cheng, Dong-Bing, Guo-Bin Qi, Jing-Qi Wang, et al. "In Situ Monitoring Intracellular Structural Change of Nanovehicles through Photoacoustic Signals Based on Phenylboronate-Linked RGD-Dextran/Purpurin 18 Conjugates." Biomacromolecules 18, no. 4 (2017): 1249–58. http://dx.doi.org/10.1021/acs.biomac.6b01922.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Zheng, Gang, William R. Potter, Adam Sumlin, Thomas J. Dougherty, and Ravindra K. Pandey. "ChemInform Abstract: Photosensitizers Related to Purpurin-18-N-alkylimides: A Comparative in vivo Tumoricidal Ability of Ester versus Amide Functionalities." ChemInform 31, no. 21 (2010): no. http://dx.doi.org/10.1002/chin.200021112.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Mishra, Padmaja P., and Anindya Datta. "Difference in the effects of surfactants and albumin on the extent of deaggregation of purpurin 18, a model of hydrophobic photosensitizer." Biophysical Chemistry 121, no. 3 (2006): 224–33. http://dx.doi.org/10.1016/j.bpc.2006.01.009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Hynninen, Paavo H., Tuomo S. Leppäkases, and Markku Mesilaakso. "Demethoxycarbonylation and oxidation of 132(S/R)-hydroxy-chlorophyll a to 132-demethoxycarbonyl-132-oxo-chlorophyll a and Mg-purpurin-18 phytyl ester." Tetrahedron Letters 47, no. 10 (2006): 1663–68. http://dx.doi.org/10.1016/j.tetlet.2005.12.106.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Kang, Eun Seon, Tae Heon Lee, Yang Liu, Ki-Ho Han, Woo Kyoung Lee, and Il Yoon. "Graphene Oxide Nanoparticles Having Long Wavelength Absorbing Chlorins for Highly-Enhanced Photodynamic Therapy with Reduced Dark Toxicity." International Journal of Molecular Sciences 20, no. 18 (2019): 4344. http://dx.doi.org/10.3390/ijms20184344.

Texto completo
Resumen
The long wavelength absorbing photosensitizer (PS) is important in allowing deeper penetration of near-infrared light into tumor tissue for photodynamic therapy (PDT). A suitable drug delivery vehicle is important to attain a sufficient concentration of PS at the tumor site. Presently, we developed graphene oxide (GO) nanoparticles containing long wavelength absorbing PS in the form of the chlorin derivative purpurin-18-N-ethylamine (maximum absorption wavelength [λmax] 707 nm). The GO–PS complexes comprised a delivery system in which PS was loaded by covalent and noncovalent bonding on the GO
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Tamiaki, Hitoshi, Yasuhide Shimamura, Hideaki Yoshimura, Suresh K. Pandey, and Ravindra K. Pandey. "Self-aggregation of Synthetic Zinc 3-Hydroxymethyl-purpurin-18 andN-Hexylimide Methyl Esters in an Aqueous Solution as Models of Green Photosynthetic Bacterial Chlorosomes." Chemistry Letters 34, no. 10 (2005): 1344–45. http://dx.doi.org/10.1246/cl.2005.1344.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Frye, William J. E., Lyn M. Huff, José M. González Dalmasy, et al. "The multidrug resistance transporter P-glycoprotein confers resistance to ferroptosis inducers." Cancer Drug Resistance 6 (2023): 468–80. http://dx.doi.org/10.20517/cdr.2023.29.

Texto completo
Resumen
Aim: Ferroptosis is a non-apoptotic form of cell death caused by lethal lipid peroxidation. Several small molecule ferroptosis inducers (FINs) have been reported, yet little information is available regarding their interaction with the ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp, ABCB1) and ABCG2. We thus sought to characterize the interactions of FINs with P-gp and ABCG2, which may provide information regarding oral bioavailability and brain penetration and predict drug-drug interactions. Methods: Cytotoxicity assays with ferroptosis-sensitive A673 cells transfected to expres
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!