Siga este enlace para ver otros tipos de publicaciones sobre el tema: Quintuple product identity.

Artículos de revistas sobre el tema "Quintuple product identity"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 20 mejores artículos de revistas para su investigación sobre el tema "Quintuple product identity".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

COOPER, SHAUN. "THE QUINTUPLE PRODUCT IDENTITY." International Journal of Number Theory 02, no. 01 (March 2006): 115–61. http://dx.doi.org/10.1142/s1793042106000401.

Texto completo
Resumen
The quintuple product identity was first discovered about 90 years ago. It has been published in many different forms, and at least 29 proofs have been given. We shall give a comprehensive survey of the work on the quintuple product identity, and a detailed analysis of the many proofs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Farkas, Hershel M., and Irwin Kra. "On the quintuple product identity." Proceedings of the American Mathematical Society 127, no. 3 (1999): 771–78. http://dx.doi.org/10.1090/s0002-9939-99-04791-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Hirschhorn, M. D. "A generalisation of the quintuple product identity." Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 44, no. 1 (February 1988): 42–45. http://dx.doi.org/10.1017/s1446788700031359.

Texto completo
Resumen
AbstractThe quintuple product identity has appeared many times in the literature. Indeed, no fewer than 12 proofs have been given. We establish a more general identity from which the quintuple product identity follows in two ways.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Chan, Song Heng, Thi Phuong Nhi Ho, and Renrong Mao. "Truncated series from the quintuple product identity." Journal of Number Theory 169 (December 2016): 420–38. http://dx.doi.org/10.1016/j.jnt.2016.05.013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Chen, William Y. C., Wenchang Chu, and Nancy S. S. Gu. "Finite form of the quintuple product identity." Journal of Combinatorial Theory, Series A 113, no. 1 (January 2006): 185–87. http://dx.doi.org/10.1016/j.jcta.2005.04.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

KIM, SUN. "A BIJECTIVE PROOF OF THE QUINTUPLE PRODUCT IDENTITY." International Journal of Number Theory 06, no. 02 (March 2010): 247–56. http://dx.doi.org/10.1142/s1793042110002909.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Chan, Hei-Chi. "Another simple proof of the quintuple product identity." International Journal of Mathematics and Mathematical Sciences 2005, no. 15 (2005): 2511–15. http://dx.doi.org/10.1155/ijmms.2005.2511.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Alladi, Krishnaswami. "The quintuple product identity and shifted partition functions." Journal of Computational and Applied Mathematics 68, no. 1-2 (April 1996): 3–13. http://dx.doi.org/10.1016/0377-0427(95)00251-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

CHEN, SIN-DA, and SEN-SHAN HUANG. "ON GENERAL SERIES-PRODUCT IDENTITIES." International Journal of Number Theory 05, no. 06 (September 2009): 1129–48. http://dx.doi.org/10.1142/s1793042109002596.

Texto completo
Resumen
We derive the general series-product identities from which we deduce several applications, including an identity of Gauss, the generalization of Winquist's identity by Carlitz and Subbarao, an identity for [Formula: see text], the quintuple product identity, and the octuple product identity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Zhu, Jun-Ming, and Zhi-Zheng Zhang. "A semi-finite form of the quintuple product identity." Journal of Combinatorial Theory, Series A 184 (November 2021): 105509. http://dx.doi.org/10.1016/j.jcta.2021.105509.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Chan, Heng Huat. "Triple product identity, Quintuple product identity and Ramanujan's differential equations for the classical Eisenstein series." Proceedings of the American Mathematical Society 135, no. 07 (July 1, 2007): 1987–93. http://dx.doi.org/10.1090/s0002-9939-07-08723-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Srivastava, Bhaskar. "A new form of the quintuple product identity and its application." Filomat 31, no. 7 (2017): 1869–73. http://dx.doi.org/10.2298/fil1707869s.

Texto completo
Resumen
We give a new form of the quintuple product identity. As a direct application of this new form a simple proof of known identities of Ramanujan and also new identities for other well known continued fractions are given. We also give and prove a general identity for (q3m; q3m)?.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Bhargava, S., Chandrashekar Adiga та M. S. Mahadeva Naika. "QUINTUPLE PRODUCT IDENTITY AS A SPECIAL CASE OF RAMANUJAN'S 1ψ1 SUMMATION FORMULA". Asian-European Journal of Mathematics 04, № 01 (березень 2011): 31–34. http://dx.doi.org/10.1142/s1793557111000046.

Texto completo
Resumen
In this note we observe an interesting fact that the well-known quintuple product identity can be regarded as a special case of the celebrated 1ψ1 summation formula of Ramanujan which is known to unify the Jacobi triple product identity and the q -binomial theorem.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Liu, Zhi-Guo. "An extension of the quintuple product identity and its applications." Pacific Journal of Mathematics 246, no. 2 (June 1, 2010): 345–90. http://dx.doi.org/10.2140/pjm.2010.246.345.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Bhargava, S., Chandrashekar Adiga, and M. S. Mahadeva Naika. "Ramanujan's remarkable summation formula as a $2$-papameter generalization of the quintuple product identity." Tamkang Journal of Mathematics 33, no. 3 (September 30, 2002): 285–88. http://dx.doi.org/10.5556/j.tkjm.33.2002.285-288.

Texto completo
Resumen
It is well known that `Ramanujan's remarkable summation formula' unifies and generalizes the $q$-binomial theorem and the triple product identity and has numerous applications. In this note we will demonstrate how, after a suitable transformation of the series side, it can be looked upon as a $2$-parameter generalization of the quintuple product identity also.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Hammond, Paul, Richard Lewis, and Zhi-Guo Liu. "Hirschhorn's identities." Bulletin of the Australian Mathematical Society 60, no. 1 (August 1999): 73–80. http://dx.doi.org/10.1017/s0004972700033347.

Texto completo
Resumen
We prove a general identity between power series and use this identity to give proofs of a number of identities proposed by M.D. Hirschhorn. We also use the identity to give proofs of a well-known result of Jacobi, the quintuple-product identity and Winquist's identity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Clark, J. S., M. E. Lohr, L. R. Patrick, F. Najarro, H. Dong, and D. F. Figer. "An updated stellar census of the Quintuplet cluster." Astronomy & Astrophysics 618 (October 2018): A2. http://dx.doi.org/10.1051/0004-6361/201833041.

Texto completo
Resumen
Context. Found within the central molecular zone, the Quintuplet is one of the most massive young clusters in the Galaxy. As a consequence it offers the prospect of constraining stellar formation and evolution in extreme environments. However, current observations suggest that it comprises a remarkably diverse stellar population that is difficult to reconcile with an instantaneous formation event. Aims. To better understand the nature of the cluster our aim is to improve observational constraints on the constituent stars. Methods. In order to accomplish this goal we present Hubble Space Telesc
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Ma, X. "Two Finite Forms of Watson's Quintuple Product Identity and Matrix Inversion." Electronic Journal of Combinatorics 13, no. 1 (June 12, 2006). http://dx.doi.org/10.37236/1078.

Texto completo
Resumen
Recently, Chen-Chu-Gu and Guo-Zeng found independently that Watson's quintuple product identity follows surprisingly from two basic algebraic identities, called finite forms of Watson's quintuple product identity. The present paper shows that both identities are equivalent to two special cases of the $q$-Chu-Vandermonde formula by using the ($f,g$)-inversion.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Chu, Wenchang, and Qinglun Yan. "Unification of the Quintuple and Septuple Product Identities." Electronic Journal of Combinatorics 14, no. 1 (March 28, 2007). http://dx.doi.org/10.37236/1008.

Texto completo
Resumen
By combining the functional equation method with Jacobi's triple product identity, we establish a general equation with five free parameters on the modified Jacobi theta function, which can be considered as the common generalization of the quintuple, sextuple and septuple product identities. Several known theta function formulae and new identities are consequently proved.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Paule, Peter. "Short and Easy Computer Proofs of the Rogers-Ramanujan Identities and of Identities of Similar Type." Electronic Journal of Combinatorics 1, no. 1 (July 26, 1994). http://dx.doi.org/10.37236/1190.

Texto completo
Resumen
New short and easy computer proofs of finite versions of the Rogers-Ramanujan identities and of similar type are given. These include a very short proof of the first Rogers-Ramanujan identity that was missed by computers, and a new proof of the well-known quintuple product identity by creative telescoping.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!