Literatura académica sobre el tema "Radio equipment"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Radio equipment".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Radio equipment"
DeMott, Kathryn. "Radio ID Devices Zap Equipment". Caring for the Ages 9, n.º 7 (julio de 2008): 4. http://dx.doi.org/10.1016/s1526-4114(08)60177-8.
Texto completoXue, Jun, Jian Hua Zou, Yong Liang Zhang y Xin Bing Fang. "Design and Implementation of Radio Spreading-Sequences Beacon Based on Quadrature Frequency-Conversion". Advanced Materials Research 605-607 (diciembre de 2012): 1984–88. http://dx.doi.org/10.4028/www.scientific.net/amr.605-607.1984.
Texto completoGordyaskina, Tatyana V. y Lyudmila S. Grosheva. "THE SHIP'S RECEIVING AND TRANSMITTING EQUIPMENT ELEMENTS RESEARCH BASED ON THE TMS320C5510 SIGNAL PROCESSOR". Russian Journal of Water Transport, n.º 63 (1 de junio de 2020): 40–47. http://dx.doi.org/10.37890/jwt.vi63.74.
Texto completoPopa, Robert. "Electromagnetic Susceptibility Measurement of Military Radio Electronic Equipment". Journal of Military Technology 3, n.º 1 (26 de junio de 2020): 17–22. http://dx.doi.org/10.32754/jmt.2020.1.03.
Texto completoTiridatov, Sergey Aleksandrovich, Vasiliy Aleksandrovich Mokhov y Anastasiya Sergeyevna Kobylnichenko. "ABOUT EQUIPMENT OF RADIO CONTROL MODELS". Economy. Business. Computer science, n.º 3 (1 de enero de 2016): 1–7. http://dx.doi.org/10.19075/2500-2074-2016-3-1-7.
Texto completoGreen, L. B. "Electromagnetic compatibility of radio telecommunications equipment". IEE Proceedings - Science, Measurement and Technology 141, n.º 4 (1994): 244. http://dx.doi.org/10.1049/ip-smt:19941143.
Texto completoVasylieva, Olena, Yurii Pavlenko y Valeriy Ogar. "Calibration complex of radio measuring equipment". Ukrainian Metrological Journal, n.º 2 (25 de junio de 2024): 10–17. http://dx.doi.org/10.24027/2306-7039.2.2024.307137.
Texto completoSolomentse, Oleksandr, Tetyana Herasymenko, Olena Kozhokhina, Yuliia Petrova y Maksym Zaliskyi. "EFFICIENCY OF OPERATIONAL DATA PROCESSING FOR RADIO ELECTRONIC EQUIPMENT". Aviation 23, n.º 3 (17 de enero de 2020): 71–77. http://dx.doi.org/10.3846/aviation.2019.11849.
Texto completoIvanyushkin, Roman Yu y Albert Waal. "THE COMPUTER MODELING OF CLASS -D AND -DE SWITCHING-MODE POWER AMPLIFIERS FOR VHF DIGITAL RADIO BROADCAST EQUIPMENT". SYNCHROINFO JOURNAL 9, n.º 4 (2023): 21–25. http://dx.doi.org/10.36724/2664-066x-2023-9-4-21-25.
Texto completoBogucki, Jan y Ewa Wielowieyska. "Reliability of line-of-sight radio-relay systems". Journal of Telecommunications and Information Technology, n.º 1 (30 de marzo de 2006): 87–92. http://dx.doi.org/10.26636/jtit.2006.1.352.
Texto completoTesis sobre el tema "Radio equipment"
Flood, Ian. "Graph theoretic methods for radio equipment selection". Thesis, Cardiff University, 2013. http://orca.cf.ac.uk/50910/.
Texto completoTörnberg, Pontus. "GNSS independent navigation using radio navigation equipment". Thesis, Luleå tekniska universitet, Rymdteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-81212.
Texto completoSanchez, Joaquin A., Richard A. Nixon, Sergio Chávez, Joaquin A. Sanchez, Richard A. Nixon y Sergio Chávez. "Medical equipment management through the use of radio frequency identification (RFID)". Thesis, Monterey, California. Naval Postgraduate School, 2004. http://hdl.handle.net/10945/9914.
Texto completoApproved for public release, distribution is unlimited
MBA Professional Report
Approved for public release, distribution is unlimited
The purpose of this MBA project is to identify the potential value of Radio Frequency Identification (RFID) use in the management of medical equipment at Naval Medical Center San Diego (NMCSD). In doing so, our project seeks to derive potential benefits through the use of RFID technology by comparing a group of medical equipment items that are tracked within NMCSD. The project includes a discussion of additional potential uses of RFID infrastructure within the Military Healthcare System, and possible resulting benefits. Ultimately, the project will determine the financial viability and practicality of implementing RFID.
The purpose of this MBA project is to identify the potential value of Radio Frequency Identification (RFID) use in the management of medical equipment at Naval Medical Center San Diego (NMCSD). In doing so, our project seeks to derive potential benefits through the use of RFID technology by comparing a group of medical equipment items that are tracked within NMCSD. The project includes a discussion of additional potential uses of RFID infrastructure within the Military Healthcare System, and possible resulting benefits. Ultimately, the project will determine the financial viability and practicality of implementing RFID.
Latief, Tauriq. "The design of a two-element radio interferometer using satellite TV equipment". Master's thesis, Faculty of Engineering and the Built Environment, 2021. http://hdl.handle.net/11427/33756.
Texto completoAggarwal, Rebecca. "An agent approach to improving radio frequency identification enabled Returnable Transport Equipment". Thesis, Aston University, 2014. http://publications.aston.ac.uk/23175/.
Texto completoTigga, Celine. "Modelling of Measurement Equipment for High Frequency Electromagnetic Fields". Thesis, Högskolan i Gävle, Avdelningen för elektronik, matematik och naturvetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-18894.
Texto completoPrice, Alfred W. "The evolution of electronic warfare equipment and techniques in the USA, 1901 to 1945". Thesis, Loughborough University, 1985. https://dspace.lboro.ac.uk/2134/7410.
Texto completoRosa, Tiago Miguel Simões. "Flexible LTE user equipment". Master's thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/23753.
Texto completoAs redes móveis estão em constante evolução. A geração atual (4G) de redes celulares de banda larga e representada pelo standard Long Term Evolution (LTE), definido pela 3rd Generation Partnership Project (3GPP). Existe uma elevada procura/uso da rede LTE, com um aumento exponencial do número de dispositivos móveis a requerer uma ligação à Internet de alto débito. Isto pode conduzir à sobrelotação do espetro, levando a que o sinal tenha que ser reforçado e a cobertura melhorada em locais específicos, tal como em grandes conferências, festivais e eventos desportivos. Por outro lado, seria uma vantagem importante se os utilizadores pudessem continuar a usar os seus equipamentos e terminais em situações onde o acesso a redes 4G é inexistente, tais como a bordo de um navio, eventos esporádicos em localizações remotas ou em cenários de catástrofe, em que as infraestruturas que permitem as telecomunicações foram danificadas e a cobertura temporária de rede pode ser decisiva em processos de salvamento. Assim sendo, existe uma motivação clara por trás do desenvolvimento de uma infraestrutura celular totalmente reconfigurável e que preencha as características mencionadas anteriormente. Uma possível abordagem consiste numa plataforma de rádio definido por software (SDR), de código aberto, que implementa o standard LTE e corre em processadores de uso geral (GPPs), tornando possível construir uma rede completa investindo somente em hardware - computadores e front-ends de radiofrequência (RF). Após comparação e análise de várias plataformas LTE de código aberto foi selecionado o OpenAirInterface (OAI) da EURECOM, que disponibiliza uma implementação compatível com a Release 8.6 da 3GPP (com parte das funcionalidades da Release 10). O principal objectivo desta dissertação é a implementação de um User Equipment (UE) flexível, usando plataformas SDR de código aberto que corram num computador de placa única (SBC) compacto e de baixa potência, integrado com um front-end de RF - Universal Software Radio Peripheral (USRP). A transmissão de dados em tempo real usando os modos de duplexagem Time Division Duplex (TDD) e Frequency Division Duplex (FDD) é suportada e a reconfiguração de certos parâmetros é permitida, nomeadamente a frequência portadora, a largura de banda e o número de Resource Blocks (RBs) usados. Além disso, é possível partilhar os dados móveis LTE com utilizadores que estejam próximos, semelhante ao que acontece com um hotspot de Wi-Fi. O processo de implementação é descrito, incluindo todos os passos necessários para o seu desenvolvimento, englobando o port do UE de um computador para um SBC. Finalmente, a performance da rede é analisada, discutindo os valores de débitos obtidos.
Mobile networks are constantly evolving. 4G is the current generation of broadband cellular network technology and is represented by the Long Term Evolution (LTE) standard, de ned by 3rd Generation Partnership Project (3GPP). There's a high demand for LTE at the moment, with the number of mobile devices requiring an high-speed Internet connection increasing exponentially. This may overcrowd the spectrum on the existing deployments and the signal needs to be reinforced and coverage improved in speci c sites, such as large conferences, festivals and sport events. On the other hand, it would be an important advantage if users could continue to use their equipment and terminals in situations where cellular networks aren't usually available, such as on board of a cruise ship, sporadic events in remote locations, or in catastrophe scenarios in which the telecommunication infrastructure was damaged and the rapid deployment of a temporary network can save lives. In all of these situations, the availability of exible and easily deployable cellular base stations and user terminals operating on standard or custom bands would be very desirable. Thus, there is a clear motivation for the development of a fully recon gurable cellular infrastructure solution that ful lls these requirements. A possible approach is an open-source, low-cost and low maintenance Software-De ned Radio (SDR) software platform that implements the LTE standard and runs on General Purpose Processors (GPPs), making it possible to build an entire network while only spending money on the hardware itself - computers and Radio-Frequency (RF) front-ends. After comparison and analysis of several open-source LTE SDR platforms, the EURECOM's OpenAirInterface (OAI) was chosen, providing a 3GPP standard-compliant implementation of Release 8.6 (with a subset of Release 10 functionalities). The main goal of this dissertation is the implementation of a exible opensource LTE User Equipment (UE) software radio platform on a compact and low-power Single Board Computer (SBC) device, integrated with an RF hardware front-end - Universal Software Radio Peripheral (USRP). It supports real-time Time Division Duplex (TDD) and Frequency Division Duplex (FDD) LTE modes and the recon guration of several parameters, namely the carrier frequency, bandwidth and the number of LTE Resource Blocks (RB) used. It can also share its LTE mobile data with nearby users, similarly to a Wi-Fi hotspot. The implementation is described through its several developing steps, including the porting of the UE from a regular computer to a SBC. The performance of the network is then analysed based on measured results of throughput.
Brown, Keith Edgar. "The application of knowledge-based techniques to fault diagnosis of 16 QAM digital microwave radio equipment". Thesis, University of Edinburgh, 1988. http://hdl.handle.net/1842/12958.
Texto completoMainini, Kevin. "Reducing Radio Frequency Susceptibilities in Commercial-Off-the-Shelf Camera Equipment for use in Electromagnetic Compatibility Testing". Digital Commons @ East Tennessee State University, 2015. https://dc.etsu.edu/etd/2484.
Texto completoLibros sobre el tema "Radio equipment"
Jones, L. Thomas. Trunked radio systems. Washington, D.C: U.S. Dept. of Justice, Office of Justice Programs, National Institute of Justice, Technology Assessment Program, 1993.
Buscar texto completoDvornikov, Sergey Viktorovich, Alexander Fedotovich Kryachko, Igor Anatolyevich Velmisov y Dmitry Alexandrovich Zatuchny. Radio-Electronic Equipment in Civil Aviation. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6199-1.
Texto completoS, Gross Lynne, ed. Radio production worktext: Studio and equipment. 3a ed. Boston: Focal Press, 1998.
Buscar texto completoE, Reese David, ed. Radio production worktext: Studio and equipment. 2a ed. Boston: Focal Press, 1993.
Buscar texto completoRembovsky, Anatoly. Radio Monitoring: Problems, Methods and Equipment. Boston, MA: Springer-Verlag US, 2009.
Buscar texto completoGross, Lynne S. Radio production worktext: Studio and equipment. Boston: Focal Press, 1990.
Buscar texto completoGross, Lynne S. Radio production worktext: Studio and equipment. 2a ed. Boston: Focal, 1994.
Buscar texto completoS, Gross Lynne, ed. Radio production worktext: Studio and equipment. 4a ed. Boston, MA: Focal Press, 2002.
Buscar texto completoCapítulos de libros sobre el tema "Radio equipment"
Weik, Martin H. "radio frequency equipment". En Computer Science and Communications Dictionary, 1402. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_15371.
Texto completoGage, Linda, Lawrie Douglas y Marie Kinsey. "Equipment". En A Guide to Commercial Radio Journalism, 1–8. London: Routledge, 2023. http://dx.doi.org/10.4324/9781032645308-1.
Texto completoSkomal, Edward N. y Albert A. Smith. "Receiving Equipment". En Measuring the Radio Frequency Environment, 233–75. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-011-7059-8_7.
Texto completoGage, Linda, Lawrie Douglas y Marie Kinsey. "Using the equipment". En A Guide to Commercial Radio Journalism, 9–16. London: Routledge, 2023. http://dx.doi.org/10.4324/9781032645308-2.
Texto completoAbeyratne, Ruwantissa. "Article 30 Aircraft Radio Equipment". En Convention on International Civil Aviation, 349. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00068-8_31.
Texto completoGeorghiou, Luke, J. Stanley Metcalfe, Michael Gibbons, Tim Ray y Janet Evans. "GEC Telecommunications: Semiconductored Radio Equipment". En Post-Innovation Performance, 176–80. London: Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-07455-6_18.
Texto completoDvornikov, Sergey Viktorovich, Alexander Fedotovich Kryachko, Igor Anatolyevich Velmisov y Dmitry Alexandrovich Zatuchny. "Range Radio Receiving Devices". En Radio-Electronic Equipment in Civil Aviation, 99–127. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6199-1_5.
Texto completoLees, G. D. y W. G. Williamson. "Safety-related equipment and services". En Handbook for Marine Radio Communication, 65–88. 7a ed. London: Informa Law from Routledge, 2022. http://dx.doi.org/10.4324/9781003171294-4.
Texto completoDvornikov, Sergey Viktorovich, Alexander Fedotovich Kryachko, Igor Anatolyevich Velmisov y Dmitry Alexandrovich Zatuchny. "Radio Receivers of Pulse Signals". En Radio-Electronic Equipment in Civil Aviation, 45–62. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6199-1_3.
Texto completoWoodruff, Graham. "Design and Equipment". En Drama and the Theatre with Radio, Film and Television, 104–31. London: Routledge, 2023. http://dx.doi.org/10.4324/9781003398790-6.
Texto completoActas de conferencias sobre el tema "Radio equipment"
Shelkovnikov, B. N., V. S. Mahonya, A. I. Peshkov, V. L. Lomaka, V. N. Ivanov, V. G. Ivashkevich y A. M. Korennoy. "Radio-relay equipment "GELIOS-RRL"". En 2000 10th International Crimean Microwave Conference. Microwave and Telecommunication Technology. Conference Proceedings. IEEE, 2000. http://dx.doi.org/10.1109/crmico.2000.1256086.
Texto completoFofanov, D. A., T. N. Bakhvalova, A. V. Alyoshin, M. E. Belkin y A. S. Sigov. "Studying Microwave-Photonic Frequency Up-Conversion for Telecom and Measurement Equipment". En 2018 IEEE Radio and Antenna Days of the Indian Ocean (RADIO). IEEE, 2018. http://dx.doi.org/10.23919/radio.2018.8572474.
Texto completoObe, P. K. "Radio access architectures and equipment approaches". En IEE Colloquium on Local Loop Fixed Radio Access. IEE, 1995. http://dx.doi.org/10.1049/ic:19951478.
Texto completoParris, R. J. "“Chameleon radio” multi standard international ground to train radio equipment". En International Conference on Electric Railways in a United Europe. IEE, 1995. http://dx.doi.org/10.1049/cp:19950192.
Texto completoKebel, Robert, Uwe Schwark y Martin Schirrmacher. "Aviation Equipment and the Application of the Radio Equipment Directive (RED)". En 2019 ESA Workshop on Aerospace EMC (Aerospace EMC). IEEE, 2019. http://dx.doi.org/10.23919/aeroemc.2019.8788924.
Texto completoLitinskaya, Ye A., K. V. Lemberg, A. S. Ivanov, A. M. Alexandrin, S. V. Polenga y Yu P. Salomatov. "Antenna Measurement Equipment for Radio Engineering Education". En 2018 IV International Conference on Information Technologies in Engineering Education (Inforino). IEEE, 2018. http://dx.doi.org/10.1109/inforino.2018.8581835.
Texto completoAshikhmin, A. V., V. V. Glotov, V. N. Kostrova, Yu G. Pasternak y S. M. Fedorov. "Broadband Antennas for Portable Radio Monitoring Equipment". En 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). IEEE, 2020. http://dx.doi.org/10.1109/fareastcon50210.2020.9271445.
Texto completoMaturazov, Izzat y Abdurashid Abdukayumov. "Improvement of radio electronic equipment diagnostic system". En 2021 ASIA-PACIFIC CONFERENCE ON APPLIED MATHEMATICS AND STATISTICS. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0090223.
Texto completoKoster, Steve. "Tutorial — wireless device approvals radio equipment directive". En 2017 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI). IEEE, 2017. http://dx.doi.org/10.1109/isemc.2017.8078124.
Texto completoMazzanti, Giovanni, Leonardo Sandrolini, Marco Landini, Effrosyni Kandia, Alessandro Tacchini y Flavio Corradini. "Fault detection of electrical equipment by rapid calculation of the magnetic field from single-circuit twisted three-phase cables". En 2017 IEEE Radio and Antenna Days of the Indian Ocean (RADIO). IEEE, 2017. http://dx.doi.org/10.23919/radio.2017.8242243.
Texto completoInformes sobre el tema "Radio equipment"
Gore, Perry. Equipment Highlights: Radio Interface Units. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1988. http://dx.doi.org/10.21236/ada200487.
Texto completoREDSTONE TEST CENTER REDSTONE ARSENAL AL. Electromagnetic Radiation Hazards Testing for Non-Ionizing Radio Frequency Transmitting Equipment. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 2012. http://dx.doi.org/10.21236/ada577863.
Texto completoD.J. Geveke, M. Kozempel y C. Brunkhorst. Development of Equipment to Separate Nonthermal and Thermal Effects of Radio Frequency Energy on Microorganisms. Office of Scientific and Technical Information (OSTI), noviembre de 1999. http://dx.doi.org/10.2172/14581.
Texto completoRemley, Kate A., William F. Young y Jacob Healy. Analysis of radio-propagation environments to support standards development for RF-based electronic safety equipment. Gaithersburg, MD: National Institute of Standards and Technology, 2012. http://dx.doi.org/10.6028/nist.tn.1559.
Texto completoFthenakis, V. Hazards from radio-frequency and laser equipment in the manufacture of. cap alpha. -Si photovoltaic cells. Office of Scientific and Technical Information (OSTI), abril de 1985. http://dx.doi.org/10.2172/6500070.
Texto completoOh, Ju Hyun, Aimee Martinez, Huaixuan Cao, Garrett George, Jared Cobb, Poonam Sharma, Lauren Fassero et al. Radio frequency heating of washable conductive textiles for bacteria and virus inactivation. Engineer Research and Development Center (U.S.), enero de 2024. http://dx.doi.org/10.21079/11681/48060.
Texto completoBACCELLI, François, Sébastien CANDEL, Guy PERRIN y Jean-Loup PUGET. Large Satellite Constellations: Challenges and Impact. Académie des sciences, marzo de 2024. http://dx.doi.org/10.62686/3.
Texto completoNafakh, Abdullah Jalal, Franklin Vargas Davila, Yunchang Zhang, Jon D. Fricker y Dulcy M. Abraham. Workzone Lighting and Glare on Nighttime Construction and Maintenance Activities. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317379.
Texto completoTarasenko, Rostyslav O., Svitlana M. Amelina y Albert A. Azaryan. Integrated testing system of information competence components of future translators. [б. в.], julio de 2020. http://dx.doi.org/10.31812/123456789/3879.
Texto completoGalili, Naftali, Roger P. Rohrbach, Itzhak Shmulevich, Yoram Fuchs y Giora Zauberman. Non-Destructive Quality Sensing of High-Value Agricultural Commodities Through Response Analysis. United States Department of Agriculture, octubre de 1994. http://dx.doi.org/10.32747/1994.7570549.bard.
Texto completo