Artículos de revistas sobre el tema "Rail area detection"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Rail area detection".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Fang, Zhongbin, Xiaojie Huang, Kangquan Ye, et al. "An algorithm for extracting groove rail area based on improved Hough transform." MATEC Web of Conferences 336 (2021): 02025. http://dx.doi.org/10.1051/matecconf/202133602025.
Texto completoChoi, Jung-Youl, and Jae-Min Han. "Deep Learning (Fast R-CNN)-Based Evaluation of Rail Surface Defects." Applied Sciences 14, no. 5 (2024): 1874. http://dx.doi.org/10.3390/app14051874.
Texto completodi Scalea, Francesco Lanza, Ivan Bartoli, Piervincenzo Rizzo, and Mahmood Fateh. "High-Speed Defect Detection in Rails by Noncontact Guided Ultrasonic Testing." Transportation Research Record: Journal of the Transportation Research Board 1916, no. 1 (2005): 66–77. http://dx.doi.org/10.1177/0361198105191600110.
Texto completoWang, Zhangyu, Xinkai Wu, Guizhen Yu, and Mingxing Li. "Efficient Rail Area Detection Using Convolutional Neural Network." IEEE Access 6 (2018): 77656–64. http://dx.doi.org/10.1109/access.2018.2883704.
Texto completoTverdomed, Volodymyr, Anatoliy Gorban, and Lesia Kushmar. "Image segmentation method of rail head defects and area measurement of selected segments." MATEC Web of Conferences 390 (2024): 04008. http://dx.doi.org/10.1051/matecconf/202439004008.
Texto completoLi, Liming, Rui Sun, Shuguang Zhao, Xiaodong Chai, Shubin Zheng, and Ruichao Shen. "Semantic-Segmentation-Based Rail Fastener State Recognition Algorithm." Mathematical Problems in Engineering 2021 (March 2, 2021): 1–15. http://dx.doi.org/10.1155/2021/8956164.
Texto completoShen, Tuo, Jinhuang Zhou, Tengfei Yuan, Yuanxiang Xie, and Xuanxiong Zhang. "LiDAR-Based Urban Three-Dimensional Rail Area Extraction for Improved Train Collision Warnings." Sensors 24, no. 15 (2024): 4963. http://dx.doi.org/10.3390/s24154963.
Texto completoCao, Jinghao, Yang Li, and Sidan Du. "Robust Artificial Intelligence-Aided Multimodal Rail-Obstacle Detection Method by Rail Track Topology Reconstruction." Applied Sciences 14, no. 7 (2024): 2795. http://dx.doi.org/10.3390/app14072795.
Texto completoZheng, Danyang, Liming Li, Shubin Zheng, et al. "A Defect Detection Method for Rail Surface and Fasteners Based on Deep Convolutional Neural Network." Computational Intelligence and Neuroscience 2021 (July 29, 2021): 1–15. http://dx.doi.org/10.1155/2021/2565500.
Texto completoSignore, James M., Mohamed G. Abdel-Maksoud, and Barry J. Dempsey. "Fiber-Optic Sensing Technology for Rail-Buckling Detection." Transportation Research Record: Journal of the Transportation Research Board 1584, no. 1 (1997): 41–45. http://dx.doi.org/10.3141/1584-06.
Texto completoJi, Guoyi, Wen Chen, Jinbai Zou, and Shiyan Wei. "Research on foreign object detection method in track area based on Mask-RCNN." Journal of Physics: Conference Series 2365, no. 1 (2022): 012005. http://dx.doi.org/10.1088/1742-6596/2365/1/012005.
Texto completoHsu, Wei-Lun, and Chia-Ming Chang. "Rail Corrugation Index Development by Sound-Field Excitation on the Carriage Floor of In-Service Train." Sensors 23, no. 17 (2023): 7539. http://dx.doi.org/10.3390/s23177539.
Texto completoRagala, Z., A. Retbi, and S. Bennani. "RAILWAY TRACK FAULTS DETECTION BASED ON IMAGE PROCESSING USING MOBILENET." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVIII-4/W3-2022 (December 2, 2022): 135–41. http://dx.doi.org/10.5194/isprs-archives-xlviii-4-w3-2022-135-2022.
Texto completoMauz, Florian, Remo Wigger, Alexandru-Elisiu Gota, and Michal Kuffa. "Automatic Detection of the Running Surface of Railway Tracks Based on Laser Profilometer Data and Supervised Machine Learning." Sensors 24, no. 8 (2024): 2638. http://dx.doi.org/10.3390/s24082638.
Texto completoSeavers, Connor, Guiherme Caselato Gandia, Jackson Winn, James Mathias, Tsuchin Chu, and Anish Poudel. "Line Scanning Thermography for Rail Base Defect Detection." Materials Evaluation 82, no. 11 (2024): 30–40. http://dx.doi.org/10.32548/2024.me-04445.
Texto completoWang, Chensong, Wei Cui, Xingguang Li, and Xinrou Liu. "Foreign Body Detection in the Electrified Area of Urban Rail Trains Using Improved Yolov3 Algorithm." Tobacco Regulatory Science 7, no. 5 (2021): 1059–66. http://dx.doi.org/10.18001/trs.7.5.23.
Texto completoNajya, Hilma, and Ari Purno Wahyu Wibowo. "TECHNOLOGY THE FIRE DETECTION SYSTEM ON THE RAILWAY LINE IS BASED ON IMAGE PROCESSING WITH THE COMPUTER VISION METHOD." Jurnal Darma Agung 31, no. 1 (2023): 65. http://dx.doi.org/10.46930/ojsuda.v31i1.2939.
Texto completoGuo, Long, Jun Zhang, Zhe Chen, et al. "Automatic Detection for Defects of Railroad Track Surface." Applied Mechanics and Materials 278-280 (January 2013): 856–60. http://dx.doi.org/10.4028/www.scientific.net/amm.278-280.856.
Texto completoBersenev, S. P., and E. M. Slobtsova. "Status of nondestructive control of transport function metal products at JSC EVRAZ NTMK." Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information 76, no. 6 (2020): 586–90. http://dx.doi.org/10.32339/0135-5910-2020-6-586-590.
Texto completoZhang, Qiang, Fei Yan, Weina Song, Rui Wang, and Gen Li. "Automatic Obstacle Detection Method for the Train Based on Deep Learning." Sustainability 15, no. 2 (2023): 1184. http://dx.doi.org/10.3390/su15021184.
Texto completoSavitha, AC, Kumar KM Madhu, V. Prathap, et al. "Automatic Detection of Obstacle in Railway Track." Journal of Scholastic Engineering Science and Management (JSESM), A Peer Reviewed Universities Refereed Multidisciplinary Research Journal 4, no. 5 (2025): 1–5. https://doi.org/10.5281/zenodo.15385583.
Texto completoKou, Lei, Mykola Sysyn, and Jianxing Liu. "INFLUENCE OF CROSSING WEAR ON ROLLING CONTACT FATIGUE DAMAGE OF FROG RAIL." Facta Universitatis, Series: Mechanical Engineering 22, no. 1 (2024): 025. http://dx.doi.org/10.22190/fume220106024k.
Texto completoLü, Kun Lin, Jun Zhang, Guang Yu Dai, et al. "Track Surface Image Collecting System Base on Area-Array Camera." Applied Mechanics and Materials 321-324 (June 2013): 1145–49. http://dx.doi.org/10.4028/www.scientific.net/amm.321-324.1145.
Texto completoPhrommahakul, Nichapa, Manwika Kongpuang, Suhaidee Sani, Anas Katib, and Fittriya Sulong. "Detection of Rail Defects Using Phased Array Ultrasonic Technique." E3S Web of Conferences 602 (2025): 01009. https://doi.org/10.1051/e3sconf/202560201009.
Texto completoFang, Bo, Cheng Qiu, Ming Feng, Wei Liang, and Ximing Zhang. "Collision Avoidance Strategy for Multivehicle Conflict on Common Rail." Mathematical Problems in Engineering 2022 (May 3, 2022): 1–14. http://dx.doi.org/10.1155/2022/9388092.
Texto completoZhang, Ziwen, Mangui Liang, and Zhiyu Liu. "A Novel Decomposition Model for Visual Rail Surface Inspection." Electronics 10, no. 11 (2021): 1271. http://dx.doi.org/10.3390/electronics10111271.
Texto completoKuzmin, Egor V., Oleg E. Gorbunov, Petr O. Plotnikov, Vadim A. Tyukin, and Vladimir A. Bashkin. "Application of Neural Networks for Recognizing Rail Structural Elements in Magnetic and Eddy Current Defectograms." Modeling and Analysis of Information Systems 25, no. 6 (2018): 667–79. http://dx.doi.org/10.18255/1818-1015-2018-6-667-679.
Texto completoSakthivel, V. "Advanced IoT Solution for Early Detection of Railway Hazards." International Journal for Research in Applied Science and Engineering Technology 13, no. 4 (2025): 4873–76. https://doi.org/10.22214/ijraset.2025.69363.
Texto completoChandran, Praneeth, Johnny Asber, Florian Thiery, Johan Odelius, and Matti Rantatalo. "An Investigation of Railway Fastener Detection Using Image Processing and Augmented Deep Learning." Sustainability 13, no. 21 (2021): 12051. http://dx.doi.org/10.3390/su132112051.
Texto completoSimonović, Miloš, Milan Banić, Dušan Stamenković, et al. "Toward the Enhancement of Rail Sustainability: Demonstration of a Holistic Approach to Obstacle Detection in Operational Railway Environments." Sustainability 16, no. 7 (2024): 2613. http://dx.doi.org/10.3390/su16072613.
Texto completoCao, Xiangang, Mengzhen Zuo, Guoyin Chen, Xudong Wu, Peng Wang, and Yizhe Liu. "Visual Localization Method for Fastener-Nut Disassembly and Assembly Robot Based on Improved Canny and HOG-SED." Applied Sciences 15, no. 3 (2025): 1645. https://doi.org/10.3390/app15031645.
Texto completoHanum, Arrosida, Susanto Agus, Ciptaningrum Adiratna, Rudianti Tyan, Nazar Surya Kencana Masayu, and Mahmud Rizal. "Rail Line Surfaces Defect Monitoring using YOLO Architecture: Case Study on Madiun-Magetan Track, East Java." Rail Line Surfaces Defect Monitoring using YOLO Architecture: Case Study on Madiun-Magetan Track, East Java 8, no. 12 (2023): 15. https://doi.org/10.5281/zenodo.10432573.
Texto completoWang, Yi, Yuhui Wang, Ping Wang, et al. "Rail Magnetic Flux Leakage Detection and Data Analysis Based on Double-Track Flaw Detection Vehicle." Processes 11, no. 4 (2023): 1024. http://dx.doi.org/10.3390/pr11041024.
Texto completoBai, Tangbo, Jialin Gao, Jianwei Yang, and Dechen Yao. "A Study on Railway Surface Defects Detection Based on Machine Vision." Entropy 23, no. 11 (2021): 1437. http://dx.doi.org/10.3390/e23111437.
Texto completoWang, Nan, Tao Hou, and Tianming Zhang. "Research on railway track edge detection based on BM3D and Zernike moments." Archives of Transport 68, no. 4 (2023): 7–20. http://dx.doi.org/10.61089/aot2023.fz9g6c16.
Texto completoYe, Xuan-Yu, Yan-Yun Luo, Zai-Wei Li, and Xiao-Zhou Liu. "A Quantitative Detection Method for Surface Cracks on Slab Track Based on Infrared Thermography." Applied Sciences 13, no. 11 (2023): 6681. http://dx.doi.org/10.3390/app13116681.
Texto completoEsteves, Gonçalo, Filipe Fidalgo, Nuno Cruz, and José Simão. "Long-Range Wide Area Network Intrusion Detection at the Edge." IoT 5, no. 4 (2024): 871–900. https://doi.org/10.3390/iot5040040.
Texto completoPan, Yucheng, Jiasi Chen, Peiwen Wu, Hongsheng Zhong, Zihao Deng, and Daozong Sun. "Enhanced Rail Surface Defect Segmentation Using Polarization Imaging and Dual-Stream Feature Fusion." Sensors 25, no. 11 (2025): 3546. https://doi.org/10.3390/s25113546.
Texto completoMogyla, V. I., M. O. Morneva, and M. V. Kovtanets. "The use of the multivariate antiskid sensor to gain maximum trailed load of the rolling stock." Вісник Східноукраїнського національного університету імені Володимира Даля, no. 5 (275) (December 10, 2022): 55–57. http://dx.doi.org/10.33216/1998-7927-2022-275-5-55-57.
Texto completoChudzikiewicz, Andrzej, Jozef Drozdziel, and Bogdan Sowinski. "Practical Solution of Rail Vehicle and Track Dynamics Monitoring System." Key Engineering Materials 518 (July 2012): 271–80. http://dx.doi.org/10.4028/www.scientific.net/kem.518.271.
Texto completoLiu, Shuai, Yu-Hao Shi, Tian-Yu Lin, Yong-Peng Zhang, Zhi-Jian Lu, and Lan-Jun Yang. "Influence of operating parameters on discharge mode of parallel-rail accelerator." Acta Physica Sinica 70, no. 20 (2021): 205205. http://dx.doi.org/10.7498/aps.70.20210484.
Texto completoLiu, Shuai, Yu-Hao Shi, Tian-Yu Lin, Yong-Peng Zhang, Zhi-Jian Lu, and Lan-Jun Yang. "Influence of operating parameters on discharge mode of parallel-rail accelerator." Acta Physica Sinica 70, no. 20 (2021): 205205. http://dx.doi.org/10.7498/aps.70.20210484.
Texto completoXiao, Tianwen, Yongneng Xu, and Huimin Yu. "Research on Obstacle Detection Method of Urban Rail Transit Based on Multisensor Technology." Journal of Artificial Intelligence and Technology 1, no. 1 (2021): 61–67. http://dx.doi.org/10.37965/jait.2020.0027.
Texto completoYuan, Cheng, and Xin Chen. "Research on collision avoidance method based on millimeter wave radar." Highlights in Science, Engineering and Technology 37 (March 18, 2023): 137–41. http://dx.doi.org/10.54097/hset.v37i.6068.
Texto completoPamuła, Teresa, and Wiesław Pamuła. "Detection of Safe Passage for Trains at Rail Level Crossings Using Deep Learning." Sensors 21, no. 18 (2021): 6281. http://dx.doi.org/10.3390/s21186281.
Texto completoMa, Boyang, Shupeng Chen, Shulong Wang, et al. "A False Trigger-Strengthened and Area-Saving Power-Rail Clamp Circuit with High ESD Performance." Micromachines 14, no. 6 (2023): 1172. http://dx.doi.org/10.3390/mi14061172.
Texto completoJia, Yajuan, Jianbo Zheng, and Hongfang Zhou. "Research on Airborne Electromagnetic Whole-area Apparent Resistivity Imaging Algorithm in the Detection of Goaf in Rail Transit." Journal of Physics: Conference Series 2083, no. 4 (2021): 042072. http://dx.doi.org/10.1088/1742-6596/2083/4/042072.
Texto completoYaodong, Jiang. "Active Obstacle Detection System Based on Video Recognition and Lidar Information Fusion." New Metro 1, no. 1 (2020): 11–21. http://dx.doi.org/10.37819/nm.001.01.0073.
Texto completoJiang, Aihui, Jie Dai, Sisi Yu, Baolei Zhang, Qiaoyun Xie, and Huanxue Zhang. "Unsupervised Change Detection around Subways Based on SAR Combined Difference Images." Remote Sensing 14, no. 17 (2022): 4419. http://dx.doi.org/10.3390/rs14174419.
Texto completoBeauchamp, A. J. "Banded rail (Gallirallus philippensis) detection at Ruakaka estuary before, during, and after mangrove (Avicennia marina) removal." Notornis 72, no. 3 (2025): 161. https://doi.org/10.63172/012836krmcgh.
Texto completo