Siga este enlace para ver otros tipos de publicaciones sobre el tema: Rational.

Artículos de revistas sobre el tema "Rational"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Rational".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Cunliffe, John. "The Liberal Rationale of ‘Rational Socialism’." Political Studies 36, no. 4 (December 1988): 653–62. http://dx.doi.org/10.1111/j.1467-9248.1988.tb00254.x.

Texto completo
Resumen
This article draws attention to the ideas of an unduly neglected Belgian thinker, Hippolyte Colins. From the 1830s, Colins addressed many issues in the political theory of property, especially problems of interpersonal, intergenerational and inter-societal justice. His ideas are discussed in the first section. A critical examination of his arguments about justified property regimes enables contemporary disputes (notably in the work of Nozick and Steiner) to be placed in a fresh perspective, offered in the second section. This locates the difficulty of distinguishing between liberal and socialist commitments to particular property systems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Dykes, James R. "A Rational Rationale for Experimental Psychology." Contemporary Psychology: A Journal of Reviews 34, no. 10 (October 1989): 934. http://dx.doi.org/10.1037/030669.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Ghasrodashti, Elahe, Nidthida Lin, Ralf Wilden, Francesco Chirico, and Dawn DeTienne. "Do Rational Entrepreneurs Exit Rationally?" Academy of Management Proceedings 2021, no. 1 (August 2021): 14133. http://dx.doi.org/10.5465/ambpp.2021.14133abstract.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

McGregor, John C. "Breast reduction – rationed or rational?" British Journal of Plastic Surgery 52, no. 6 (September 1999): 511. http://dx.doi.org/10.1054/bjps.1999.3177.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Duckett, S. J. "Rational care before rationed care." Internal Medicine Journal 32, no. 11 (October 16, 2002): 533–34. http://dx.doi.org/10.1046/j.1445-5994.2002.00293.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Brooks, P. "Rational care before rationed care." Internal Medicine Journal 33, no. 4 (April 2003): 210. http://dx.doi.org/10.1046/j.1445-5994.2003.00382.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

., Jyoti. "Rational Numbers." Journal of Advances and Scholarly Researches in Allied Education 15, no. 5 (July 1, 2018): 220–22. http://dx.doi.org/10.29070/15/57856.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Tepic, Slobodan, Kent Harrington, and Otto Lanz. "Biomechanical Rationale and Rational Planning for TPLO." Veterinary and Comparative Orthopaedics and Traumatology 31, S 02 (July 2018): A1—A25. http://dx.doi.org/10.1055/s-0038-1668234.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

&NA;. "Rational use of "rationally designed drugs"." Inpharma Weekly &NA;, no. 1389 (May 2003): 2. http://dx.doi.org/10.2165/00128413-200313890-00001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Nosratabadi, Hassan. "Rational Shortlist Method with refined rationales." Mathematical Social Sciences 127 (January 2024): 12–18. http://dx.doi.org/10.1016/j.mathsocsci.2023.10.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Sinder, Rike. "Der rational turn." Archiv fuer Rechts- und Sozialphilosophie 108, no. 2 (2022): 163. http://dx.doi.org/10.25162/arsp-2022-0009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Makowski, Louis. "Are `Rational Conjectures' Rational?" Journal of Industrial Economics 36, no. 1 (September 1987): 35. http://dx.doi.org/10.2307/2098595.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Darwall, Stephen L. "Rational Agent, Rational Act." Philosophical Topics 14, no. 2 (1986): 33–57. http://dx.doi.org/10.5840/philtopics19861422.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Hahn, Ulrike, Adam J. L. Harris, and Mike Oaksford. "Rational argument, rational inference." Argument & Computation 4, no. 1 (March 2013): 21–35. http://dx.doi.org/10.1080/19462166.2012.689327.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Maurer, William. "How the Rational Basis Test Protects Policing for Profit." University of Michigan Journal of Law Reform, no. 54.4 (2021): 839. http://dx.doi.org/10.36646/mjlr.54.4.rational.

Texto completo
Resumen
Since the police shooting of Michael Brown in 2014 and the civil unrest that followed, numerous lawsuits have challenged laws that use the government’s ability to impose fines and fees for reasons other than the protection of the public. These challenges have usually raised equal protection challenges to these laws—that is, that the laws punish the poor more harshly than others. The challenges have been unsuccessful, largely because courts examine these laws using “rational basis review,” a standard that is highly deferential to the government and one in which the courts themselves are often required to actively advocate for the government’s position. This article explains these challenges, outlines the critiques of rational basis review, and argues that courts should abandon the use of this standard in cases in which punitive sanctions fall more heavily on the poor than others.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

ENSOLI, B. "Rational vaccine strategies against AIDS: background and rationale." Microbes and Infection 7, no. 14 (November 2005): 1445–52. http://dx.doi.org/10.1016/j.micinf.2005.07.024.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Nielsen, Carsten Krabbe. "On rationally confident beliefs and rational overconfidence." Mathematical Social Sciences 55, no. 3 (May 2008): 381–404. http://dx.doi.org/10.1016/j.mathsocsci.2007.09.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

INASAWA, Keita, and Kenji YASUNAGA. "Rational Proofs against Rational Verifiers." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E100.A, no. 11 (2017): 2392–97. http://dx.doi.org/10.1587/transfun.e100.a.2392.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Kőhegyi, Gergely. "Rational deconstruction of rational reconstruction." Periodica Polytechnica Social and Management Sciences 20, no. 1 (2012): 55. http://dx.doi.org/10.3311/pp.so.2012-1.06.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Slote, Michael. "Rational Dilemmas and Rational Supererogation." Philosophical Topics 14, no. 2 (1986): 59–76. http://dx.doi.org/10.5840/philtopics19861423.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Blickle, Manuel, and Helene Esnault. "Rational Singularities and Rational Points." Pure and Applied Mathematics Quarterly 4, no. 3 (2008): 729–42. http://dx.doi.org/10.4310/pamq.2008.v4.n3.a5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Schwartz, Ryan, József Solymosi, and Frank Zeeuw. "RATIONAL DISTANCES WITH RATIONAL ANGLES." Mathematika 58, no. 2 (November 28, 2011): 409–18. http://dx.doi.org/10.1112/s0025579311001847.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Caplan, Bryan. "Rational Ignorance versus Rational Irrationality." Kyklos 54, no. 1 (February 2001): 3–26. http://dx.doi.org/10.1111/1467-6435.00138.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Anzer, Christian. "how rational is rational choice?" European Political Science 3, no. 2 (March 2004): 43–57. http://dx.doi.org/10.1057/eps.2004.5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Coleman, Jules L. "Rational Choice and Rational Cognition." Legal Theory 3, no. 2 (June 1997): 183–203. http://dx.doi.org/10.1017/s1352325200000720.

Texto completo
Resumen
There is a close but largely unexplored connection between law and economics and cognitive psychology. Law and economics applies economic models, modes of analysis, and argument to legal problems. Economic theory can be applied to legal problems for predictive, explanatory, or evaluative purposes. In explaining or assessing human action, economic theory presupposes a largely unarticulated account of rational, intentional action. Philosophers typically analyze intentional action in terms of desires and beliefs. I intend to perform some action because I believe that it will (is likely to) produce an outcome that I desire. This standard “belief-desire” model of action invokes what philosophers of psychology and action theorists aptly refer to as a “folk psychology.”
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Lávička, Miroslav, and Bohumír Bastl. "Rational hypersurfaces with rational convolutions." Computer Aided Geometric Design 24, no. 7 (October 2007): 410–26. http://dx.doi.org/10.1016/j.cagd.2007.04.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Benassy, Jean-Pascal. "Are rational expectations really rational?" Economics Letters 39, no. 1 (May 1992): 49–54. http://dx.doi.org/10.1016/0165-1765(92)90100-d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Benassy, Jean-Pascal. "Are rational expectations really rational?" Economics Letters 40, no. 1 (September 1992): 125. http://dx.doi.org/10.1016/0165-1765(92)90255-w.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Hinchman, Edward S. "Rational requirements and ‘rational’ akrasia." Philosophical Studies 166, no. 3 (November 20, 2012): 529–52. http://dx.doi.org/10.1007/s11098-012-9993-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Flenner, Hubert, and Mikhail Zaidenberg. "Rational curves and rational singularities." Mathematische Zeitschrift 244, no. 3 (July 2003): 549–75. http://dx.doi.org/10.1007/s00209-003-0497-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Trujillo, José. "Rational responses and rational conjectures." Journal of Economic Theory 36, no. 2 (August 1985): 289–301. http://dx.doi.org/10.1016/0022-0531(85)90107-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

McAllister, Patrick H. "Rational behavior and rational expectations." Journal of Economic Theory 52, no. 2 (December 1990): 332–63. http://dx.doi.org/10.1016/0022-0531(90)90036-j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Choffrut, Christian. "Rational relations and rational series." Theoretical Computer Science 98, no. 1 (May 1992): 5–13. http://dx.doi.org/10.1016/0304-3975(92)90375-p.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Huguin, Valentin. "Rational maps with rational multipliers." Journal de l’École polytechnique — Mathématiques 10 (March 31, 2023): 591–99. http://dx.doi.org/10.5802/jep.227.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Dujella, Andrej, Matija Kazalicki, and Vinko Petričević. "Rational Diophantine sextuples containing two regular quadruples and one regular quintuple." Acta mathematica Spalatensia 1, no. 1 (January 4, 2021): 19–27. http://dx.doi.org/10.32817/ams.1.1.2.

Texto completo
Resumen
A set of m distinct nonzero rationals {a1,a2,…,am} such that aiaj+1 is a perfect square for all 1 ≤ i < j ≤ m, is called a rational Diophantine m-tuple. It is proved recently that there are infinitely many rational Diophantine sextuples. In this paper, we construct infinite families of rational Diophantine sextuples with special structure, namely the sextuples containing quadruples and quintuples of certain type.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Chenger, Denise, George Jergeas, and Francis Hartman. "Executive-level Capital Project Decision Making: Rational or Rationale?" International Journal of Sustainability Policy and Practice 8, no. 3 (2013): 65–74. http://dx.doi.org/10.18848/2325-1166/cgp/v08i03/55388.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Austin, Heather, Kevin C. Smith, and Wendy L. Ward. "Bariatric surgery in adolescents: What's the rationale? What's rational?" International Review of Psychiatry 24, no. 3 (June 2012): 254–61. http://dx.doi.org/10.3109/09540261.2012.678815.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Roy, Damien, and Johannes Schleischitz. "Numbers with Almost all Convergents in a Cantor Set." Canadian Mathematical Bulletin 62, no. 4 (December 3, 2018): 869–75. http://dx.doi.org/10.4153/s0008439518000450.

Texto completo
Resumen
AbstractIn 1984, K. Mahler asked how well elements in the Cantor middle third set can be approximated by rational numbers from that set and by rational numbers outside of that set. We consider more general missing digit sets $C$ and construct numbers in $C$ that are arbitrarily well approximable by rationals in $C$, but badly approximable by rationals outside of $C$. More precisely, we construct them so that all but finitely many of their convergents lie in $C$.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Canci, Jung Kyu, and Solomon Vishkautsan. "Quadratic maps with a periodic critical point of period 2." International Journal of Number Theory 13, no. 06 (December 5, 2016): 1393–417. http://dx.doi.org/10.1142/s1793042117500786.

Texto completo
Resumen
We provide a complete classification of possible graphs of rational preperiodic points of endomorphisms of the projective line of degree 2 defined over the rationals with a rational periodic critical point of period 2, under the assumption that these maps have no periodic points of period at least 7. We explain how this extends results of Poonen on quadratic polynomials. We show that there are exactly 13 possible graphs, and that such maps have at most nine rational preperiodic points. We provide data related to the analogous classification of graphs of endomorphisms of degree 2 with a rational periodic critical point of period 3 or 4.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Smith, Karen E. "F-rational rings have rational singularities." American Journal of Mathematics 119, no. 1 (1997): 159–80. http://dx.doi.org/10.1353/ajm.1997.0007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Shulock, N. "Legislatures: Rational Systems or Rational Myths?" Journal of Public Administration Research and Theory 8, no. 3 (July 1, 1998): 299–324. http://dx.doi.org/10.1093/oxfordjournals.jpart.a024386.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Wang, Huaxiong. "On rational series and rational languages." Theoretical Computer Science 205, no. 1-2 (September 1998): 329–36. http://dx.doi.org/10.1016/s0304-3975(98)00103-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

de Sousa, Ronald. "Rational analysis: Too rational for comfort?" Behavioral and Brain Sciences 14, no. 3 (September 1991): 492. http://dx.doi.org/10.1017/s0140525x00070874.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

ITZYKSON, C. "COUNTING RATIONAL CURVES ON RATIONAL SURFACES." International Journal of Modern Physics B 08, no. 25n26 (November 1994): 3703–24. http://dx.doi.org/10.1142/s0217979294001603.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Georgiev, Georgi Hristov. "Rational Generalized Offsets of Rational Surfaces." Mathematical Problems in Engineering 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/618148.

Texto completo
Resumen
The rational surfaces and their offsets are commonly used in modeling and manufacturing. The purpose of this paper is to present relationships between rational surfaces and orientation-preserving similarities of the Euclidean 3-space. A notion of a similarity surface offset is introduced and applied to different constructions of rational generalized offsets of a rational surface. It is shown that every rational surface possesses a rational generalized offset. Rational generalized focal surfaces are also studied.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Knopf, Jeffrey W. "How Rational Is “The Rational Public”?" Journal of Conflict Resolution 42, no. 5 (October 1998): 544–71. http://dx.doi.org/10.1177/0022002798042005002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Aleksiadis, N. Ph. "Rational A-functions with rational coefficients." Chebyshevskii Sbornik 23, no. 4 (2022): 11–19. http://dx.doi.org/10.22405/2226-8383-2022-23-4-11-19.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Dranishnikov, A. N. "Rational homology manifolds and rational resolutions." Topology and its Applications 94, no. 1-3 (June 1999): 75–86. http://dx.doi.org/10.1016/s0166-8641(98)00026-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Koelsch, Lori E., Ann Fuehrer, and Roger M. Knudson. "Rational or Not? Subverting Understanding through the Rational/Non-rational Dichotomy." Feminism & Psychology 18, no. 2 (May 2008): 253–59. http://dx.doi.org/10.1177/0959353507083095.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Dubouloz, Adrien, and Alvaro Liendo. "Rationally integrable vector fields and rational additive group actions." International Journal of Mathematics 27, no. 08 (July 2016): 1650060. http://dx.doi.org/10.1142/s0129167x16500609.

Texto completo
Resumen
We characterize rational actions of the additive group on algebraic varieties defined over a field of characteristic zero in terms of a suitable integrability property of their associated velocity vector fields. This extends the classical correspondence between regular actions of the additive group on affine algebraic varieties and the so-called locally nilpotent derivations of their coordinate rings. Our results lead in particular to a complete characterization of regular additive group actions on semi-affine varieties in terms of their associated vector fields. Among other applications, we review properties of the rational counterpart of the Makar–Limanov invariant for affine varieties and describe the structure of rational homogeneous additive group actions on toric varieties.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía