Artículos de revistas sobre el tema "Reliable quantification of uncertainty"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Reliable quantification of uncertainty".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Xue, Yujia, Shiyi Cheng, Yunzhe Li y Lei Tian. "Reliable deep-learning-based phase imaging with uncertainty quantification". Optica 6, n.º 5 (7 de mayo de 2019): 618. http://dx.doi.org/10.1364/optica.6.000618.
Texto completoRussi, Trent, Andy Packard y Michael Frenklach. "Uncertainty quantification: Making predictions of complex reaction systems reliable". Chemical Physics Letters 499, n.º 1-3 (octubre de 2010): 1–8. http://dx.doi.org/10.1016/j.cplett.2010.09.009.
Texto completoXue, Yujia, Shiyi Cheng, Yunzhe Li y Lei Tian. "Reliable deep-learning-based phase imaging with uncertainty quantification: erratum". Optica 7, n.º 4 (9 de abril de 2020): 332. http://dx.doi.org/10.1364/optica.392632.
Texto completoAlrashed, Mosab, Theoklis Nikolaidis, Pericles Pilidis y Soheil Jafari. "Turboelectric Uncertainty Quantification and Error Estimation in Numerical Modelling". Applied Sciences 10, n.º 5 (6 de marzo de 2020): 1805. http://dx.doi.org/10.3390/app10051805.
Texto completoScheidt, C., I. Zabalza-Mezghani, M. Feraille y D. Collombier. "Toward a Reliable Quantification of Uncertainty on Production Forecasts: Adaptive Experimental Designs". Oil & Gas Science and Technology - Revue de l'IFP 62, n.º 2 (marzo de 2007): 207–24. http://dx.doi.org/10.2516/ogst:2007018.
Texto completoTran, Anh V. y Yan Wang. "Reliable Molecular Dynamics: Uncertainty quantification using interval analysis in molecular dynamics simulation". Computational Materials Science 127 (febrero de 2017): 141–60. http://dx.doi.org/10.1016/j.commatsci.2016.10.021.
Texto completoLiu, Xuejun, Hailong Tang, Xin Zhang y Min Chen. "Gaussian Process Model-Based Performance Uncertainty Quantification of a Typical Turboshaft Engine". Applied Sciences 11, n.º 18 (8 de septiembre de 2021): 8333. http://dx.doi.org/10.3390/app11188333.
Texto completoRyu, Seongok, Yongchan Kwon y Woo Youn Kim. "A Bayesian graph convolutional network for reliable prediction of molecular properties with uncertainty quantification". Chemical Science 10, n.º 36 (2019): 8438–46. http://dx.doi.org/10.1039/c9sc01992h.
Texto completoBa, Huanhuan, Shenglian Guo, Yixuan Zhong, Shaokun He y Xushu Wu. "Quantification of the forecast uncertainty using conditional probability and updating models". Hydrology Research 50, n.º 6 (27 de septiembre de 2019): 1751–71. http://dx.doi.org/10.2166/nh.2019.094.
Texto completoZhou, Shuang, Jianguo Zhang, Lingfei You y Qingyuan Zhang. "Uncertainty propagation in structural reliability with implicit limit state functions under aleatory and epistemic uncertainties". Eksploatacja i Niezawodnosc - Maintenance and Reliability 23, n.º 2 (4 de febrero de 2021): 231–41. http://dx.doi.org/10.17531/ein.2021.2.3.
Texto completoChoubert, Jean-Marc, Samuel Martin Ruel, Cécile Miege y Marina Coquery. "Rethinking micropollutant removal assessment methods for wastewater treatment plants – how to get more robust data?" Water Science and Technology 75, n.º 12 (29 de marzo de 2017): 2964–72. http://dx.doi.org/10.2166/wst.2017.181.
Texto completoGandhi, Margi y Rajashree Mashru. "A Highly Specific Colorimetric Method for On-Spot Determination of Lidocaine Using Color Kit and Application of Uncertainty Principles". Journal of Drug Delivery and Therapeutics 10, n.º 2 (15 de marzo de 2020): 86–96. http://dx.doi.org/10.22270/jddt.v10i2.3970.
Texto completoFeng, Dongyu, Paola Passalacqua y Ben R. Hodges. "Innovative Approaches for Geometric Uncertainty Quantification in an Operational Oil Spill Modeling System". Journal of Marine Science and Engineering 7, n.º 8 (8 de agosto de 2019): 259. http://dx.doi.org/10.3390/jmse7080259.
Texto completoStoean, Catalin, Ruxandra Stoean, Miguel Atencia, Moloud Abdar, Luis Velázquez-Pérez, Abbas Khosravi, Saeid Nahavandi, U. Rajendra Acharya y Gonzalo Joya. "Automated Detection of Presymptomatic Conditions in Spinocerebellar Ataxia Type 2 Using Monte Carlo Dropout and Deep Neural Network Techniques with Electrooculogram Signals". Sensors 20, n.º 11 (27 de mayo de 2020): 3032. http://dx.doi.org/10.3390/s20113032.
Texto completoProppe, Jonny, Tamara Husch, Gregor N. Simm y Markus Reiher. "Uncertainty quantification for quantum chemical models of complex reaction networks". Faraday Discussions 195 (2016): 497–520. http://dx.doi.org/10.1039/c6fd00144k.
Texto completoZhu, Hong-Yu, Gang Wang, Yi Liu y Ze-Kun Zhou. "Numerical investigation of transonic buffet on supercritical airfoil considering uncertainties in wind tunnel testing". International Journal of Modern Physics B 34, n.º 14n16 (20 de abril de 2020): 2040083. http://dx.doi.org/10.1142/s0217979220400834.
Texto completoEsbensen, Kim H. y Costas Velis. "Transition to circular economy requires reliable statistical quantification and control of uncertainty and variability in waste". Waste Management & Research 34, n.º 12 (28 de noviembre de 2016): 1197–200. http://dx.doi.org/10.1177/0734242x16680911.
Texto completoDavis, Gary A. y Christopher Cheong. "Pedestrian Injury Severity vs. Vehicle Impact Speed: Uncertainty Quantification and Calibration to Local Conditions". Transportation Research Record: Journal of the Transportation Research Board 2673, n.º 11 (16 de junio de 2019): 583–92. http://dx.doi.org/10.1177/0361198119851747.
Texto completoXiao, Yijun y William Yang Wang. "Quantifying Uncertainties in Natural Language Processing Tasks". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julio de 2019): 7322–29. http://dx.doi.org/10.1609/aaai.v33i01.33017322.
Texto completoRitter, Karen, James Keating, Terri Shires y Miriam Lev-On. "A decade of sectoral initiative to promote consistent and reliable quantification of greenhouse gas emissions". APPEA Journal 50, n.º 2 (2010): 696. http://dx.doi.org/10.1071/aj09060.
Texto completoLiu, Xingpo, Chengfei Xia, Yifan Tang, Jiayang Tu y Huimin Wang. "Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis–Hastings algorithm". Water Science and Technology 83, n.º 5 (27 de enero de 2021): 1085–102. http://dx.doi.org/10.2166/wst.2021.032.
Texto completoScotto di Perta, Ester, Nunzio Fiorentino, Marco Carozzi, Elena Cervelli y Stefania Pindozzi. "A Review of Chamber and Micrometeorological Methods to Quantify NH3 Emissions from Fertilisers Field Application". International Journal of Agronomy 2020 (1 de agosto de 2020): 1–16. http://dx.doi.org/10.1155/2020/8909784.
Texto completoHemmings, J. C. P., P. G. Challenor y A. Yool. "Mechanistic site-based emulation of a global ocean biogeochemical model for parametric analysis and calibration". Geoscientific Model Development Discussions 7, n.º 5 (25 de septiembre de 2014): 6327–411. http://dx.doi.org/10.5194/gmdd-7-6327-2014.
Texto completoHwang, Sungkun, Recep M. Gorguluarslan, Hae-Jin Choi y Seung-Kyum Choi. "Integration of Dimension Reduction and Uncertainty Quantification in Designing Stretchable Strain Gauge Sensor". Applied Sciences 10, n.º 2 (16 de enero de 2020): 643. http://dx.doi.org/10.3390/app10020643.
Texto completoBraun, Mathias, Olivier Piller, Jochen Deuerlein, Iraj Mortazavi y Angelo Iollo. "Uncertainty quantification of water age in water supply systems by use of spectral propagation". Journal of Hydroinformatics 22, n.º 1 (3 de junio de 2019): 111–20. http://dx.doi.org/10.2166/hydro.2019.017.
Texto completoHemmings, J. C. P., P. G. Challenor y A. Yool. "Mechanistic site-based emulation of a global ocean biogeochemical model (MEDUSA 1.0) for parametric analysis and calibration: an application of the Marine Model Optimization Testbed (MarMOT 1.1)". Geoscientific Model Development 8, n.º 3 (23 de marzo de 2015): 697–731. http://dx.doi.org/10.5194/gmd-8-697-2015.
Texto completoAl-Dahidi, Sameer, Piero Baraldi, Enrico Zio y Montelatici Lorenzo. "Bootstrapped Ensemble of Artificial Neural Networks Technique for Quantifying Uncertainty in Prediction of Wind Energy Production". Sustainability 13, n.º 11 (4 de junio de 2021): 6417. http://dx.doi.org/10.3390/su13116417.
Texto completoGisler, Batoul M. "Uncertainty Quantification for a Hydraulic Fracture Geometry: Application to Woodford Shale Data". Geofluids 2021 (21 de agosto de 2021): 1–14. http://dx.doi.org/10.1155/2021/2138115.
Texto completoBevia, Vicente José, Clara Burgos Simón, Juan Carlos Cortés y Rafael J. Villanueva Micó. "Uncertainty Quantification of Random Microbial Growth in a Competitive Environment via Probability Density Functions". Fractal and Fractional 5, n.º 2 (24 de marzo de 2021): 26. http://dx.doi.org/10.3390/fractalfract5020026.
Texto completoTran, Vinh Ngoc y Jongho Kim. "Toward an Efficient Uncertainty Quantification of Streamflow Predictions Using Sparse Polynomial Chaos Expansion". Water 13, n.º 2 (15 de enero de 2021): 203. http://dx.doi.org/10.3390/w13020203.
Texto completoSteiner, A. K., D. Hunt, S. P. Ho, G. Kirchengast, A. J. Mannucci, B. Scherllin-Pirscher, H. Gleisner et al. "Quantification of structural uncertainty in climate data records from GPS radio occultation". Atmospheric Chemistry and Physics Discussions 12, n.º 10 (12 de octubre de 2012): 26963–94. http://dx.doi.org/10.5194/acpd-12-26963-2012.
Texto completoSteiner, A. K., D. Hunt, S. P. Ho, G. Kirchengast, A. J. Mannucci, B. Scherllin-Pirscher, H. Gleisner et al. "Quantification of structural uncertainty in climate data records from GPS radio occultation". Atmospheric Chemistry and Physics 13, n.º 3 (6 de febrero de 2013): 1469–84. http://dx.doi.org/10.5194/acp-13-1469-2013.
Texto completoNikishova, A., L. Veen, P. Zun y A. G. Hoekstra. "Semi-intrusive multiscale metamodelling uncertainty quantification with application to a model of in-stent restenosis". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, n.º 2142 (18 de febrero de 2019): 20180154. http://dx.doi.org/10.1098/rsta.2018.0154.
Texto completoSchulze, Moritz y René Schenkendorf. "Robust Model Selection: Flatness-Based Optimal Experimental Design for a Biocatalytic Reaction". Processes 8, n.º 2 (5 de febrero de 2020): 190. http://dx.doi.org/10.3390/pr8020190.
Texto completoGąsior, Robert y Mariusz P. Pietras. "Validation of a Method for Determining Cholesterol in Egg Yolks/ Walidacja metody oznaczania cholesterolu w żółtkach jaj". Annals of Animal Science 13, n.º 1 (1 de enero de 2013): 143–53. http://dx.doi.org/10.2478/v10220-012-0066-7.
Texto completoZimmer, Christoph, Sequoia I. Leuba, Ted Cohen y Reza Yaesoubi. "Accurate quantification of uncertainty in epidemic parameter estimates and predictions using stochastic compartmental models". Statistical Methods in Medical Research 28, n.º 12 (14 de noviembre de 2018): 3591–608. http://dx.doi.org/10.1177/0962280218805780.
Texto completoGao, Guohua, Jeroen C. Vink y Faruk O. Alpak. "Integrated Field-Scale Production and Economic Evaluation Under Subsurface Uncertainty for the Pattern-Driven Development of Unconventional Resources With Analytical Superposition". SPE Reservoir Evaluation & Engineering 19, n.º 01 (31 de diciembre de 2015): 118–29. http://dx.doi.org/10.2118/173247-pa.
Texto completoProietto Galeano, Michele, Monica Scordino, Leonardo Sabatino, Valentina Pantò, Giovanni Morabito, Elena Chiappara, Pasqualino Traulo y Giacomo Gagliano. "UHPLC/MS-MS Analysis of Six Neonicotinoids in Honey by Modified QuEChERS: Method Development, Validation, and Uncertainty Measurement". International Journal of Food Science 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/863904.
Texto completoJin, Jonghoon, Yuzhang Che, Jiafeng Zheng y Feng Xiao. "Uncertainty Quantification of a Coupled Model for Wind Prediction at a Wind Farm in Japan". Energies 12, n.º 8 (21 de abril de 2019): 1505. http://dx.doi.org/10.3390/en12081505.
Texto completoAuer, Ekaterina, Julia Kersten y Andreas Rauh. "Preface". Acta Cybernetica 24, n.º 3 (16 de marzo de 2020): 265–66. http://dx.doi.org/10.14232/actacyb.24.3.2020.1.
Texto completoSalis, Christos, Nikolaos Kantartzis y Theodoros Zygiridis. "Stochastic LOD-FDTD method for two-dimensional electromagnetic uncertainty problems". COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 36, n.º 5 (4 de septiembre de 2017): 1442–56. http://dx.doi.org/10.1108/compel-02-2017-0087.
Texto completoOlivieri, Alejandro C., Nicolaas M. Faber, Joan Ferré, Ricard Boqué, John H. Kalivas y Howard Mark. "Uncertainty estimation and figures of merit for multivariate calibration (IUPAC Technical Report)". Pure and Applied Chemistry 78, n.º 3 (1 de enero de 2006): 633–61. http://dx.doi.org/10.1351/pac200678030633.
Texto completoPortilha-Cunha, M. Francisca, Teresa I. A. Gouveia, Alicia L. Garcia-Costa, Arminda Alves y Mónica S. F. Santos. "Multi-Matrix Approach for the Analysis of Bicalutamide Residues in Oncology Centers by HPLC–FLD". Molecules 26, n.º 18 (13 de septiembre de 2021): 5561. http://dx.doi.org/10.3390/molecules26185561.
Texto completoGrana, Dario, Leonardo Azevedo y Mingliang Liu. "A comparison of deep machine learning and Monte Carlo methods for facies classification from seismic data". GEOPHYSICS 85, n.º 4 (16 de enero de 2020): WA41—WA52. http://dx.doi.org/10.1190/geo2019-0405.1.
Texto completoPochet, Maxime, Hervé Jeanmart y Francesco Contino. "Uncertainty quantification from raw measurements to post-processed data: A general methodology and its application to a homogeneous-charge compression–ignition engine". International Journal of Engine Research 21, n.º 9 (24 de diciembre de 2019): 1709–37. http://dx.doi.org/10.1177/1468087419892697.
Texto completoChen, Xiaoyun, Yi Ji, Kai Li, Xiaofu Wang, Cheng Peng, Xiaoli Xu, Xinwu Pei, Junfeng Xu y Liang Li. "Development of a Duck Genomic Reference Material by Digital PCR Platforms for the Detection of Meat Adulteration". Foods 10, n.º 8 (15 de agosto de 2021): 1890. http://dx.doi.org/10.3390/foods10081890.
Texto completoShi, Guolin, Bing Xu, Xin Wang, Zhong Xue, Xinyuan Shi y Yanjiang Qiao. "Real-Time Release Testing of Herbal Extract Powder by Near-Infrared Spectroscopy considering the Uncertainty around Specification Limits". Journal of Spectroscopy 2019 (3 de marzo de 2019): 1–10. http://dx.doi.org/10.1155/2019/4139762.
Texto completoLutz, Julia, Lars Grinde y Anita Verpe Dyrrdal. "Estimating Rainfall Design Values for the City of Oslo, Norway—Comparison of Methods and Quantification of Uncertainty". Water 12, n.º 6 (17 de junio de 2020): 1735. http://dx.doi.org/10.3390/w12061735.
Texto completoPetrescu, Ana Maria Roxana, Glen P. Peters, Greet Janssens-Maenhout, Philippe Ciais, Francesco N. Tubiello, Giacomo Grassi, Gert-Jan Nabuurs et al. "European anthropogenic AFOLU greenhouse gas emissions: a review and benchmark data". Earth System Science Data 12, n.º 2 (1 de mayo de 2020): 961–1001. http://dx.doi.org/10.5194/essd-12-961-2020.
Texto completode Louw, P. G. B., Y. van der Velde y S. E. A. T. M. van der Zee. "Quantifying water and salt fluxes in a lowland polder catchment dominated by boil seepage: a probabilistic end-member mixing approach". Hydrology and Earth System Sciences 15, n.º 7 (7 de julio de 2011): 2101–17. http://dx.doi.org/10.5194/hess-15-2101-2011.
Texto completo