Literatura académica sobre el tema "Resinas epoxi"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Resinas epoxi".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Resinas epoxi"
Credali, Lino y Gianluca Ussia. "Nuevos desarrollos en la aplicación de materiales compósitos en construcciones: sistemas de resinas a base acuosa "bet on tex ipn" y su aplicación en tecnologías FRP y FRCM". Alternativas 17, n.º 3 (1 de febrero de 2017): 142–56. http://dx.doi.org/10.23878/alternativas.v17i3.235.
Texto completoLópez-Fabal, M. F., C. Pérez-Lamela, J. M. Creus-Vidal y P. Paseiro-Losada. "DETERMINATION OF BISPHENOL A DIGLYCIDYL ETHER IN PLASTIC MATERIALS BASED ON EPOXY RESINS DETERMINACIÓN DEL BISFENOL A DIGLICIDIL ÉTER EN ENVASES ALIMENTARIOS ELABORADOS CON RESINAS EPOXI DETERMINACIÓN DO BISFENOL A DIGLICIDIL ÉTER EN ENVASES ALIMENTARIOS ELABORADOS CON RESINAS EPOXI". Ciencia y Tecnologia Alimentaria 3, n.º 1 (diciembre de 2000): 6–12. http://dx.doi.org/10.1080/11358120009487642.
Texto completoWalz, Kurt. "Aplicación de las resinas epoxi para revestimientos y juntas de hormigón, en los Estados Unidos". Materiales de Construcción 13, n.º 112 (19 de diciembre de 2016): 39. http://dx.doi.org/10.3989/mc.1963.v13.i112.2159.
Texto completoBosch Panadero, Enrique, Sebastian Mas Fontao, Alberto Ruiz Priego, Jesús Egido y Emilio González Parra. "Bisfenol (A) una toxina a tener en cuenta en el enfermo renal en hemodiálisis". Revista Colombiana de Nefrología 4, n.º 1 (15 de marzo de 2017): 57. http://dx.doi.org/10.22265/acnef.4.1.256.
Texto completoPaz Oliveira, Geisyane De Castro, João Victor Silva Araújo, Aírton Mendes Conde Junior y Kelly Palombit. "Bisfenol A: Possíveis Efeitos e Danos ao Organismo - Revisão de Literatura". Jornal Interdisciplinar de Biociências 2, n.º 2 (20 de diciembre de 2017): 11. http://dx.doi.org/10.26694/jibi.v2i2.5699.
Texto completoConceição, Rafael Novaes da y João Sinézio de Carvalho Campos. "Avaliação das propriedades elétricas de barras estatóricas fabricadas com resina do tipo éter diglicidílico do bisfenol F (DGEBF) contendo nanopartículas de silica". Polímeros 26, n.º 3 (4 de agosto de 2016): 262–68. http://dx.doi.org/10.1590/0104-1428.2110.
Texto completoPaiva, Jane M. F. de, Sérgio Mayer, Geraldo M. Cândido y Mirabel C. Rezende. "Avaliação da temperatura de transição vítrea de compósitos poliméricos reparados de uso aeronáutico". Polímeros 16, n.º 1 (marzo de 2006): 79–87. http://dx.doi.org/10.1590/s0104-14282006000100016.
Texto completoGouveia, Gabriel Amal Rebelo, Márcio C. S. Filho y Santiago M. Lugones. "COMPRESSÃO DE MATERIAL COMPÓSITO – RESINA PARA LAMINAÇÃO (AERONÁUTICA X AUTOMOBILÍSTICA)". CIMATech 1, n.º 6 (4 de diciembre de 2019): 150–61. http://dx.doi.org/10.37619/issn2447-5378.v1i6.207.150-161.
Texto completoBertolini, Marília da Siva, Diego Henrique de Almeida, Laurenn Borges de Macedo, Felipe Hideyoshi Icimoto, Fabiane Salles Ferro, André Luis Christoforo y Francisco Antonio Rocco Lahr. "Emprego de resina epóxi em vigas danificadas de madeira de Pinus elliottii". Ambiente Construído 14, n.º 3 (septiembre de 2014): 121–29. http://dx.doi.org/10.1590/s1678-86212014000300010.
Texto completoSouza, Christiane Sales Reis de, José Maria Fernandes Marlet, Andreza de Moura Cardoso y Mirabel Cerqueira Rezende. "Estudo do comportamento térmico de laminados carbono/epóxi submetidos a múltiplos ciclos térmicos". Polímeros 26, spe (19 de enero de 2016): 8–15. http://dx.doi.org/10.1590/0104-1428.1769.
Texto completoTesis sobre el tema "Resinas epoxi"
Barbosa, Fernando Montanare [UNESP]. "Caracterização mecânica e térmica de compósitos naturais modificados com ciclodextrina e fibras vegetais utilizando como matriz uma resina termofixa DGEBA/TETA". Universidade Estadual Paulista (UNESP), 2014. http://hdl.handle.net/11449/111126.
Texto completoEste trabalho avaliou as propriedades mecânicas e térmicas de materiais compósitos com a base de resina epoxídica curada (DGEBA/TETA) com a adição da ciclodextrina e reforçados com fibras de bagaço de cana-de-açúcar. Primeiramente as fibras foram separadas em tamanhos compreendidos entre 0,50 mm e 2,00 mm, entre 0,21 mm e 0,50 mm e menores que 0,21 mm, as quais foram misturadas à resina DGEBA/TETA e analisadas em porcentagens de 1, 2,5, 5, 7,5 e 10% em massa através de ensaio de tração. Posteriormente, foi adicionado apenas ciclodextrina a resina epóxi em concentrações de 1, 2, 3, 4, 5 e 10 e 15% em massa para a análise de ensaio tração. O corpo de prova final do compósito DGEBA/TETA/ciclodextrina/fibras de bagaço de cana-de-açúcar foi constituído por 5% de ciclodextrina e 5% de partículas menores que 0,21 mm, pois foi o que obteve as melhores propriedades avaliadas em ensaios mecânicos separados. Para a adição de 5% de partículas menores que 0,21 mm ao DGEBA/TETA houve um aumento de 28,61% na resistência, e a adição de 5% de ciclodextrina ao DGEBA/TETA proporcionou um aumento de 160,31% na resistência à propagação de trincas. O compósito final, contendo 5% de partículas de bagaço de cana-de-açúcar e 5% de ciclodextrina apresentou um Limite de Reistência à Tração (LRT) de 33,94 MPa, Módulo de Elasticidade (E) de 1681,14 MPa, K1C de 1,24 MPa.m1/2, resiliência de 0,334 MJ/m3, deformação de 0,292%. Para uma análise da temperatura de uso do compósito, foram realizados ensaios térmicos de DSC e TGA os quais indicaram que a temperatura de Transição vítrea do compósito final foi de 111,18°C e a temperatura de inicio de degradação foi de 267°C
This research evaluated the mechanical and thermal properties of composite materials with the base epoxy resin cured (DGEBA / TETA) with the addition of cyclodextrin and reinforced with fibers of bagasse cane sugar. First the fibers were separated into sizes of between 0.50 mm and 2.00 mm, between 0.21 mm and 0.50 mm and smaller than 0.21 mm, which were mixed resin DGEBA / TETA and analyzed as percentages 1, 2.5, 5, 7.5, 10 and 15% in mass by assaying tensile test. Thereafter was added just cyclodextrin epoxy resin in concentrations of 1, 2, 3, 4, 5 and 10 to 15% in mass to analyze tensile test. The specimen of the composite end DGEBA / TETA / cyclodextrin / bagasse fiber cane sugar that is made up of 5% cyclodextrin and 5% of particles smaller than 0.21 mm that was what got the best properties evaluated in separate mechanical tests. Since for the addition of 5% of particles smaller than 0.21 mm at DGEBA / TETA an increase of 28.61% in the resistance, and the addition of cyclodextrin to 5% DGEBA / TETA provided an increase of 160.31% resistance to crack toughness. The final composite, containing 5% of particles of crushed cane sugar and 5% cyclodextrin showed LRT of 33.94 MPa, E, 1681.14 MPa, K1C of 1.24 MPa.m1/2, resilience 0.334 MJ/m3, deformation of 0.292%. For a review of the use temperature of the composite thermal DSC and TGA tests which indicated that the glass transition temperature of the final composite was 111.18 ° C and the onset temperature of degradation was 267°C were performed
Barbosa, Fernando Montanare. "Caracterização mecânica e térmica de compósitos naturais modificados com ciclodextrina e fibras vegetais utilizando como matriz uma resina termofixa DGEBA/TETA /". Ilha Solteira, 2014. http://hdl.handle.net/11449/111126.
Texto completoCo-orientador: Marco Hiroshi Naka
Banca: Devaney Ribeiro do Carmo
Banca: Michael John Brennan
Banca: Alessandro Roger Rodrigues
Banca: Nara Regina de Souza Basso
Resumo: Este trabalho avaliou as propriedades mecânicas e térmicas de materiais compósitos com a base de resina epoxídica curada (DGEBA/TETA) com a adição da ciclodextrina e reforçados com fibras de bagaço de cana-de-açúcar. Primeiramente as fibras foram separadas em tamanhos compreendidos entre 0,50 mm e 2,00 mm, entre 0,21 mm e 0,50 mm e menores que 0,21 mm, as quais foram misturadas à resina DGEBA/TETA e analisadas em porcentagens de 1, 2,5, 5, 7,5 e 10% em massa através de ensaio de tração. Posteriormente, foi adicionado apenas ciclodextrina a resina epóxi em concentrações de 1, 2, 3, 4, 5 e 10 e 15% em massa para a análise de ensaio tração. O corpo de prova final do compósito DGEBA/TETA/ciclodextrina/fibras de bagaço de cana-de-açúcar foi constituído por 5% de ciclodextrina e 5% de partículas menores que 0,21 mm, pois foi o que obteve as melhores propriedades avaliadas em ensaios mecânicos separados. Para a adição de 5% de partículas menores que 0,21 mm ao DGEBA/TETA houve um aumento de 28,61% na resistência, e a adição de 5% de ciclodextrina ao DGEBA/TETA proporcionou um aumento de 160,31% na resistência à propagação de trincas. O compósito final, contendo 5% de partículas de bagaço de cana-de-açúcar e 5% de ciclodextrina apresentou um Limite de Reistência à Tração (LRT) de 33,94 MPa, Módulo de Elasticidade (E) de 1681,14 MPa, K1C de 1,24 MPa.m1/2, resiliência de 0,334 MJ/m3, deformação de 0,292%. Para uma análise da temperatura de uso do compósito, foram realizados ensaios térmicos de DSC e TGA os quais indicaram que a temperatura de Transição vítrea do compósito final foi de 111,18°C e a temperatura de inicio de degradação foi de 267°C
Abstract: This research evaluated the mechanical and thermal properties of composite materials with the base epoxy resin cured (DGEBA / TETA) with the addition of cyclodextrin and reinforced with fibers of bagasse cane sugar. First the fibers were separated into sizes of between 0.50 mm and 2.00 mm, between 0.21 mm and 0.50 mm and smaller than 0.21 mm, which were mixed resin DGEBA / TETA and analyzed as percentages 1, 2.5, 5, 7.5, 10 and 15% in mass by assaying tensile test. Thereafter was added just cyclodextrin epoxy resin in concentrations of 1, 2, 3, 4, 5 and 10 to 15% in mass to analyze tensile test. The specimen of the composite end DGEBA / TETA / cyclodextrin / bagasse fiber cane sugar that is made up of 5% cyclodextrin and 5% of particles smaller than 0.21 mm that was what got the best properties evaluated in separate mechanical tests. Since for the addition of 5% of particles smaller than 0.21 mm at DGEBA / TETA an increase of 28.61% in the resistance, and the addition of cyclodextrin to 5% DGEBA / TETA provided an increase of 160.31% resistance to crack toughness. The final composite, containing 5% of particles of crushed cane sugar and 5% cyclodextrin showed LRT of 33.94 MPa, E, 1681.14 MPa, K1C of 1.24 MPa.m1/2, resilience 0.334 MJ/m3, deformation of 0.292%. For a review of the use temperature of the composite thermal DSC and TGA tests which indicated that the glass transition temperature of the final composite was 111.18 ° C and the onset temperature of degradation was 267°C were performed
Doutor
Pereira, Denise de Souza. "Propriedades de materiais nanoestruturados do sistema epoxídico DGEBA/TETA modificado com um éster de silsesquioxano /". Ilha Solteira : [s.n.], 2006. http://hdl.handle.net/11449/92011.
Texto completoBanca: Devaney Ribeiro do Carmo
Banca: Adley Forti Rubira
Resumo: Resinas epoxídicas são uma das mais importantes classes de polímeros termorrígidos usados para aplicações estruturais e como adesivos. Entretanto, os problemas em aplicações de resinas epoxídicas na engenharia incluem a baixa resistência à propagação de trincas devido a sua fragilidade. Para superar esta fragilidade, muitas vezes, dentre os aditivos em formulações multicomponentes de resinas epoxídicas, é utilizado um componente para aumentar a resistência, tais como enchimentos, oligosilsesquioxanos poliédricos (POSS), dendrímeros, etc. POSS (RSiO1,5)n podem ser incorporados em polímeros termorrígidos para melhoramento de suas propriedades térmicas e mecânicas. O uso de POSS nanoestruturados na preparação de polímeros orgânicos pode levar a materiais nanocompósitos. Neste trabalho, um POSS contendo oito grupos ésteres por molécula (MDPS) foi incorporado a uma matriz de polímeros termorrígidos epoxídicos DGEBA/TETA para melhorar suas propriedades mecânicas. Através de ensaios mecânicos foi observado um aumento de aproximadamente 90% (formulação 0,67/5) na resistência a fratura (K1C) com um leve decréscimo no modulo de Young (E). Os valores de Tg, verificados por DMTA mostraram pequeno decréscimo nas composições modificadas. As análises termogravimétricas mostraram que a adição de silsesquioxano não influenciou na estabilidade térmica do material. A cinética de cura foi analisada pelo método de Ozawa. As possíveis e prováveis causas deste significante reforço podem ser atribuídas à formação de uma segunda fase, à miscibilidade residual dos grupos ésteres com a matriz epoxídicas e às interações interfaciais entre a matriz epoxídicas e os cubos de silsesquioxanos devido as suas dimensões nanométricas.
Abstract: Epoxy resins are one of the most important classes of thermosetting polymers used for structural and adhesive applications. However, the current problems in engineering applications of epoxy thermosets include the poor resistance to the crack propagation because they are brittle. To overcome brittleness, among other additives of the multicomponented formulation of the epoxy resin, a toughening agent is often used, such as fillers, polyhedral oligosilsesquioxanes (POSS), dendrimers, etc. POSS, (RSiO1.5)n, can be incorporated into thermosetting polymers to improve their thermal and mechanical properties. The use of such nanosized POSS in the preparation of an organic polymer can lead to a nanocomposite materials. In this work, a POSS containing eight ester groups per molecule (MDPS) was incorporated to an epoxy matrix of DGEBA/TETA thermosetting polymers to improve their mechanical properties. Through the mechanical tests an increase of about 90% (formulation 0,67/5) was observed in the fracture toughness (K1C) with a little decreasing in the module of Young (E). The Tg values verified by DMTA showed smaller values for the compositions with the modifier. The thermogravimetric analyses showed that the addition of the silsesquioxane ester did not influence on the thermal stability of the material. The cure kinetics was analyzed by Ozawa's method. The probable and possible causes of this significant reinforcement can be attributed to the formation of a second inorganic phase, residual miscibility of the ester groups with the epoxy matrix and to interfacial interactions between the epoxy matrix and silsesquioxanes cubes due their nanometric dimensions.
Mestre
Pereira, Denise de Souza [UNESP]. "Propriedades de materiais nanoestruturados do sistema epoxídico DGEBA/TETA modificado com um éster de silsesquioxano". Universidade Estadual Paulista (UNESP), 2006. http://hdl.handle.net/11449/92011.
Texto completoCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resinas epoxídicas são uma das mais importantes classes de polímeros termorrígidos usados para aplicações estruturais e como adesivos. Entretanto, os problemas em aplicações de resinas epoxídicas na engenharia incluem a baixa resistência à propagação de trincas devido a sua fragilidade. Para superar esta fragilidade, muitas vezes, dentre os aditivos em formulações multicomponentes de resinas epoxídicas, é utilizado um componente para aumentar a resistência, tais como enchimentos, oligosilsesquioxanos poliédricos (POSS), dendrímeros, etc. POSS (RSiO1,5)n podem ser incorporados em polímeros termorrígidos para melhoramento de suas propriedades térmicas e mecânicas. O uso de POSS nanoestruturados na preparação de polímeros orgânicos pode levar a materiais nanocompósitos. Neste trabalho, um POSS contendo oito grupos ésteres por molécula (MDPS) foi incorporado a uma matriz de polímeros termorrígidos epoxídicos DGEBA/TETA para melhorar suas propriedades mecânicas. Através de ensaios mecânicos foi observado um aumento de aproximadamente 90% (formulação 0,67/5) na resistência a fratura (K1C) com um leve decréscimo no modulo de Young (E). Os valores de Tg, verificados por DMTA mostraram pequeno decréscimo nas composições modificadas. As análises termogravimétricas mostraram que a adição de silsesquioxano não influenciou na estabilidade térmica do material. A cinética de cura foi analisada pelo método de Ozawa. As possíveis e prováveis causas deste significante reforço podem ser atribuídas à formação de uma segunda fase, à miscibilidade residual dos grupos ésteres com a matriz epoxídicas e às interações interfaciais entre a matriz epoxídicas e os cubos de silsesquioxanos devido as suas dimensões nanométricas.
Epoxy resins are one of the most important classes of thermosetting polymers used for structural and adhesive applications. However, the current problems in engineering applications of epoxy thermosets include the poor resistance to the crack propagation because they are brittle. To overcome brittleness, among other additives of the multicomponented formulation of the epoxy resin, a toughening agent is often used, such as fillers, polyhedral oligosilsesquioxanes (POSS), dendrimers, etc. POSS, (RSiO1.5)n, can be incorporated into thermosetting polymers to improve their thermal and mechanical properties. The use of such nanosized POSS in the preparation of an organic polymer can lead to a nanocomposite materials. In this work, a POSS containing eight ester groups per molecule (MDPS) was incorporated to an epoxy matrix of DGEBA/TETA thermosetting polymers to improve their mechanical properties. Through the mechanical tests an increase of about 90% (formulation 0,67/5) was observed in the fracture toughness (K1C) with a little decreasing in the module of Young (E). The Tg values verified by DMTA showed smaller values for the compositions with the modifier. The thermogravimetric analyses showed that the addition of the silsesquioxane ester did not influence on the thermal stability of the material. The cure kinetics was analyzed by Ozawa's method. The probable and possible causes of this significant reinforcement can be attributed to the formation of a second inorganic phase, residual miscibility of the ester groups with the epoxy matrix and to interfacial interactions between the epoxy matrix and silsesquioxanes cubes due their nanometric dimensions.
Zani, Izo Milton. "Avaliação do comportamento dimensional de modelos de resinas epoxicas obtidos em moldes de elastomero". reponame:Repositório Institucional da UFSC, 1993. http://repositorio.ufsc.br/xmlui/handle/123456789/75847.
Texto completoSpontón, Marisa Elisabet. "Resinas epoxi y benzoxazinas fosforadas y sililadas retardantes a la llama". Doctoral thesis, Universitat Rovira i Virgili, 2008. http://hdl.handle.net/10803/9027.
Texto completoEl objetivo general de este trabajo ha sido el desarrollo de nuevos sistemas poliméricos termoestables resistentes al fuego, sin detrimento en las propiedades del material y no agresivos medioambientalmente. Se pretende mejorar las buenas propiedades de algunos materiales estándar actualmente empleados, tales como resinas epoxi y resinas fenólicas, pero introduciendo la condición de no inflamabilidad mediante nuevos sistemas de ignifugación alternativos a los sistemas halogenados clásicos. Para ello se propone la síntesis y caracterización de nuevos tipos de sistemas en los que se ha incorporado fósforo y/o silicio a resinas epoxi y benzoxazinas y se han evaluado sus propiedades. Se sintetizó diglicidiléter de 2,5 (dihidroxifenil)difenilfosfina (Gly‐P) y se investigó su comportamiento térmico y su reactividad. Se examino la incorporación de diferentes cantidades de fósforo en la resina epoxi por curado del Gly‐P/DGEBA con DDM. También fueron preparadas resinas epoxi conteniendo distintas proporciones de fósforo y silicio en su estructura poniendo de manifiesto el Gly‐P, fenildiglicidiloximetilsilano (Gly-Si) y/o 1,4(glicidiloxidimetilsilil) benceno (BGDMSB) como monómeros epoxi y diaminodifenilmetano (DDM), óxido bis(m‐aminofenil)metilfosfina (BAMPO) y bis(4aminofenoxi) dimetil silano (APDS) como agentes de curado. Se evaluaron sus propiedades térmicas, dinamomecánicas y de retardancia a la llama. Utilizando el índice limitante de oxígeno (LOI) se confirmo que las resinas epoxi que contienen heteroátomos son eficientes retardantes a la llama, pero no se observó efecto sinérgico. Por otro lado, en este trabajo, se incorporó el fósforo en la estructura de la benzoxazina derivada del óxido de bis(m‐aminofenil)metilfosfina (Bz‐BAMPO) utilizando un método sintético en tres etapas a partir de la diamina BAMPO y del 2‐hidroxibenzaldehído como productos de partida. Se estudió su cinética de curado por análisis isoconversional y por espectroscopía de IR. También, se estudió la copolimerización de Bz‐BAMPO con la benzoxazina derivada del bisfenol A y el diglicidiléter de bisfenol A (DGEBA) con diferentes proporciones de fósforo. Se evaluaron sus propiedades térmicas y dinamomecánicas y se determinaron los valores del LOI que dieron buenas propiedades en la retardancia a la llama.
Otra alternativa para incorporar fósforo o silicio en los sistemas de benzoxazina ha sido por copolimerización de la benzoxazina derivada del bisfenol A con el Gly‐P y el Gly‐Si. Así, se han preparado sistemas benzoxazinas‐epoxi con distinto contenido de fósforo o silicio. Se evaluaron sus propiedades térmicas, dinamomecánicas y se determinaron los valores del LOI poniendo de manifiesto el notable efecto del fósforo y la baja eficiencia del silicio.
During the last decades much work has been concentrated on developing new flameretardant materials with high performance for applications such as, electronic and aerospace industries. These must exhibit high glass transition temperature, low internal stress, good adhesion, low constant dielectric, low toxicity and high flame retardancy. The bromine‐containing epoxy, are found among the most used polymers in the manufacture of electronic devices. However, the bromine‐containing advanced epoxy resin release hydrogen bromide, dibenzo‐p‐dioxin and dibenzo‐furan during combustion, which cause corrosion and toxicity. The concept of sustainable development requires fire retardant technologies to be developed, which have minimum impact on health and the environment. The incorporation of phosphorus or silicon functionality in the polymeric structure is recognized as one of the most efficient ways to obtain an environmentally friendly flame retardant system.
The general objective of this work has been the development of new fire retardant thermosettings systems, keeping the material properties and environmentally friendly, The goals is to improve the good properties of some standard materials, phenolic and epoxy resins, but introducing the non inflammability character by means of new ignifugation systems, alternative to the classic halogenated systems. We propose the synthesis and characterization of new types of flame retardant systems ‐phosphorus‐and/or silicon containing in the structure of epoxy resins and polybenzoxazines and we evaluated their properties. We synthesized the diglycidyl ether of (2,5‐dihydroxyphenyl)diphenyl phosphine oxide (Gly‐P) and we investigated its thermal behaviour and reactivity. We examined the incorporation of different amounts of phosphorus into the epoxy resin by curing the Gly‐P/DGEBA system with DDM. Also, phosphorus and silicon‐containing epoxy resins were prepared from (2,5‐dihydroxyphenyl) diphenyl phosphine oxide (Gly‐P), diglycidyloxy methylphenyl silane (Gly‐Si) and 1,4‐bis(glycidyloxidimethyl silyl)‐benzene (BGDMSB) as epoxy monomers and diaminodiphenylmethane (DDM) , bis(3‐aminophenyl)methyl phosphine oxide (BAMPO) and bis(4‐aminophenoxy)dimethyl silane (APDS) as curing agents. Epoxy resins with different phosphorus and silicon content were obtained. Their thermal, dynamic mechanical and flame retardant properties were evaluated. The high Limiting oxygen index (LOI) values confirmed that epoxy resins heteroatom‐containing are effective flame retardants, but a synergistic efficiency of phosphorus and silicon on flame retardation was not observed.
Moreover, in this work, a the phosphoru was incorporated into the structure of the benzoxazine in the form of phenylphosphine oxide thus a diamine‐based benzoxazine was obtained using a three‐step synthetic method from the aromatic diamine and 2hydroxybenzaldehyde as starting materials. Curing kinetics was investigated by nonisothermal differential scanning calorimetry (DSC) at different heating rates and by FTIR spectroscopy. The curing of mixtures of bis(m‐aminophenyl)methylphosphine oxide based benzoxazine and glycidylether or benzoxazine of bisphenol A has been studied. In all samples the molar ratio of benzoxazine monomers or the benzoxazine‐epoxy system was varied to achieve different phosphorus content. The phosphorus‐containing polybenzoxazines have been characterized by dynamic mechanical and thermogravimetric analysis. Limiting oxygen index values indicate good flame retardant properties.
Another alternative to incorporate phosphorus or silicon in benzoxazine‐epoxy systems have been by copolymerisation of the benzoxazine of bisfenol A with Gly‐P and Gly‐Si. In all samples the molar ratio of the benzoxazine‐epoxy system was varied to achieve different phosphorus or silicon content. Their thermal, dynamomechanical and flame retardant properties were evaluated. The high limiting oxygen index values confirmed that the phosphorus‐containing benzoxazine‐epoxy resins are effective flame retardants, but no efficiency of silicon on flame retardation was observed.
Mercado, Roca Luis Adolfo. "Resinas epoxi sililadas retardantes a la llama. Síntesis, caracterización y propiedades". Doctoral thesis, Universitat Rovira i Virgili, 2005. http://hdl.handle.net/10803/9002.
Texto completoEn los últimos años se han descrito algunas aproximaciones sobre resinas epoxi con silicio unido covalentemente a la matriz polimérica. Así, han sido descritas modificaciones sobre resinas epoxi comerciales y copolimerizaciones de monómeros glicidílicos que contienen silicio con resinas epoxi comerciales, consiguiéndose una mejora de las propiedades retardantes a la llama sin sacrificar las propiedades mecánicas de la resina curada.
En este trabajo se ha planteado como objetivo general el desarrollo de resinas epoxi basadas en silicio con propiedades retardantes a la llama. Así, se ha llevado a cabo la síntesis de monómeros glicidílicos que contienen silicio en su estructura. Para establecer una relación entre la presencia y proporción del silicio y las propiedades físicas de los materiales resultantes, se han preparado polímeros termoestables a partir de mezclas de un glicidilo comercial con los monómeros que contienen silicio así como prepolímeros obtenidos a través de reacciones de crecimiento de cadena entre el DGEBA y un silanodiol. También se han sintetizado monómeros y agentes de curado que contienen fósforo en su estructura y se han preparado polímeros termoestables que contengan ambos heteroátomos. Con objeto de estudiar el mecanismo de reacción de monómeros que contienen silicio con aminas primarias, se ha sintetizado un monómero sililado monofuncional, fenilglicidiloxidimetilsilano (GDMPS), y se ha comparado su reactividad frente a una amina primaria, anilina, con la de un glicidilo comercial, fenilglicidiléter (PGE). El estudio cinético fue llevado a cabo mediante NIR y aplicando a los datos espectrales obtenidos métodos de análisis multivariante de resolución de curvas (MCR-ALS). Se ha llevado a cabo el estudio cinético del curado de un diglicidilo que contiene silicio, fenildiglicidiloximetilsilano (DGPMS), y de las mezclas de éste con DGEBA con una diamina primaria, DDM, mediante DSC isotérmico y dinámico. Además, se han estudiado los fenómenos de gelificacion y vitrificación de estos sistemas mediante DMTA en modo cizalla y TMDSC. Se han preparado polímeros termoestables y se han evaluado sus propiedades termodinamomecánicas, térmicas y de retardancia a la llama. Las propiedades termodinamomecánicas han sido estudiadas mediante DMTA en modo de flexión. La estabilidad térmica de estos compuestos se ha estudiado mediante análisis termogravimétrico en atmósfera de nitrógeno y de aire. Las propiedades de retardancia a la llama fueron evaluadas mediante el test ASTM-D-2683 del índice de oxígeno limitante (LOI). Finalmente, se ha estudiado la degradación térmica de los polímeros obtenidos para establecer el modo de actuación del silicio durante la degradación. Para ello, se ha realizado el estudio cinético de la degradación a partir datos obtenidos por TGA, estudios de las etapas iniciales de la degradación mediante quimioluminiscencia (QL) y la caracterización de los productos formados por TGA-MS, GC-MS, ATR-FTIR y DRX.
De los resultados obtenidos se han podido establecer las siguientes conclusiones: (1) Se ha determinado que la presencia del silicio produce un aumento en la reactividad del epóxido probablemente debido a efectos electrónicos. Esta mayor reactividad además reduce la importancia del camino autocatalítico en el curado con aminas primarias. (2) Las resinas epoxi sililadas termoestables muestran una disminución de la Tg y de la densidad de entrecruzamiento con el incremento del porcentaje de silicio.
Esta disminución está relacionada con un aumento del volumen libre debido a la mayor longitud de los enlaces Si-O. (3) Los polímeros termoestables que contienen silicio muestran un incremento del LOI a partir de un contenido de silicio del 3%. En los polímeros que contienen silicio y fósforo, se encontraron evidencias de la existencia de sinergia entre los dos heteroátomos. (4) La degradación de los polímeros que contienen silicio, tanto en atmósfera inerte como oxidante, conlleva la formación de oligómeros cíclicos de fenilmetilsiloxano, lo que implica que parte del silicio abandona la fase condensada. El residuo contiene silicio como SiO2, formando probablemente una capa aislante que actúa como barrera térmica y de transferencia de masa disminuyendo de esta manera la producción de volátiles.
The epoxy resins are widely used in coatings, adhesives, composites, etc. In some applications of epoxy resins special and versatile features are required, such as high adhesion to the substrates, low shrinkage, low thermal stress after curing, toughness, chemical resistance and low flammability. The flammability of epoxy resins is the main drawback in their application. Some flame retardants compounds, such as brominebased compounds, antimony oxides, phosphorous-halogen compounds etc. are incorporated in the epoxy resins to reduce their flammability. These compounds are exceptionally efficient but they have the inconvenience that they increase the smoke and toxic and corrosive gas evolution during the combustion of the polymer. For these drawbacks in the last years it has been increased the investigation of other heteroatoms like flame retardants to replace the halogens.
Some approaches about epoxy resins with silicon covalently bonded to the polymeric matrix have been reported. In this way, modifications of commercial epoxy resins and copolymerizations of silicon-based monomers with commercial epoxy resins giving to good flame retardancy, thermal and mechanical properties have been reported.
The aim of this thesis is the development of novel fire retardant silicon-based epoxy resins. Glycidyl monomers with silicon in their structure, prepolymers obtained by mean of growth of chain reactions between diphenyl silanediol and diglycidylether of bisphenol A (DGEBA) and a phosphorous-containing glycidyl monomer and two phosphorilated diamines were synthesized. Thermoset polymers were obtained from curing reactions of the compounds synthesized. To study the reaction kinetics of silicon-containing epoxy monomer with primary amines, a monofunctional silicon-containing epoxy monomer has been sinthesized, glycidyloxydimethylphenyl silane (GDMPS), and its reactivity with a primary amine, aniline, has been compared with that of a commercial epoxy monomer, phenylglycidylether (PGE). Kinetics studies were carried out by Near Infrared Spectroscopy (NIR) and applying to the spectral data obtained the multivariate resolution of curves methods. Likewise, the kinetic and curing behaviour studies for the difunctional silicon-containing epoxy monomer, diglycidyloxyphenylmethyl silane (DGPMS), and the mixtures of this monomer with DGEBA with a primary diamine, 4,4'- diaminediphenylmethane (DDM), have been carried out by means of isothermal and dynamic DSC. The gelation and vitrification for these systems have been studied by thermodinamechanical analysis (DMTA) with a shear sandwich clamp and modulated temperature differential scanning calorimetry (TMDSC).
The relationship between the amount of silicon and the thermodinamomechanical, thermal and flame retardancy properties of the thermoset materials obtained have been established. Thermoset materials were obtained from mixtures of commercial glycidyl monomer, DGEBA, with a silicon-containing glycidyl monomer, diglycidyloxyphenylmethyl silane (DGPMS), and their properties have been evaluated.
Thermodinamomechanical properties have been evaluated by DMTA using a 3-point bending clamp. The thermal stability have been analyzed by thermogravimetric analysis (TGA) in nitrogen and air atmospheres. The flame retardant properties have been evaluated by means of ASTM-D-2683, the limiting oxygen index test (LOI).
Finally, the thermal degradation of the silicon-containing polymers has been investigated by means of chemiluminiscence (CL), TGA-MS, GC-MS, ATR-FTIR and
DRX.
From the results obtained the following conclusions can be infered: (1) The silicon occurrence increases the reactivity of the epoxide due to electronic effects. This higher reactivity also reduces the importance of the autocatalytic path in the curing reactions with primary amines. (2) The thermoset epoxy resins showed a decrease in the Tg and the crosslinking density when the amount of silicon increases. This decrease is related with an increase of the free volume due to the Si-O and Si-C bonds. (3) The siliconcontaining thermosets show an increment of the LOI for silicon contents higher than 3%. In the polymers that contain silicon and phosphorous, there are evidences of the synergyc effect. (4) During the degradation of the silicon-containing materials in both, nitrogen and air atmospheres, cyclic siloxane oligomers were released. A silicon oxide rich char is formed, probably forming an insulating layer.
Relosi, Natanael. "Obtenção e caracterização de tintas em pó base epóxi/poliéster com incorporação de argilominerais : montmorilonita (MMT) e mica muscovita". reponame:Repositório Institucional da UCS, 2016. https://repositorio.ucs.br/handle/11338/1176.
Texto completoSubmitted by Ana Guimarães Pereira (agpereir@ucs.br) on 2016-06-20T18:52:21Z No. of bitstreams: 1 Dissertacao Natanael Relosi.pdf: 12806476 bytes, checksum: ebcfd4e992e53e3683c5ce7a0245866c (MD5)
Made available in DSpace on 2016-06-20T18:52:23Z (GMT). No. of bitstreams: 1 Dissertacao Natanael Relosi.pdf: 12806476 bytes, checksum: ebcfd4e992e53e3683c5ce7a0245866c (MD5) Previous issue date: 2016-06-20
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.
One of metallic substrates protection systems most commonly used in the industry is the paint. Factors favorable to the use of powder coatings include non-use of solvents, processing facilities/application and the possibility of reuse of material that did not adhere to the surface of the pieces. The thermal, mechanical and chemical characteristics of the obtained paint are influenced principally by the type of resin used. Hybrid (epoxy/polyester) powder coatings aimed at reconciling the weathering resistance characteristic and action of UV rays with the chemical resistance and mechanical characteristics. In the powder coatings can be added nanofillers which aims to improve the thermal, mechanical and chemical coatings. Another feature of nanofillers is the low financial cost resulting from the use of a lesser amount of filler, with a high level of performance. Among the nanofiller used, it can be cited muscovite mica and montmorillonite 30B (MMT 30B) that, when incorporated into the coatings, even at low concentrations, have higher barrier properties than conventional fillers. This work aims to develop and characterize a hybrid powder coating containing different amounts of muscovite mica and MMT 30B. Clayminerals have been incorporated in a standard formulation hybrid powder coatings in proportions of 2, 4 and 6% (w/w). Before applying the coating, the metal substrates were subjected to a pretreatment phosphating with zinc phosphate. After this, the powder paint was applied to panels with dimensions 70 x 120 x 0.65 mm carbon steel AISI 1010 through electrostatic spraying. The clayminerals, the powder paint and coating were analyzed using various characterization techniques, such as particle size analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), infrared spectroscopy in Fourier transform (FTIR) and scanning electron microscopy for field emission (SEM-FEG). The effect of the incorporation of clayminerals in the physical properties and corrosion protection of coatings was evaluated with brightness measurement tests, adhesion, flexibility, impact resistance, electrochemical impedance spectroscopy (EIS), exposure to fog saline (NS) and flame test. For all coatings containing clayminerals was found to increase the surface hardness of the coating and reduced gloss with increasing clay content, this being more pronounced effect with the addition of 6% (w/w) of MMT 30B. The adhesion of the coating to the substrate was not altered by the presence of clayminerals. The coatings containing mica muscovite showed better results in impact resistance tests and flexibility when compared to coatings containing MMT 30B. The sample TH/6/MICA showed better results in the electrochemical impedance test in relation to other systems studied. In the salt spray test all samples showed high corrosion protection. There were no blistering or corrosion spots on the surface of any of the samples. However, in the subsequent test of subcutaneous migration, the sample TH/2/MMT 30B showed the greatest peeling. In the flame test, coatings with incorporation of muscovite mica showed better results than coatings with MMT 30B. After analyzing all the tests, it is concluded that the addition of muscovite mica in the proportion of 4% resulted in an paint with improved thermal, mechanical and chemical properties.
Martínez, Soler Ignacio. "Relación entre formulación y propiedades adhesivas de resinas epoxi en piedra natural". Doctoral thesis, Universidad de Alicante, 2015. http://hdl.handle.net/10045/63527.
Texto completoLonghi, Marielen. "Influência da adição de diferentes oligômeros poliédricos de silsesquioxano (POSS) incorporados na resina epóxi no desempenho à corrosão em substrato de aço de baixa liga". reponame:Repositório Institucional da UCS, 2016. https://repositorio.ucs.br/handle/11338/1198.
Texto completoSubmitted by Ana Guimarães Pereira (agpereir@ucs.br) on 2016-07-05T14:13:46Z No. of bitstreams: 1 Dissertacao Marielen Longhi.pdf: 4767210 bytes, checksum: 8b9878a37cbc71de5a4cf9d89a1553a5 (MD5)
Made available in DSpace on 2016-07-05T14:13:46Z (GMT). No. of bitstreams: 1 Dissertacao Marielen Longhi.pdf: 4767210 bytes, checksum: 8b9878a37cbc71de5a4cf9d89a1553a5 (MD5) Previous issue date: 2016-07-05
The epoxy resin is one of the matrices most used in manufacturing composites and coatings. It is highlighted in the group of thermosetting materials due to good processability, mechanic behavior and thermal stability. Properties as thermal resistance and flexibility have been systematically modified by the use of different materials, as clays and, more recently, polyhedral oligomeric silsesquioxanes – POSS, applied in epoxy matrices. The polyhedral oligomeric silsesquioxanes (POSS) in thermosetting nanocomposites have been studied in hybrid materials able to support higher temperatures, promoting increase of mechanic properties and improving surface properties such as, for example, the hydrophobicity of the polymer. The most common functional groups used to preparing nanocomposites with epoxy resin are amines, alcohols and epoxy groups. The nanocage functionality is important, once a thermosetting formed by a reticulated microstructure presents a three-dimensional microstructure that can interact in any direction, making bonds or interacting on the interface of the inserted cages. In this context, it was evaluated the influence of three different polyhedral oligomeric silsesquioxanes – POSS (Glycidylisobutyl-POSS, Triglycidylisobutyl-POSS and Glycidyl-POSS), at two different contents 2.5% and 5% (w/w), in epoxy resin, in the morphological, mechanic and electrochemical behavior when applied on low alloy steel. Adding POSS in the epoxy resin, it was observed an increase in roughness and hydrophobicity of the coating. Moreover, it was reached a higher thermal oxidation resistance and an increase in the values of glass transition temperature of the material, regarding the epoxy resin sample. Among the studied systems, the sample containing Glycidylisobutyl-POSS (POSSmono) showed the best results, regarding the corrosion resistance. The addition of POSSmono in the epoxy resin promoted an increase of contact angle and electrochemical impedance values. Regarding the dispersion in the polymeric matrix, the Glycidyl-POSS (POSSocta) presented an inefficient dispersion, with formation of agglomerates, which hypothetically influenced in its low performance in the electrochemical behavior, regarding the other systems.
Libros sobre el tema "Resinas epoxi"
Dušek, K. Epoxy resins and composites. Berlin [etc.]: Springer-Verlag, 1985.
Buscar texto completoIta, Paul A., Pam Safarek y Aaron Hackle. Epoxy resins in North America. Cleveland: Freedonia Group, 2000.
Buscar texto completoDušek, K., ed. Epoxy Resins and Composites IV. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/3-540-16423-5.
Texto completoDušek, K., ed. Epoxy Resins and Composites II. Berlin/Heidelberg: Springer-Verlag, 1986. http://dx.doi.org/10.1007/bfb0017912.
Texto completoDušek, K., ed. Epoxy Resins and Composites III. Berlin/Heidelberg: Springer-Verlag, 1986. http://dx.doi.org/10.1007/bfb0035355.
Texto completoEllis, Bryan, ed. Chemistry and Technology of Epoxy Resins. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2932-9.
Texto completoEpoxy resins, curing agents, compounds, and modifiers: An industrial guide. Park Ridge, N.J., U.S.A: Noyes Publications, 1987.
Buscar texto completoEpoxy resins, curing agents, compounds, and modifiers: An industrial guide. 2a ed. Park Ridge, N.J., U.S.A: Noyes Publications, 1993.
Buscar texto completoCapítulos de libros sobre el tema "Resinas epoxi"
Penn, L. S. y H. Wang. "Epoxy Resins". En Handbook of Composites, 48–74. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-6389-1_4.
Texto completoGooch, Jan W. "Epoxy Resins". En Encyclopedic Dictionary of Polymers, 272. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_4476.
Texto completoJolanki, R., L. Kanerva y T. Estlander. "Epoxy Resins". En Condensed Handbook of Occupational Dermatology, 347–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18556-4_32.
Texto completoBAUER, R. S. "Epoxy Resins". En ACS Symposium Series, 931–61. Washington, D.C.: American Chemical Society, 1985. http://dx.doi.org/10.1021/bk-1985-0285.ch039.
Texto completoNixon, Rosemary, Jennifer Cahill y Riitta Jolanki. "Epoxy Resins". En Kanerva's Occupational Dermatology, 559–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-02035-3_51.
Texto completoHiggins, Claire, Jennifer Cahill, Riita Jolanki y Rosemary Nixon. "Epoxy Resins". En Kanerva’s Occupational Dermatology, 757–88. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-68617-2_51.
Texto completoJolanki, R., L. Kanerva y T. Estlander. "Epoxy Resins". En Handbook of Occupational Dermatology, 570–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-07677-4_73.
Texto completoHiggins, Claire, Jennifer Cahill, Riitta Jolanki y Rosemary Nixon. "Epoxy Resins". En Kanerva’s Occupational Dermatology, 1–43. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-40221-5_51-2.
Texto completoGooch, Jan W. "Bisphenol Epoxy Resins". En Encyclopedic Dictionary of Polymers, 82. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_1336.
Texto completoGooch, Jan W. "Epoxy Resin". En Encyclopedic Dictionary of Polymers, 271–72. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_4475.
Texto completoActas de conferencias sobre el tema "Resinas epoxi"
Owuor, Peter, Alfred Tcherbi-Narteh, Mahesh Hosur y Shaik Jeelani. "Durability Studies of Hybrid Composite of E-Glass/Carbon Fibers in Different Solvents for Bridge Deck Panel Application". En ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36175.
Texto completoMiller, Tim, Fabio Aguirre y Ray Hudack. "New Specialty Resins for High Performance Fusion Bonded Epoxy Coatings". En 2012 9th International Pipeline Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ipc2012-90561.
Texto completoŽivković, Andreja, Nataša Tomić, Marija Vuksanović y Aleksandar Marinković. "Synthesis and characterization of epoxy resin coating with improved fire resistance by the addition of modified tannic acid". En 8th International Conference on Renewable Electrical Power Sources. SMEITS, 2020. http://dx.doi.org/10.24094/mkoiee.020.8.1.35.
Texto completoMally, Timothy S., Allison L. Johnston, Michael W. Keller y Roger H. Walker. "Underwater Testing of a Typical Ambient-Cure Epoxy Resin for Composite Repairs of Structural Piping and Vessels". En ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57643.
Texto completoRuiz-Limón, B., G. B. J. Wetzel, A. Olivares Pérez, E. L. Ponce-Lee, R. Ramos-Garcia, S. Toxqui López, M. P. Hernández-Garay y I. Fuentes-Tapia. "Epoxy resin holograms". En Integrated Optoelectronic Devices 2006, editado por Hans I. Bjelkhagen y Roger A. Lessard. SPIE, 2006. http://dx.doi.org/10.1117/12.647143.
Texto completoPandini, Stefano, Fabio Bignotti, A. D’Amore, Domenico Acierno y Luigi Grassia. "Strain Recovery Behavior Of Post-Yield Deformed Epoxy Resins: Effect Of The Resin∕Hardener Ratio". En V INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2010. http://dx.doi.org/10.1063/1.3455600.
Texto completoNobile, Maria Rossella, Annalisa Fierro, Salvatore Rosolia, Marialuigia Raimondo, Khalid Lafdi y Liberata Guadagno. "Viscoelastic properties of graphene-based epoxy resins". En THE SECOND ICRANET CÉSAR LATTES MEETING: Supernovae, Neutron Stars and Black Holes. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4937328.
Texto completoAkinyede, Oladapo, Ram Mohan, Ajit Kelkar, Jag Sankar y Ashish Pandya. "Processing and Characterization of Hybrid Nanoparticle Infused Structural Fiber Composites". En ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81731.
Texto completoJohn, Joseph y Sajith Vandana. "Experimental Investigation on the Effect of Zirconium on Corrosion Resistance of Ceria Nanoparticles". En ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52433.
Texto completoShanjun Li, Xiaolin Tang, Yifu Ding y Mojun Liu. "Water absorption and corrosion protection of esterified novolac resin cured epoxy resins applicable for microelectronics packing". En ICEPT 2003. Fifth International Conference on Electronic Packaging Technology. Proceedings. IEEE, 2003. http://dx.doi.org/10.1109/eptc.2003.1298756.
Texto completoInformes sobre el tema "Resinas epoxi"
Guess, T. R., R. S. Chambers y T. D. Hinnerichs. Epoxy and acrylate sterolithography resins: in-situ property measurements. Office of Scientific and Technical Information (OSTI), enero de 1996. http://dx.doi.org/10.2172/200671.
Texto completoMarkley, F., J. Hoffman y D. Muniz. Cryogenic Compressive Properties of Basic Epoxy Resin Systems. Office of Scientific and Technical Information (OSTI), septiembre de 1985. http://dx.doi.org/10.2172/1156262.
Texto completoFard, Masoud Y., Yingtao Liu y Aditi Chattopadhyay. Multi-Linear Stress Strain and Closed-form Moment Curvature Response of Epoxy Resins. Fort Belvoir, VA: Defense Technical Information Center, enero de 2010. http://dx.doi.org/10.21236/ada532684.
Texto completoHolland, J. M. Chronic Dermal Toxicity of Epoxy Resins I. Skin Carcinogenic Potency and General Toxicity. Office of Scientific and Technical Information (OSTI), enero de 2001. http://dx.doi.org/10.2172/777676.
Texto completoFard, Masoud Y., Yingtao Liu y Aditi Chattopadhyay. Analytical Solution for Flexural Response of Epoxy Resin Materials. Fort Belvoir, VA: Defense Technical Information Center, junio de 2011. http://dx.doi.org/10.21236/ada544807.
Texto completoWang, Michael L., Ian M. McAninch y John J. La Scala. Materials Characterization of High-Temperature Epoxy Resins: SC-79 and SC-15/SC-79 Blend. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2011. http://dx.doi.org/10.21236/ada542007.
Texto completoTing, Robert Y., Aver A. Shaulov y Wallace A. Smith. Piezoelectric Properties of 1-3 Composites of a Calcium-Modified Lead Titanate in Epoxy Resins. Fort Belvoir, VA: Defense Technical Information Center, enero de 1990. http://dx.doi.org/10.21236/ada235934.
Texto completoAdams, W. W., V. B. Gupta, L. T. Drzal y R. Omlor. An Electron Microscopic Study of the Morphology of Cured Epoxy Resin. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1986. http://dx.doi.org/10.21236/ada177995.
Texto completoGilbert, Richard D. y Raymond E. Fornes. Chemical Treatment of Epoxy Resins to: 1. Reduce Moisture Sensitivity and 2. Improve the Mechanical Properties. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1989. http://dx.doi.org/10.21236/ada212360.
Texto completoPang, K. P. y J. K. Gillham. Anomalous Behavior of Cured Epoxy Resins: Density at Room Temperature versus Time and Temperature of Cure. Fort Belvoir, VA: Defense Technical Information Center, julio de 1988. http://dx.doi.org/10.21236/ada197644.
Texto completo