Artículos de revistas sobre el tema "Rheolog Ionic strength"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 32 mejores artículos de revistas para su investigación sobre el tema "Rheolog Ionic strength".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Kopplin, Georg, Anders Lervik, Kurt I. Draget, and Finn L. Aachmann. "Alginate gels crosslinked with chitosan oligomers – a systematic investigation into alginate block structure and chitosan oligomer interaction." RSC Advances 11, no. 23 (2021): 13780–98. http://dx.doi.org/10.1039/d1ra01003d.
Texto completoTan, Beng H., Kam C. Tam, Yee C. Lam, and Chee B. Tan. "Microstructure and Rheology of Stimuli-Responsive Nanocolloidal SystemsEffect of Ionic Strength." Langmuir 20, no. 26 (2004): 11380–86. http://dx.doi.org/10.1021/la0481290.
Texto completoLin, Yuan, Huaitao Qin, Jin Guo, and Jiawang Chen. "Rheology of bentonite dispersions: Role of ionic strength and solid content." Applied Clay Science 214 (November 2021): 106275. http://dx.doi.org/10.1016/j.clay.2021.106275.
Texto completoMOHAMMADI, ALIASGHAR, and REGHAN J. HILL. "Dynamics of uncharged colloidal inclusions in polyelectrolyte hydrogels." Journal of Fluid Mechanics 669 (January 14, 2011): 298–327. http://dx.doi.org/10.1017/s0022112010005045.
Texto completoWeijers, M., L. M. C. Sagis, C. Veerman, B. Sperber, and E. van der Linden. "Rheology and structure of ovalbumin gels at low pH and low ionic strength." Food Hydrocolloids 16, no. 3 (2002): 269–76. http://dx.doi.org/10.1016/s0268-005x(01)00097-2.
Texto completoChoppe, Emilie, Fanny Puaud, Taco Nicolai, and Lazhar Benyahia. "Rheology of xanthan solutions as a function of temperature, concentration and ionic strength." Carbohydrate Polymers 82, no. 4 (2010): 1228–35. http://dx.doi.org/10.1016/j.carbpol.2010.06.056.
Texto completoShafiei-Sabet, S., W. Y. Hamad, and S. G. Hatzikiriakos. "Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions." Cellulose 21, no. 5 (2014): 3347–59. http://dx.doi.org/10.1007/s10570-014-0407-z.
Texto completoLiu, Jun, Youn Young Shim, and Martin J. T. Reaney. "Ionic strength and hydrogen bonding effects on whey protein isolate–flaxseed gum coacervate rheology." Food Science & Nutrition 8, no. 4 (2020): 2102–11. http://dx.doi.org/10.1002/fsn3.1504.
Texto completoBhosale, Prasad S., and John C. Berg. "Poly(acrylic acid) as a rheology modifier for dense alumina dispersions in high ionic strength environments." Colloids and Surfaces A: Physicochemical and Engineering Aspects 362, no. 1-3 (2010): 71–76. http://dx.doi.org/10.1016/j.colsurfa.2010.03.043.
Texto completoSovilj, Verica, Petar Dokic, and Lidija Petrovic. "Rheologycal properties of sodium carboxymethylcellulose in the presence of electrolyte and mixed micelle of surfactants." Acta Periodica Technologica, no. 34 (2003): 71–82. http://dx.doi.org/10.2298/apt0334071s.
Texto completoChai, Changhoon, Jooyoung Lee та Qingrong Huang. "The effect of ionic strength on the rheology of pH-induced bovine serum albumin/κ-carrageenan coacervates". LWT - Food Science and Technology 59, № 1 (2014): 356–60. http://dx.doi.org/10.1016/j.lwt.2014.05.024.
Texto completoChang, S. H., M. H. Ryan, and R. K. Gupta. "The effect of pH, ionic strength, and temperature on the rheology and stability of aqueous clay suspensions." Rheologica Acta 32, no. 3 (1993): 263–69. http://dx.doi.org/10.1007/bf00434190.
Texto completoUlaganathan, V., I. Retzlaff, J. Y. Won та ін. "β-Lactoglobulin adsorption layers at the water/air surface: 2. Dilational rheology: Effect of pH and ionic strength". Colloids and Surfaces A: Physicochemical and Engineering Aspects 521 (травень 2017): 167–76. http://dx.doi.org/10.1016/j.colsurfa.2016.08.064.
Texto completoHe, Jin-Song, Norihiro Azuma, and Hongwei Yang. "Effects of pH and ionic strength on the rheology and microstructure of a pressure-induced whey protein gel." International Dairy Journal 20, no. 2 (2010): 89–95. http://dx.doi.org/10.1016/j.idairyj.2009.08.006.
Texto completoFneich, Fatima, Julien Ville, Bastien Seantier, and Thierry Aubry. "Structure and rheology of aqueous suspensions and hydrogels of cellulose nanofibrils: Effect of volume fraction and ionic strength." Carbohydrate Polymers 211 (May 2019): 315–21. http://dx.doi.org/10.1016/j.carbpol.2019.01.099.
Texto completoIllner, Sabine, Olga Sahmel, Stefan Siewert, Thomas Eickner, and Niels Grabow. "Rheological analysis of hybrid hydrogels during polymerization processes." Current Directions in Biomedical Engineering 3, no. 2 (2017): 699–702. http://dx.doi.org/10.1515/cdbme-2017-0148.
Texto completoMeijerink, Marc, Frank van Mastrigt, Linda E. Franken, Marc C. A. Stuart, Francesco Picchioni, and Patrizio Raffa. "Triblock copolymers of styrene and sodium methacrylate as smart materials: synthesis and rheological characterization." Pure and Applied Chemistry 89, no. 11 (2017): 1641–58. http://dx.doi.org/10.1515/pac-2016-1021.
Texto completoYan, Hui, Antti Nykanen, Janne Ruokolainen, David Farrar, and Aline F. Miller. "Protein Fibrillar Hydrogels for three-Dimensional Tissue Engineering." Research Letters in Nanotechnology 2009 (2009): 1–4. http://dx.doi.org/10.1155/2009/614301.
Texto completoRühs, Patrick A., Nathalie Scheuble, Erich J. Windhab, Raffaele Mezzenga та Peter Fischer. "Simultaneous Control of pH and Ionic Strength during Interfacial Rheology of β-Lactoglobulin Fibrils Adsorbed at Liquid/Liquid Interfaces". Langmuir 28, № 34 (2012): 12536–43. http://dx.doi.org/10.1021/la3026705.
Texto completoCosta, Vera L. D., Ana P. Costa, and Rogério M. S. Simões. "Nanofibrillated cellulose rheology: Effects of morphology, ethanol/acetone addition, and high NaCl concentration." BioResources 14, no. 4 (2019): 7636–54. http://dx.doi.org/10.15376/biores.14.4.7636-7654.
Texto completoSaxena, Amit, A. K. Pathak, and Keka Ojha. "Synergistic Effects of Ionic Characteristics of Surfactants on Aqueous Foam Stability, Gel Strength, and Rheology in the Presence of Neutral Polymer." Industrial & Engineering Chemistry Research 53, no. 49 (2014): 19184–91. http://dx.doi.org/10.1021/ie502598s.
Texto completoTerech, P., S. Dourdain, U. Maitra, and S. Bhat. "Structure and Rheology of Cationic Molecular Hydrogels of Quinuclidine Grafted Bile Salts. Influence of the Ionic Strength and Counter-Ion type." Journal of Physical Chemistry B 113, no. 14 (2009): 4619–30. http://dx.doi.org/10.1021/jp809336g.
Texto completoRaffa, Patrizio, Piter Brandenburg, Diego A. Z. Wever, Antonius A. Broekhuis, and Francesco Picchioni. "Polystyrene–Poly(sodium methacrylate) Amphiphilic Block Copolymers by ATRP: Effect of Structure, pH, and Ionic Strength on Rheology of Aqueous Solutions." Macromolecules 46, no. 17 (2013): 7106–11. http://dx.doi.org/10.1021/ma401453j.
Texto completoXiong, Wenfei, Cong Ren, Mo Tian, Xuejun Yang, Jing Li, and Bin Li. "Complex coacervation of ovalbumin-carboxymethylcellulose assessed by isothermal titration calorimeter and rheology: Effect of ionic strength and charge density of polysaccharide." Food Hydrocolloids 73 (December 2017): 41–50. http://dx.doi.org/10.1016/j.foodhyd.2017.06.031.
Texto completoDiGuiseppi, David, Jodi Kraus, Siobhan E. Toal, Nicolas Alvarez, and Reinhard Schweitzer-Stenner. "Investigating the Formation of a Repulsive Hydrogel of a Cationic 16mer Peptide at Low Ionic Strength in Water by Vibrational Spectroscopy and Rheology." Journal of Physical Chemistry B 120, no. 38 (2016): 10079–90. http://dx.doi.org/10.1021/acs.jpcb.6b07673.
Texto completoChirkov, Nikolay S., Richard A. Campbell, Alexander V. Michailov, Petr S. Vlasov, and Boris A. Noskov. "DNA Interaction with a Polyelectrolyte Monolayer at Solution—Air Interface." Polymers 13, no. 16 (2021): 2820. http://dx.doi.org/10.3390/polym13162820.
Texto completoFeng, Tingting, Xingwei Wang, Xuejiao Wang, Shuqin Xia, and Qingrong Huang. "Plant protein-based antioxidant Pickering emulsions and high internal phase Pickering emulsions against broad pH range and high ionic strength: Effects of interfacial rheology and microstructure." LWT 150 (October 2021): 111953. http://dx.doi.org/10.1016/j.lwt.2021.111953.
Texto completoTheng, B. K. G., and N. Wells. "The flow characteristics of halloysite suspensions." Clay Minerals 30, no. 2 (1995): 99–106. http://dx.doi.org/10.1180/claymin.1995.030.2.02.
Texto completoNASIRUDDIN KHAN, M., and ANILA SARWAR. "DETERMINATION OF POINTS OF ZERO CHARGE OF NATURAL AND TREATED ADSORBENTS." Surface Review and Letters 14, no. 03 (2007): 461–69. http://dx.doi.org/10.1142/s0218625x07009517.
Texto completoLee, Minhyeong, Jooyoung Im, Gye-Chun Cho, Hee Hwan Ryu, and Ilhan Chang. "Interfacial Shearing Behavior along Xanthan Gum Biopolymer-Treated Sand and Solid Interfaces and Its Meaning in Geotechnical Engineering Aspects." Applied Sciences 11, no. 1 (2020): 139. http://dx.doi.org/10.3390/app11010139.
Texto completoClancy, S. F., J. G. Fuller, T. Scheidt, and H. H. Paradies. "Dynamic Properties of Entangled Wormlike Micelles: Sodium Laurylethersulfate at High Ionic Strength-(II)." Zeitschrift für Physikalische Chemie 215, no. 7 (2001). http://dx.doi.org/10.1524/zpch.2001.215.7.905.
Texto completoBiswas, Tuser T., Junchun Yu, and Vincent A. Nierstrasz. "Effects of ink characteristics and piezo-electric inkjetting parameters on lysozyme activity." Scientific Reports 9, no. 1 (2019). http://dx.doi.org/10.1038/s41598-019-54723-9.
Texto completo