Siga este enlace para ver otros tipos de publicaciones sobre el tema: Riemann-Hilbert Probleme.

Artículos de revistas sobre el tema "Riemann-Hilbert Probleme"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Riemann-Hilbert Probleme".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Kotlyarov, V. P., and E. A. Moskovchenko. "Matrix Riemann-Hilbert Problems and Maxwell-Bloch Equations without Spectral Broadening." Zurnal matematiceskoj fiziki, analiza, geometrii 10, no. 3 (2014): 328–49. http://dx.doi.org/10.15407/mag10.03.328.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Durmagambetov, Asset. "Reduction of modern problems of mathematics to the classical Riemann-Poincare-Hilbert problem." European Journal of Pure and Applied Mathematics 11, no. 4 (2018): 1143–76. http://dx.doi.org/10.29020/nybg.ejpam.v11i4.3328.

Texto completo
Resumen
Using the example of a complicated problem such as the Cauchy problem for the Navier--Stokes equation, we show how the Poincar\'e--Riemann--Hilbert boundary-value problem enables us to construct effective estimates of solutions for this case. The apparatus of the three-dimensional inverse problem of quantum scattering theory is developed for this. It is shown that the unitary scattering operator can be studied as a solution of the Poincar\'e--Riemann--Hilbert boundary-value problem. This allows us to go on to study the potential in the Schr\"odinger equation, which we consider as a velocity co
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Fatykhov, A. Kh, and P. L. Shabalin. "Solvability homogeneous Riemann-Hilbert boundary value problem with several points of turbulence." Issues of Analysis 25 (September 2018): 31–39. http://dx.doi.org/10.15393/j3.art.2018.5530.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Bolibrukh, A. A. "The Riemann-Hilbert problem." Russian Mathematical Surveys 45, no. 2 (1990): 1–58. http://dx.doi.org/10.1070/rm1990v045n02abeh002350.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Kucerovsky, Dan, and Aydin Sarraf. "Solving Riemann-Hilbert problems with meromorphic functions." Acta Universitatis Sapientiae, Mathematica 11, no. 1 (2019): 117–30. http://dx.doi.org/10.2478/ausm-2019-0010.

Texto completo
Resumen
Abstract In this paper, we introduce the use of a powerful tool from theoretical complex analysis, the Blaschke product, for the solution of Riemann-Hilbert problems. Classically, Riemann-Hilbert problems are considered for analytic functions. We give a factorization theorem for meromorphic functions over simply connected nonempty proper open subsets of the complex plane and use this theorem to solve Riemann-Hilbert problems where the given data consists of a meromorphic function.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Bertrand, Florian, and Giuseppe Della Sala. "Riemann-Hilbert problems with constraints." Proceedings of the American Mathematical Society 147, no. 5 (2019): 2123–31. http://dx.doi.org/10.1090/proc/14390.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kuijlaars, Arno. "The Tacnode Riemann–Hilbert Problem." Constructive Approximation 39, no. 1 (2013): 197–222. http://dx.doi.org/10.1007/s00365-013-9225-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Filipkovska, M. S., V. P. Kotlyarov, E. A. Melamedova, and E. A. Moskovchenko. "Maxwell-Bloch Equations without Spectral Broadening: Gauge Equivalence, Transformation Operators and Matrix Riemann-Hilbert Problems." Zurnal matematiceskoj fiziki, analiza, geometrii 13, no. 2 (2017): 119–53. http://dx.doi.org/10.15407/mag13.02.119.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Cerne, Miran. "Nonlinear Riemann-Hilbert problem for bordered Riemann surfaces." American Journal of Mathematics 126, no. 1 (2004): 65–87. http://dx.doi.org/10.1353/ajm.2004.0002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Kamvissis, Spyridon. "A riemann-hilbert problem in a riemann surface." Acta Mathematica Scientia 31, no. 6 (2011): 2233–46. http://dx.doi.org/10.1016/s0252-9602(11)60396-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Vyugin, Il'ya V. "Riemann-Hilbert problem for scalar Fuchsian equations and related problems." Russian Mathematical Surveys 66, no. 1 (2011): 35–62. http://dx.doi.org/10.1070/rm2011v066n01abeh004727.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Bojarski, B., and G. Khimshiashvili. "Global Geometric Aspects of Riemann–Hilbert Problems." gmj 8, no. 4 (2001): 713–26. http://dx.doi.org/10.1515/gmj.2001.713.

Texto completo
Resumen
Abstract We discuss some global properties of an abstract geometric model for Riemann–Hilbert problems introduced by the first author. In particular, we compute the homotopy groups of elliptic Riemann–Hilbert problems and describe some connections with the theory of Fredholm structures which enable one to introduce more subtle geometrical and topological invariants for families of such problems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Tao, Mengshuang, and Huanhe Dong. "N-Soliton Solutions of the Coupled Kundu Equations Based on the Riemann-Hilbert Method." Mathematical Problems in Engineering 2019 (March 28, 2019): 1–10. http://dx.doi.org/10.1155/2019/3085367.

Texto completo
Resumen
The Kundu equation, which can be used to describe many phenomena in physics and mechanics, has crucial theoretical meaning and research value. In previous studies, the single Kundu equation has been investigated by the Riemann-Hilbert method, but few researchers have focused on the coupled Kundu equations. To our knowledge, many phenomena in nature can be only described by coupled equations, such as species competition and signal interactions. In this paper, we discuss N-soliton solutions of the coupled Kundu equations according to the Riemann-Hilbert method. Starting from the spectral problem
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Câmara, M. C., A. F. dos Santos, and Pedro F. dos Santos. "Matrix Riemann–Hilbert problems and factorization on Riemann surfaces." Journal of Functional Analysis 255, no. 1 (2008): 228–54. http://dx.doi.org/10.1016/j.jfa.2008.01.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Varzugin, G. G. "Asymptotics of oscillatory Riemann–Hilbert problems." Journal of Mathematical Physics 37, no. 11 (1996): 5869–92. http://dx.doi.org/10.1063/1.531706.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Efendiev, M. A., and W. L. Wendland. "Nonlinear Riemann - Hilbert Problems without Transversality." Mathematische Nachrichten 183, no. 1 (1997): 73–89. http://dx.doi.org/10.1002/mana.19971830106.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Lechtenfeld, Olaf, and Alexander D. Popov. "Noncommutative Monopoles and Riemann-Hilbert Problems." Journal of High Energy Physics 2004, no. 01 (2004): 069. http://dx.doi.org/10.1088/1126-6708/2004/01/069.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Semmler, Gunter, and Elias Wegert. "Separation Principles and Riemann-Hilbert Problems." Computational Methods and Function Theory 2, no. 1 (2003): 175–90. http://dx.doi.org/10.1007/bf03321015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

QIU, W. Y., and R. WONG. "ASYMPTOTIC EXPANSIONS FOR RIEMANN–HILBERT PROBLEMS." Analysis and Applications 06, no. 03 (2008): 269–98. http://dx.doi.org/10.1142/s021953050800116x.

Texto completo
Resumen
Let Γ be a piecewise smooth contour in ℂ, which could be unbounded and may have points of self-intersection. Let V(z, N) be a 2 × 2 matrix-valued function defined on Γ, which depends on a parameter N. Consider a Riemann–Hilbert problem for a matrix-valued analytic function R(z, N) that satisfies a jump condition on the contour Γ with the jump matrix V(z, N). Assume that V(z, N) has an asymptotic expansion, as N → ∞, on Γ. An elementary proof is given for the existence of a similar type of asymptotic expansion for the matrix solution R(z, N), as n → ∞, for z ∈ ℂ\Γ. Our method makes use of only
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Paliokas, Eugenijus. "MULTIDIMENSIONAL ANALOGUES OF THE RIEMANN–HILBERT BOUNDARY VALUE PROBLEM." Mathematical Modelling and Analysis 12, no. 2 (2007): 205–14. http://dx.doi.org/10.3846/1392-6292.2007.12.205-214.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Zhao, Yi, and Engui Fan. "N-soliton solution for a higher-order Chen–Lee–Liu equation with nonzero boundary conditions." Modern Physics Letters B 34, no. 04 (2019): 2050054. http://dx.doi.org/10.1142/s0217984920500542.

Texto completo
Resumen
In this paper, the Riemann–Hilbert approach is applied to investigate a higher-order Chen–Lee–Liu equation with third-order dispersion and quintic nonlinearity terms. Based on the analytical, symmetric and asymptotic properties of eigenfunctions, a generalized Riemann–Hilbert problem associated with Chen–Lee–Liu equation with nonzero boundary conditions is constructed. Further, the [Formula: see text]-soliton solution is found by solving the generalized Riemann–Hilbert problem. As an illustrative example, two kinds of one-soliton solutions with different forms of parameters are obtained.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Röhrl, Helmut. "Book Review: The Riemann-Hilbert problem." Bulletin of the American Mathematical Society 33, no. 02 (1996): 199–203. http://dx.doi.org/10.1090/s0273-0979-96-00646-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

S. Gerdjikov, Vladimir, Rossen I. Ivanov, and Aleksander A. Stefanov. "Riemann-Hilbert problem, integrability and reductions." Journal of Geometric Mechanics 11, no. 2 (2019): 167–85. http://dx.doi.org/10.3934/jgm.2019009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Xiao, Zhixing, Kang Li, and Junyi Zhu. "Multiple-Pole Solutions to a Semidiscrete Modified Korteweg-de Vries Equation." Advances in Mathematical Physics 2019 (May 2, 2019): 1–8. http://dx.doi.org/10.1155/2019/5468142.

Texto completo
Resumen
Multiple-pole soliton solutions to a semidiscrete modified Korteweg-de Vries equation are derived by virtue of the Riemann-Hilbert problem with higher-order zeros. A different symmetry condition is introduced to build the nonregular Riemann-Hilbert problem. The simplest multiple-pole soliton solution is presented. The dynamics of the solitons are studied.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Ma, Wen-Xiu, Yehui Huang, and Fudong Wang. "Inverse scattering for nonlocal reverse-space multicomponent nonlinear Schrödinger equations." International Journal of Modern Physics B 35, no. 04 (2021): 2150051. http://dx.doi.org/10.1142/s021797922150051x.

Texto completo
Resumen
The paper aims to discuss nonlocal reverse-space multicomponent nonlinear Schrödinger equations and their inverse scattering transforms. The inverse scattering problems are analyzed by means of Riemann–Hilbert problems, and Gelfand–Levitan–Marchenko-type integral equations for generalized matrix Jost solutions are determined by the Sokhotski–Plemelj formula. Soliton solutions are generated from the reflectionless transforms associated with zeros of the Riemann–Hilbert problems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Tyurikov, E. V. "On Some Classes of Correct Problems in the Membrane Theory of Convex Shells." UNIVERSITY NEWS. NORTH-CAUCASIAN REGION. NATURAL SCIENCES SERIES, no. 3 (207) (October 2, 2020): 25–29. http://dx.doi.org/10.18522/1026-2237-2020-3-25-29.

Texto completo
Resumen
On the basis of the theory of the modified Riemann-Hilbert problem for generalized analytic functions, a geometric description is given of a fairly wide family of correct by I. N. Vekua of boundary value problems of the membrane theory of convex hulls with a piecewise smooth boundary. Solutions to the corresponding Riemann-Hilbert problem for an elliptic system of equilibrium equations are found in the classes of N.I. Muskhelishvili and realize a state of tense equilibrium under the condition of stress concentration in corner points. An effective formula is given for calculating the index of t
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Basik, A. I., E. V. Hrytsuk, and T. A. Hrytsuk. "The Riemann – Hilbert boundary value problem for elliptic systems of the orthogonal type in R3." Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series 56, no. 1 (2020): 7–16. http://dx.doi.org/10.29235/1561-2430-2020-56-1-7-16.

Texto completo
Resumen
In this paper, a class of elliptic systems of four 1st order differential equations of the orthogonal type in R3 is considered. For such systems we study the issue of regularizability of the Riemann – Hilbert boundary value problem in an arbitrary limited simply-connected region with a smooth boundary in R3. Using the coefficients of the elliptic system and the matrix of the boundary operator, a special vector field is constructed, and its not entering the tangent plane in any point of the boundary provides the Lopatinski condition of the regularizability of the boundary value problem. The obt
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Semmler, Gunter. "Explicit Riemann-Hilbert problems in Hardy spaces." Mathematische Nachrichten 284, no. 8-9 (2011): 1099–117. http://dx.doi.org/10.1002/mana.200710135.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Korotkin, Dmitry, and Vasilisa Shramchenko. "Riemann–Hilbert Problems for Hurwitz Frobenius Manifolds." Letters in Mathematical Physics 96, no. 1-3 (2010): 109–21. http://dx.doi.org/10.1007/s11005-010-0435-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

dos Santos, António F., and Pedro F. dos Santos. "Lax Equations, Singularities and Riemann–Hilbert Problems." Mathematical Physics, Analysis and Geometry 15, no. 3 (2012): 203–29. http://dx.doi.org/10.1007/s11040-012-9110-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Bridgeland, Tom. "Riemann–Hilbert problems from Donaldson–Thomas theory." Inventiones mathematicae 216, no. 1 (2018): 69–124. http://dx.doi.org/10.1007/s00222-018-0843-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Semmler, Gunter, and Elias Wegert. "Nonlinear Riemann-Hilbert Problems and Boundary Interpolation." Computational Methods and Function Theory 3, no. 1 (2004): 179–99. http://dx.doi.org/10.1007/bf03321034.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Wegert, Elias, and David Bauer. "On Riemann-Hilbert Problems in Circle Packing." Computational Methods and Function Theory 9, no. 2 (2009): 609–32. http://dx.doi.org/10.1007/bf03321748.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Manjavidze, N. "Riemann–Hilbert Problems on a Cut Plane." Journal of Mathematical Sciences 235, no. 5 (2018): 632–83. http://dx.doi.org/10.1007/s10958-018-4088-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Zhou, Xin. "The Riemann–Hilbert Problem and Inverse Scattering." SIAM Journal on Mathematical Analysis 20, no. 4 (1989): 966–86. http://dx.doi.org/10.1137/0520065.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Greenberg, W., P. F. Zweifel, and S. Paveri‐Fontana. "The Riemann–Hilbert problem for nonsymmetric systems." Journal of Mathematical Physics 32, no. 12 (1991): 3540–45. http://dx.doi.org/10.1063/1.529415.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Arciga-Alejandre, M. P., J. Sanchez-Ortiz, and M. A. Taneco-Hernandez. "Asymptotic for a Riemann-Hilbert problem solution." International Journal of Mathematical Analysis 7 (2013): 1667–72. http://dx.doi.org/10.12988/ijma.2013.3358.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Kapaev, Andrei A. "Riemann Hilbert problem for bi-orthogonal polynomials." Journal of Physics A: Mathematical and General 36, no. 16 (2003): 4629–40. http://dx.doi.org/10.1088/0305-4470/36/16/312.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Giorgadze, G., and G. Khimshiashvili. "The Riemann-Hilbert problem in loop spaces." Doklady Mathematics 73, no. 2 (2006): 258–60. http://dx.doi.org/10.1134/s1064562406020281.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Kuijlaars, A. B. J., and K. T. R. McLaughlin. "A Riemann–Hilbert problem for biorthogonal polynomials." Journal of Computational and Applied Mathematics 178, no. 1-2 (2005): 313–20. http://dx.doi.org/10.1016/j.cam.2004.01.043.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Branquinho, A., U. Fidalgo, and A. Foulquié Moreno. "Riemann–Hilbert problem associated with Angelesco systems." Journal of Computational and Applied Mathematics 233, no. 3 (2009): 643–51. http://dx.doi.org/10.1016/j.cam.2009.02.032.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Llewellyn Smith, Stefan G., and Elena Luca. "Numerical solution of scattering problems using a Riemann–Hilbert formulation." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475, no. 2229 (2019): 20190105. http://dx.doi.org/10.1098/rspa.2019.0105.

Texto completo
Resumen
A fast and accurate numerical method for the solution of scalar and matrix Wiener–Hopf (WH) problems is presented. The WH problems are formulated as Riemann–Hilbert problems on the real line, and a numerical approach developed for these problems is used. It is shown that the known far-field behaviour of the solutions can be exploited to construct numerical schemes providing spectrally accurate results. A number of scalar and matrix WH problems that generalize the classical Sommerfeld problem of diffraction of plane waves by a semi-infinite plane are solved using the approach.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Antipov, Y. A. "Vector Riemann–Hilbert problem with almost periodic and meromorphic coefficients and applications." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471, no. 2180 (2015): 20150262. http://dx.doi.org/10.1098/rspa.2015.0262.

Texto completo
Resumen
The vector Riemann–Hilbert problem is analysed when the entries of its matrix coefficient are meromorphic and almost periodic functions. Three cases for the meromorphic functions, when they have (i) a finite number of poles and zeros (rational functions), (ii) periodic poles and zeros, and (iii) an infinite number of non-periodic zeros and poles, are considered. The first case is illustrated by the heat equation for a composite rod with a finite number of discontinuities and a system of convolution equations; both problems are solved explicitly. In the second case, a Wiener–Hopf factorization
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Ling, Liming, and Wen-Xiu Ma. "Inverse Scattering and Soliton Solutions of Nonlocal Complex Reverse-Spacetime Modified Korteweg-de Vries Hierarchies." Symmetry 13, no. 3 (2021): 512. http://dx.doi.org/10.3390/sym13030512.

Texto completo
Resumen
This paper aims to explore nonlocal complex reverse-spacetime modified Korteweg-de Vries (mKdV) hierarchies via nonlocal symmetry reductions of matrix spectral problems and to construct their soliton solutions by the inverse scattering transforms. The corresponding inverse scattering problems are formulated by building the associated Riemann-Hilbert problems. A formulation of solutions to specific Riemann-Hilbert problems, with the jump matrix being the identity matrix, is established, where eigenvalues could equal adjoint eigenvalues, and thus N-soliton solutions to the nonlocal complex rever
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Devadze, David. "The Existence of a Generalized Solution of an m-Point Nonlocal Boundary Value Problem." Communications in Mathematics 25, no. 2 (2017): 159–69. http://dx.doi.org/10.1515/cm-2017-0013.

Texto completo
Resumen
Abstract An m-point nonlocal boundary value problem is posed for quasi- linear differential equations of first order on the plane. Nonlocal boundary value problems are investigated using the algorithm of reducing nonlocal boundary value problems to a sequence of Riemann-Hilbert problems for a generalized analytic function. The conditions for the existence and uniqueness of a generalized solution in the space are considered.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Li, Xin Gang, Nian Chun Lü, Guo Zhi Song, and Cheng Jin. "Dislocation Distribution Function of the Surfaces of Mode III Dynamic Crack Subjected to Unit-Step Loads and Moving Increasing Loads." Key Engineering Materials 324-325 (November 2006): 101–4. http://dx.doi.org/10.4028/www.scientific.net/kem.324-325.101.

Texto completo
Resumen
By the theory of complex functions, dislocation distribution function concerning mode dynamic crack propagation problem under the conditions of unit-step loads and moving increasing loads was studied respectively. Analytical solution representations are attained by the methods of self-similar functions. The problems investigated can be transformed into Riemann-Hilbert problems and their closed solutions are obtained rather simple by this approach.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Luan, Xu, Nian Chun Lü, and Cheng Jin. "Solution of the Edges of Mode III Asymmetrical Dynamic Interface Crack Subjected to Variable Loads." Key Engineering Materials 419-420 (October 2009): 709–12. http://dx.doi.org/10.4028/www.scientific.net/kem.419-420.709.

Texto completo
Resumen
By the approaches of the theory of complex functions, propagation problems concerning mode Ⅲ asymmetrical dynamic interface crack were studied. The problems can be transformed into Riemann-Hilbert problem easily by the measures of self-similar functions, and the universal expressions of analytical solutions of the edges of mode Ⅲ asymmetrical dynamics interface crack subjected to variable loads and respectively, were attained.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Shanin, A. V., and A. I. Korolkov. "Diffraction by an impedance strip I. Reducing diffraction problem to Riemann–Hilbert problems." Quarterly Journal of Mechanics and Applied Mathematics 68, no. 3 (2015): 321–39. http://dx.doi.org/10.1093/qjmam/hbv010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Câmara, M. C., and M. T. Malheiro. "Factorization in a torus and Riemann–Hilbert problems." Journal of Mathematical Analysis and Applications 386, no. 1 (2012): 343–63. http://dx.doi.org/10.1016/j.jmaa.2011.08.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Bastos, M. A., Yu I. Karlovich, and A. F. dos Santos. "Oscillatory Riemann–Hilbert problems and the corona theorem." Journal of Functional Analysis 197, no. 2 (2003): 347–97. http://dx.doi.org/10.1016/s0022-1236(03)00007-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!