Literatura académica sobre el tema "Riordan arrays"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Riordan arrays".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Riordan arrays"

1

Barry, Paul. "Extensions of Riordan Arrays and Their Applications." Mathematics 13, no. 2 (2025): 242. https://doi.org/10.3390/math13020242.

Texto completo
Resumen
The Riordan group of Riordan arrays was first described in 1991, and since then, it has provided useful tools for the study of areas such as combinatorial identities, polynomial sequences (including families of orthogonal polynomials), lattice path enumeration, and linear recurrences. Useful extensions of the idea of a Riordan array have included almost Riordan arrays, double Riordan arrays, and their generalizations. After giving a brief overview of the Riordan group, we define two further extensions of the notion of Riordan arrays, and we give a number of applications for these extensions. T
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Barry, Paul. "Embedding Structures Associated with Riordan Arrays and Moment Matrices." International Journal of Combinatorics 2014 (March 17, 2014): 1–7. http://dx.doi.org/10.1155/2014/301394.

Texto completo
Resumen
Every ordinary Riordan array contains two naturally embedded Riordan arrays. We explore this phenomenon, and we compare it to the situation for certain moment matrices of families of orthogonal polynomials.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Wang, Weiping, and Tianming Wang. "Generalized Riordan arrays." Discrete Mathematics 308, no. 24 (2008): 6466–500. http://dx.doi.org/10.1016/j.disc.2007.12.037.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Luzón, Ana, Donatella Merlini, Manuel A. Morón, and Renzo Sprugnoli. "Complementary Riordan arrays." Discrete Applied Mathematics 172 (July 2014): 75–87. http://dx.doi.org/10.1016/j.dam.2014.03.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Barry, Paul. "On the Connection Coefficients of the Chebyshev-Boubaker Polynomials." Scientific World Journal 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/657806.

Texto completo
Resumen
The Chebyshev-Boubaker polynomials are the orthogonal polynomials whose coefficient arrays are defined by ordinary Riordan arrays. Examples include the Chebyshev polynomials of the second kind and the Boubaker polynomials. We study the connection coefficients of this class of orthogonal polynomials, indicating how Riordan array techniques can lead to closed-form expressions for these connection coefficients as well as recurrence relations that define them.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Merlini, Donatella, Douglas G. Rogers, Renzo Sprugnoli, and M. Cecilia Verri. "On Some Alternative Characterizations of Riordan Arrays." Canadian Journal of Mathematics 49, no. 2 (1997): 301–20. http://dx.doi.org/10.4153/cjm-1997-015-x.

Texto completo
Resumen
AbstractWe give several new characterizations of Riordan Arrays, the most important of which is: if {dn,k}n,k∈N is a lower triangular arraywhose generic element dn,k linearly depends on the elements in a well-defined though large area of the array, then {dn,k}n,k∈N is Riordan. We also provide some applications of these characterizations to the lattice path theory.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

O'Farrell, Anthony G. "Riordan Groups in Higher Dimensions." Mathematical Proceedings of the Royal Irish Academy 123A, no. 2 (2023): 95–124. http://dx.doi.org/10.1353/mpr.2023.a909312.

Texto completo
Resumen
Abstract: The classical Riordan groups associated to a given commutative ring are groups of infinite matrices (called Riordan arrays) associated to pairs of formal power series in one variable. The Fundamental Theorem of Riordan Arrays relates matrix multiplication to two group actions on such series, namely formal (convolution) multiplication and formal composition. We define the analogous Riordan groups involving formal power series in several variables, and establish the analogue of the Fundamental Theorem in that context. We discuss related groups of Laurent series and pose some questions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Lee, GwangYeon, and Mustafa Asci. "Some Properties of the(p,q)-Fibonacci and(p,q)-Lucas Polynomials." Journal of Applied Mathematics 2012 (2012): 1–18. http://dx.doi.org/10.1155/2012/264842.

Texto completo
Resumen
Riordan arrays are useful for solving the combinatorial sums by the help of generating functions. Many theorems can be easily proved by Riordan arrays. In this paper we consider the Pascal matrix and define a new generalization of Fibonacci polynomials called(p,q)-Fibonacci polynomials. We obtain combinatorial identities and by using Riordan method we get factorizations of Pascal matrix involving(p,q)-Fibonacci polynomials.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Zhao, Xiqiang, and Shuangshuang Dings. "Sequences Related to Riordan Arrays." Fibonacci Quarterly 40, no. 3 (2002): 247–52. http://dx.doi.org/10.1080/00150517.2002.12428651.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Luzón, Ana, Donatella Merlini, Manuel A. Morón, and Renzo Sprugnoli. "Identities induced by Riordan arrays." Linear Algebra and its Applications 436, no. 3 (2012): 631–47. http://dx.doi.org/10.1016/j.laa.2011.08.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "Riordan arrays"

1

NOCENTINI, MASSIMO. "An algebraic and combinatorial study of some infinite sequences of numbers supported by symbolic and logic computation." Doctoral thesis, 2019. http://hdl.handle.net/2158/1217082.

Texto completo
Resumen
The subject of the thesis concerns the study of infinite sequences, in one or two dimensions, supporting the theoretical aspects with systems for symbolic and logic computation. In particular, in the thesis some sequences related to Riordan arrays are examined from both an algebraic and combinatorial points of view and also by using approaches usually applied in numerical analysis. Another part concerns sequences that enumerate particular combinatorial objects, such as trees, polyominoes, and lattice paths, generated by symbolic and certified computations; moreover, tiling problems and backtra
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Noble, Rob. "Zeros and Asymptotics of Holonomic Sequences." 2011. http://hdl.handle.net/10222/13298.

Texto completo
Resumen
In this thesis we study the zeros and asymptotics of sequences that satisfy linear recurrence relations with generally nonconstant coefficients. By the theorem of Skolem-Mahler-Lech, the set of zero terms of a sequence that satisfies a linear recurrence relation with constant coefficients taken from a field of characteristic zero is comprised of the union of finitely many arithmetic progressions together with a finite exceptional set. Further, in the nondegenerate case, we can eliminate the possibility of arithmetic progressions and conclude that there are only finitely many zero terms. Fo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

MERLINI, DONATELLA. "I Riordan Array nell'Analisi degli Algoritmi." Doctoral thesis, 1996. http://hdl.handle.net/2158/779171.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Riordan arrays"

1

Riordan arrays : a primer - 1. edicion. Logic Press, 2016.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Riordan arrays"

1

Davenport, Dennis, Fatima Fall, Julian Francis, and Trinity Lee. "Production Matrices of Double Riordan Arrays." In Springer Proceedings in Mathematics & Statistics. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-62166-6_7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Shapiro, Louis, Renzo Sprugnoli, Paul Barry, et al. "Characterization of Riordan Arrays by Special Sequences." In Springer Monographs in Mathematics. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94151-2_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Branch, Donovan, Dennis Davenport, Shakuan Frankson, Jazmin T. Jones, and Geoffrey Thorpe. "A & Z Sequences for Double Riordan Arrays." In Springer Proceedings in Mathematics & Statistics. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05375-7_3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

He, Tian-Xiao. "Methods of Using Special Function Sequences, Number Sequences, and Riordan Arrays." In Methods for the Summation of Series, 5th ed. Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003051305-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!