Libros sobre el tema "Runge-Kutta metody"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores mejores libros para su investigación sobre el tema "Runge-Kutta metody".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore libros sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Gottlieb, Sigal. Total variation diminishing Runge-Kutta schemes. Hampton, VA: National Aerospace and Space Administration, Langley Research Center, 1996.
Buscar texto completoKeeling, Stephen L. On implicit Runge-Kutta methods for parallel computations. Hampton, Va: ICASE, 1987.
Buscar texto completoCarpenter, Mark H. Fourth-order 2N-storage Runge-Kutta schemes. Hampton, Va: Langley Research Center, 1994.
Buscar texto completoKeeling, Stephen L. Galerkin/Runge-Kutta discretizations for semilinear parabolic equations. Hampton, Va: ICASE, 1987.
Buscar texto completoZingg, D. W. Runge-Kutta methods for linear ordinary differential equations. [Moffett Field, Calif.]: Research Institute for Advanced Computer Science, NASA Ames Research Center, 1997.
Buscar texto completoEnenkel, Robert Frederick. Implementation of parallel predictor-corrector Runge-Kutta methods. Toronto: University of Toronto, Dept. of Computer Science, 1988.
Buscar texto completoZingg, D. W. Runge-Kutta methods for linear ordinary differential equations. [Moffett Field, Calif.]: Research Institute for Advanced Computer Science, NASA Ames Research Center, 1997.
Buscar texto completoZingg, D. W. Runge-Kutta methods for linear ordinary differential equations. [Moffett Field, Calif.]: Research Institute for Advanced Computer Science, NASA Ames Research Center, 1997.
Buscar texto completoZingg, D. W. Runge-Kutta methods for linear ordinary differential equations. [Moffett Field, Calif.]: Research Institute for Advanced Computer Science, NASA Ames Research Center, 1997.
Buscar texto completoMerkle, Charles L. Application of Runge-Kutta schemes to incompressible flows. New York: American Institute of Aeronautics and Astronautics, 1986.
Buscar texto completoCockburn, B. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. Hampton, VA: ICASE, NASA Langley Research Center, 2000.
Buscar texto completoBoretti, A. A. An explicit Runge-Kutta method for turbulent reacting flow calculations. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Buscar texto completoCockburn, B. The Runge-Kutta discontinuous Galerkin method for convection-dominated problems. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 2000.
Buscar texto completoBoretti, A. A. An explicit Runge-Kutta method for turbulent reacting flow calculations. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Buscar texto completoBoretti, A. A. An explicit Runge-Kutta method for turbulent reacting flow calculations. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Buscar texto completoRössler, Andreas. Runge-Kutta methods for the numerical solution of stochastic differential equations. Aachen: Shaker Verlag, 2002.
Buscar texto completoLoon, M. van. Time-step enlargement for Runge-Kutta integration algorithms by implicit smoothing. Amsterdam: National Aerospace Laboratory, 1991.
Buscar texto completoDavidson, Lars. Implementation of a semi-implicit k-e turbulence model into an explicit Runge-Kutta Navier-Stokes code. Toulouse: CERFACS, 1990.
Buscar texto completoKeeling, Stephen L. Galerkin/Runge-Kutta discretizations for parabolic equations with time dependent coefficients. Hampton, Va: ICASE, 1987.
Buscar texto completoKuznet︠s︡ov, I︠U︡ I. Algebraicheskie osnovy RK-metoda chislennogo reshenii︠a︡ ODU. Novosibirsk: Izd-vo VT︠S︡ SO RAN, 1995.
Buscar texto completoHairer, E. The numerical solution of differential-algebraic systems by Runge-Kutta methods. Berlin: Springer-Verlag, 1989.
Buscar texto completoHairer, Ernst, Michel Roche y Christian Lubich. The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0093947.
Texto completoCockburn, B. The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Buscar texto completoSweby, P. K. On spurious steady-state solutions of explicit Runge-Kutta schemes. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1990.
Buscar texto completoSwanson, R. Charles. Pseudo-time algorithms for the Navier-Stokes equations. Hampton, Va: ICASE, 1986.
Buscar texto completoPeterson, Peter Jeffrey. Global error estimation using defect correction techniques for explicit Runge-Kutta methods. Toronto: University of Toronto, Dept. of Computer Science, 1986.
Buscar texto completoMoitra, Anutosh. Application of a Runge-Kutta scheme for high-speed inviscid internal flows. Hampton, Va: ICASE, 1986.
Buscar texto completoButcher, J. C. The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods. Chichester: J. Wiley, 1987.
Buscar texto completoTurkel, Eli. Accuracy of schemes for the Euler equations with non-uniform meshes. Hampton, Va: ICASE, 1985.
Buscar texto completoCockburn, B. The Local Discontinuous Galerkin method for time-dependent convection-diffusion systems. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Buscar texto completoHayashi, Hiroshi. Numerical solution of retarded and neutral delay differential equations using continuous Runge-Kutta methods. Toronto: University of Toronto, Dept. of Computer Science, 1996.
Buscar texto completoNguyen, Hung. Interpolation and error control schemes for algebraic differential equations using continuous implicit Runge-Kutta methods. Toronto: University of Toronto, Dept. of Computer Science, 1995.
Buscar texto completoBartoszewski, Zbigniew. Approximate methods for functional differential equations. Gdańsk: Wydawn. Politechniki Gdańskiej, 2009.
Buscar texto completoZamri, Mohd Y. An improved treatment of two-dimensional two-phase flows of steam by a Runge-Kutta method. Birmingham: University of Birmingham, 1997.
Buscar texto completoLelis, J. M. Rodriguez. A Runge-Kutta time-marching method for two-dimensional nucleating flows of steam and comparison with measurements. Birmingham: University of Birmingham, 1992.
Buscar texto completoLickteig, Joachim. Approximationsfragen vom Runge-Typ bei linearen partiellen Differentialgleichungen mit konstanten Koeffizienten. Konstanz: Hartung-Gorre, 1986.
Buscar texto completoDieleman, P. Study on efficient numerical time-integration methods for simulation of multi-body systems. Amsterdam: National Aerospace Laboratory, 1990.
Buscar texto completoSingh, Jatinder. An adaptive flow solver for air-borne vehicles undergoing time-dependent motions/deformations: Annual technical progress report, period--August 1, 1996 - July 31, 1997, NASA grant no.--NAG-1-1760. [Washington, DC: National Aeronautics and Space Administration, 1997.
Buscar texto completoBoretti, A. A. Two-dimensional Euler and Navier Stokes time accurate simulations of fan rotor flows. Cleveland, Ohio: NASA Lewis Research Center, Institute for Computational Mechanics in Propulsion, 1990.
Buscar texto completoBoretti, A. A. Two-dimensional Euler and Navier Stokes time accurate simulations of fan rotor flows. Cleveland, Ohio: NASA Lewis Research Center, Institute for Computational Mechanics in Propulsion, 1990.
Buscar texto completoNational Institute of Standards and Technology (U.S.), ed. Parallelizing a fourth-order Runge-Kutta method. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Buscar texto completoNational Institute of Standards and Technology (U.S.), ed. Parallelizing a fourth-order Runge-Kutta method. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Buscar texto completoNational Institute of Standards and Technology (U.S.), ed. Parallelizing a fourth-order Runge-Kutta method. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Buscar texto completoNational Institute of Standards and Technology (U.S.), ed. Parallelizing a fourth-order Runge-Kutta method. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Buscar texto completoNational Institute of Standards and Technology (U.S.), ed. Parallelizing a fourth-order Runge-Kutta method. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Buscar texto completoNational Institute of Standards and Technology (U.S.), ed. Parallelizing a fourth-order Runge-Kutta method. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Buscar texto completoNational Institute of Standards and Technology (U.S.), ed. Parallelizing a fourth-order Runge-Kutta method. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Buscar texto completoCenter, Langley Research, ed. On implicit Runge-Kutta methods for parallel computations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1987.
Buscar texto completoCenter, Langley Research, ed. On implicit Runge-Kutta methods for parallel computations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1987.
Buscar texto completoGalerkin/Runge-Kutta discretizations for semilinear parabolic equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1987.
Buscar texto completo