Literatura académica sobre el tema "Scratch Wound Healing Assay"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Scratch Wound Healing Assay".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Scratch Wound Healing Assay"
Alishahedani, Mohammadali E., Manoj Yadav, Katelyn J. McCann, Portia Gough, Carlos R. Castillo, Jobel Matriz y Ian A. Myles. "Therapeutic candidates for keloid scars identified by qualitative review of scratch assay research for wound healing". PLOS ONE 16, n.º 6 (18 de junio de 2021): e0253669. http://dx.doi.org/10.1371/journal.pone.0253669.
Texto completoJana, Snehasis y Mahendra Kumar Trivedi. "Wound Healing Activity of Consciousness Energy Healing Treatmenton HFF-1 Cells and DMEM Using Scratch Assay". Investigative Dermatology and Venereology Research 4, n.º 1 (26 de diciembre de 2018): 50–54. http://dx.doi.org/10.15436/2381-0858.18.2036.
Texto completoFreiesleben, Sara H., Jens Soelberg, Nils T. Nyberg y Anna K. Jäger. "Determination of the Wound Healing Potentials of Medicinal Plants Historically Used in Ghana". Evidence-Based Complementary and Alternative Medicine 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/9480791.
Texto completoSaha, Susmita, Deepjyoti Bhattacharjee, Anwesha Saha, Gahin De, Partha Saha y S. K. Sil. "Wound healing promoting activity of Earthworm, Eutyphoeus gammiei (Beddard): in vitro studies on human skin keratinocyte cell line (HaCat)." Journal of Drug Delivery and Therapeutics 8, n.º 6 (15 de noviembre de 2018): 155–58. http://dx.doi.org/10.22270/jddt.v8i6.2036.
Texto completoSuriyah, Wastuti Hidayati, Aisyah Juares Rizal, Hana Syakirah Mohamed Nadzirin, Solachuddin Jauhari Arief Ichwan y Muhammad Lokman Md Isa. "In Vitro Wound Healing Effect of Asiaticoside Extracted from Centella asiatica (‘Pegaga’) on Human Gingival Fibroblast Cell Line". Materials Science Forum 1025 (marzo de 2021): 224–29. http://dx.doi.org/10.4028/www.scientific.net/msf.1025.224.
Texto completoWu, Shang-Ying, Yung-Shin Sun, Kuan-Chen Cheng y Kai-Yin Lo. "A Wound-Healing Assay Based on Ultraviolet Light Ablation". SLAS TECHNOLOGY: Translating Life Sciences Innovation 22, n.º 1 (10 de julio de 2016): 36–43. http://dx.doi.org/10.1177/2211068216646741.
Texto completoAbbas, ManalAhmad, ManalMohammad Abbas, Naseer Al-Rawi y Iqbal Al-Khateeb. "Naringenin potentiated β-sitosterol healing effect on the scratch wound assay". Research in Pharmaceutical Sciences 14, n.º 6 (2019): 566. http://dx.doi.org/10.4103/1735-5362.272565.
Texto completoChoi, Sun-Hye, Kyung-Jong Won, Rami Lee, Han-Sung Cho, Sung-Hee Hwang y Seung-Yeol Nah. "Wound Healing Effect of Gintonin Involves Lysophosphatidic Acid Receptor/Vascular Endothelial Growth Factor Signaling Pathway in Keratinocytes". International Journal of Molecular Sciences 22, n.º 18 (21 de septiembre de 2021): 10155. http://dx.doi.org/10.3390/ijms221810155.
Texto completoDhillon, Prabhpreet K., Xinyin Li, Jurgen T. Sanes, Oluwafemi S. Akintola y Bingyun Sun. "Method comparison for analyzing wound healing rates". Biochemistry and Cell Biology 95, n.º 3 (junio de 2017): 450–54. http://dx.doi.org/10.1139/bcb-2016-0163.
Texto completoBakari, G. G., S. A. Mshamu, M. H. Ally, R. A. Max y H. Bai. "In-vitro Wound Healing Properties of Commiphora swynnertonii Resinous Extracts". Tanzania Veterinary Journal 38 (4 de septiembre de 2021): 32–37. http://dx.doi.org/10.4314/tvj.v38i1.6s.
Texto completoTesis sobre el tema "Scratch Wound Healing Assay"
Morgaenko, Katsiarina. "Sledování migrace buněk v mikrofluidním systému metodou „Scratch Wound Healing Assay“". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-403757.
Texto completoAlsabri, Sami Gamaleddin F. "Usage of Extracellular Microvesicles as Novel and Promising Therapeutic Tool in Wound Healing". Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1512717040231595.
Texto completoYang, Yongliang. "Emergent Leader Cells in Collective Cell Migration in In Vitro Wound Healing Assay". Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/332896.
Texto completoPost, Hannah [Verfasser] y Jennifer E. [Akademischer Betreuer] Hundt. "Development and testing of a novel ex vivo assay for studying “pathological” wound healing in human skin / Hannah Post ; Akademischer Betreuer: Jennifer E. Hundt". Lübeck : Zentrale Hochschulbibliothek Lübeck, 2021. http://d-nb.info/1227903251/34.
Texto completoMun, Kyu-Shik. "Monitoring Cell Behaviors on Variety of Micropatterns Created with Biodegradable Polymer". University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1457426363.
Texto completoPillai, Mahesh Ramachandran. "Deciphering the Link Between Polychlorinated Biphenyls, Immune Function and Exercise". Bowling Green State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1510140839084446.
Texto completoYeh, Chun Chih y 葉軍志. "Three-dimensional wound healing assay". Thesis, 2019. http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id=%22107CGU05114064%22.&searchmode=basic.
Texto completoPeng, Shih-Wei y 彭士瑋. "A modified wound-healing-assay chip for studying electric field-assisted wound healing process". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/75087010920609013295.
Texto completo國立陽明大學
生醫光電研究所
100
There are several wound healing assays based on scratching, solid barrier and liquid barrier. However, none of them can represent the actual micro-environment which represents the direction of flow and EF toward the center of the wound. It has been suggested that wound healing is related to electric fields. Recently, Min Zhao et al. found the electrical signal also regulates the wound re-epithelialization. The disruption of epithelial barrier short-circuits the trans-epithelial potential and then creates a lateral endogenous electric field. The field has already been proofed as an important cue for guiding the migration direction of the fibroblasts, macrophages and keratinocytes in response to wounding site of a monolayer in vitro. This induced directional movement of cells toward the cathode or the anode under direct current electric field is so called electrotaxis. In this abstract, we propose a modified wound-healing-assay chip for studying electric field-assisted wound healing process. In preliminary test, we adopt NIH/3T3 fibroblast cell line to demonstrate the feasibility of our chip.
Chiang, Pei-Shuan y 江旆萱. "In Vitro wound healing assay revisited: aided by a long-term, time-lapse recording system". Thesis, 2003. http://ndltd.ncl.edu.tw/handle/61577690168058185073.
Texto completo國立成功大學
分子醫學研究所
91
Wound healing is one of the most frequently used methods to study cell motility. A monolayer of cells is scratch-wounded and cells alongside the wound would proliferate and migrate to fill up the denuded area. The area change or the wound closure distance is considered to be a measurement of cell motility. However, the rate of wound closure may not be a true measurement of cell motility. By measuring the distance of wound closure, we found that high-density monolayers of T24 cells (a bladder cancer cell line) showed faster wound-closure rates than low-density ones, which, by conventional interpretation, implied that T24 cells at higher cell densities would have greater cell motilities. To clarify such an observation, we investigated the details of wound healing with our long-term, time-lapse recording system, which was able to record and depict the migration path of a single cell through the entire healing process. Only the first few rows of cells behind the wounded edge contributed to wound closure. These cells showed better moving directionality (toward the direction of wound closure) at higher cell-densities, explaining the greater wound-closure rate, whereas the average lengths of the migration paths are the same in high- and low-density experiments. The lengths of migration paths over a period of time are the better measurement of cell motility, whereas the wound-closure rate represents the combinational effect of cell motility and directionality. The effects of mitomycin C and β-Glycyrrhetinic acid on wound-closure rate and cell motility in wound healing were further investigated. It had been suggested that in order to minimize the effect of cell proliferation on wound healing, the proliferation activity should be inhibited or the assay time should be kept as short as possible. However, we found that inhibition of cell proliferation by mitomycin C treatment may affect cell motility in a short period of time. Gap junctional communication was thought to play a role in wound healing. By inhibition of gap junction with GCA, we found that the percentage of forward moving cells as well as the migration rate significantly decreased. In the second part of the study, we applied the long-term time-lapse recording system to the functional analyses of genes through transient transfections. A preliminary procedure was established. Using a construct to co-express green fluorescent protein and EMP2 in NIH3T3 cells, we established a procedure to evaluate potential effects of EMP2 on cell morphology, viability, apoptosis, membrane ruffling and cell motility. The procedure could be utilized as a rapid screening test for gene functions.
Nasir, N. A. M., R. Paus y David M. Ansell. "Fluorescent cell tracer dye permits real-time assessment of re-epithelialization in a serum-free ex vivo human skin wound assay". 2018. http://hdl.handle.net/10454/17786.
Texto completoEx vivo wounded human skin organ culture is an invaluable tool for translationally relevant preclinical wound healing research. However, studies incorporating this system are still underutilized within the field because of the low throughput of histological analysis required for downstream assessment. In this study, we use intravital fluorescent dye to lineage trace epidermal cells, demonstrating that wound re‐epithelialization of human ex vivo wounds occurs consistent with an extending shield mechanism of collective migration. Moreover, we also report a relatively simple method to investigate global epithelial closure of explants in culture using daily fluorescent dye treatment and en face imaging. This study is the first to quantify healing of ex vivo wounds in a longitudinal manner, providing global assessments for re‐epithelialization and tissue contraction. We show that this approach can identify alterations to healing with a known healing promoter. This methodological study highlights the utility of human ex vivo wounds in enhancing our understanding of mechanisms of human skin repair and in evaluating novel therapies to improve healing outcome.
University of Manchester Strategic Fund; Wellcome Trust; BBSRC; Ministry of Higher Education, Malaysia Universiti; Sains Malaysia
Capítulos de libros sobre el tema "Scratch Wound Healing Assay"
Martinotti, Simona y Elia Ranzato. "Scratch Wound Healing Assay". En Methods in Molecular Biology, 225–29. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/7651_2019_259.
Texto completoCory, Giles. "Scratch-Wound Assay". En Methods in Molecular Biology, 25–30. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-207-6_2.
Texto completoFreitas, Juliano T., Ivan Jozic y Barbara Bedogni. "Wound Healing Assay for Melanoma Cell Migration". En Methods in Molecular Biology, 65–71. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1205-7_4.
Texto completoGanguli-Indra, Gitali. "Protocol for Cutaneous Wound Healing Assay in a Murine Model". En Stem Cells and Tissue Repair, 151–59. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1435-7_12.
Texto completoZemkewicz, John L., Racheal G. Akwii, Constantinos M. Mikelis y Colleen L. Doçi. "Investigating Epidermal Interactions Through an In Vivo Cutaneous Wound-Healing Assay". En Methods in Molecular Biology, 1–11. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0845-6_1.
Texto completoCardona, A., L. Ariza-Jiménez, D. Uribe, J. Arroyave y F. M. Cortés-Mancera. "Automatic Image Segmentation Method for In Vitro Wound Healing Assay Quantitative Analysis". En VI Latin American Congress on Biomedical Engineering CLAIB 2014, Paraná, Argentina 29, 30 & 31 October 2014, 381–84. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13117-7_98.
Texto completoTong, Junfeng y Zhixiang Wang. "Analysis of Epidermal Growth Factor Receptor-Induced Cell Motility by Wound Healing Assay". En Methods in Molecular Biology, 159–63. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7219-7_12.
Texto completoCastellano-Pellicena, Irene y M. Julie Thornton. "Isolation of Epidermal Keratinocytes from Human Skin: The Scratch-Wound Assay for Assessment of Epidermal Keratinocyte Migration". En Methods in Molecular Biology, 1–12. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0648-3_1.
Texto completo"Wound Healing Assay". En Cellular Potts Models, 89–102. Chapman and Hall/CRC, 2013. http://dx.doi.org/10.1201/b14075-9.
Texto completo"Wound Healing Assay". En Encyclopedia of Cancer, 3958. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16483-5_6262.
Texto completoActas de conferencias sobre el tema "Scratch Wound Healing Assay"
Cohen Maslaton, Shir y Natan T. Shaked. "Wound healing assay of two competing cell types with dry mass measurement". En Optical Methods for Inspection, Characterization, and Imaging of Biomaterials IV, editado por Pietro Ferraro, Monika Ritsch-Marte, Simonetta Grilli y Christoph K. Hitzenberger. SPIE, 2019. http://dx.doi.org/10.1117/12.2526841.
Texto completoWei, Y., F. Chen, T. Zhang, D. Chen, X. Jia, J. Tong, J. Wang, W. Guo y J. Chen. "A tubing-free microfluidic wound-healing assay quantifying vascular smooth muscle cell migration". En TRANSDUCERS 2015 - 2015 18th International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2015. http://dx.doi.org/10.1109/transducers.2015.7181291.
Texto completoBise, R., T. Kanade, Zhaozheng Yin y Seung-il Huh. "Automatic cell tracking applied to analysis of cell migration in wound healing assay". En 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011. http://dx.doi.org/10.1109/iembs.2011.6091525.
Texto completoMondal, N., D. Mondal, C. RoyChaudhuri, A. Barui, S. Dhara y J. Chatterjee. "A simple and sensitive cytosensor based electrical characterization of in vitro wound healing assay for keratinocytes". En 2011 IEEE/NIH 5th Life Science Systems and Applications Workshop (LiSSA). IEEE, 2011. http://dx.doi.org/10.1109/lissa.2011.5754152.
Texto completoTopman, Gil, Orna Sharabani-Yosef y Amit Gefen. "A Method for Quantitative Analysis of the Kinematics of Fibroblast Migration in a Monolayer Wound Model". En ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53070.
Texto completoGaleano Zea, July A., Cesar Bedoya, Cardona Andrés, Fabián Cortés-Mancera, Patrick Sandoz y Artur Zarzycki. "Modified position-referenced microscopy for the analysis of low-magnification biological events: a case of study in the wound healing assay with a human hepatoma cell line". En Latin America Optics and Photonics Conference. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/laop.2016.ltu4a.52.
Texto completoMaistrenko, Lesia, Olga Iungin, Oleksii Savchuk y Olena Okhmat. "Collagen matrices from leather industry wastes for biomedical application". En The 8th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2020. http://dx.doi.org/10.24264/icams-2020.ii.15.
Texto completo