Literatura académica sobre el tema "Separation (Technology) Palladium"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Separation (Technology) Palladium".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Separation (Technology) Palladium"

1

Roshan, N. R., S. V. Gorbunov, E. M. Chistov, F. R. Karelin, K. A. Kuterbekov, K. Zh Bekmyrza y E. T. Abseitov. "Palladiuum-based membranes for separation of high-purity hydrogen". Perspektivnye Materialy, n.º 11 (2020): 47–57. http://dx.doi.org/10.30791/1028-978x-2020-6-47-57.

Texto completo
Resumen
In the present study, using the improved technology, high-quality vacuum-tight foils 10 – 20 µm in thickness were prepared from effective Pd – 6 wt. % In – 0.5 wt. % Ru, Pd – 6 wt. % Ru, Pd – 40 wt. % Cu palladium alloys. Using a combination of deformation and annealing modes, the Pd – 40 wt. % Cu alloy foil consisting of the ordered β-phase (97%) with the CsCl-type structure that exhibits the maximum hydrogen permeability in this system. The mechanical properties and hydrogen permeability of the prepared foils were studied and compared with those of alloy foils 50 µm thickness. The thermal concentration dilatation in hydrogen was studied at different temperatures. Data on the dilatation of palladium-based membranes are of primary importance for designing membrane filtering elements and selection of optimal conditions for their operation, since these data determine the operation life membranes. Based on the Pd – 6 wt. % In – 0.5 wt. % Ru alloy, the Pd – 6 wt. % In – 0.5 wt. % Ru – 1.25 wt. % Co alloy was developed; it is characterized by increased strength characteristics and lower α ↔ β hydride transition temperature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Mobarake, Mostafa Dehghani y Leila Samiee. "Preparation of palladium/NaX/PSS membrane for hydrogen separation". International Journal of Hydrogen Energy 41, n.º 1 (enero de 2016): 79–86. http://dx.doi.org/10.1016/j.ijhydene.2015.10.009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Schiavo, Loredana, Lucrezia Aversa, Roberta Tatti, Roberto Verucchi y Gianfranco Carotenuto. "Structural Characterizations of Palladium Clusters Prepared by Polyol Reduction of [PdCl4]2−Ions". Journal of Analytical Methods in Chemistry 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/9073594.

Texto completo
Resumen
Palladium nanoparticles are of great interest in many industrial fields, ranging from catalysis and hydrogen technology to microelectronics, thanks to their unique physical and chemical properties. In this work, palladium clusters have been prepared by reduction of [PdCl4]2−ions with ethylene glycol, in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) as stabilizer. The stabilizer performs the important role of nucleating agent for the Pd atoms with a fast phase separation, since palladium atoms coordinated to the polymer side-groups are forced at short distances during nucleation. Quasispherical palladium clusters with a diameter of ca. 2.6 nm were obtained by reaction in air at 90°C for 2 hours. An extensive materials characterization by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and other characterizations (TGA, SEM, EDS-SEM, and UV-Vis) has been performed in order to evaluate the structure and oxidation state of nanopalladium.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Kilgus, Mirjam, Vanessa Gepert, Nicole Dinges, Clemens Merten, Gerhart Eigenberger y Thomas Schiestel. "Palladium coated ceramic hollow fibre membranes for hydrogen separation". Desalination 200, n.º 1-3 (noviembre de 2006): 95–96. http://dx.doi.org/10.1016/j.desal.2006.03.255.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Ghohe, Farangis Mahdizadeh y Faramarz Hormozi. "A numerical investigation on H2 separation by a conical palladium membrane". International Journal of Hydrogen Energy 44, n.º 21 (abril de 2019): 10653–65. http://dx.doi.org/10.1016/j.ijhydene.2019.02.149.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Suhaimi, Hani Shazwani Mohd, Choe Peng Leo y Abdul Latif Ahmad. "Hydrogen separation using polybenzimidazole membrane with palladium nanoparticles stabilized by polyvinylpyrrolidone". International Journal of Energy Research 45, n.º 10 (20 de abril de 2021): 15171–81. http://dx.doi.org/10.1002/er.6793.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Klette, H. y R. Bredesen. "Sputtering of very thin palladium-alloy hydrogen separation membranes". Membrane Technology 2005, n.º 5 (mayo de 2005): 7–9. http://dx.doi.org/10.1016/s0958-2118(05)70414-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Hu, Xiaojuan, Yan Huang, Shili Shu, Yiqun Fan y Nanping Xu. "Toward effective membranes for hydrogen separation: Multichannel composite palladium membranes". Journal of Power Sources 181, n.º 1 (junio de 2008): 135–39. http://dx.doi.org/10.1016/j.jpowsour.2008.02.091.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Ilie, Sorin, Adrian Miuţescu, Mircea Stoianovici y Gabriela Mitran. "Recovery of Precious Metals from Catalytic Converters of Automobiles by Hydrometallurgical Solid-Liquid Extraction Processes". Advanced Materials Research 837 (noviembre de 2013): 105–9. http://dx.doi.org/10.4028/www.scientific.net/amr.837.105.

Texto completo
Resumen
Today, among the basic requirements to be fulfilled by an automobile, those relating to environmental protection and recyclability are of great importance. This paper aims to present a new technological solution to recover rare metals - Platinum, Palladium and Rhodium - from automotive used catalysts, based on hydrometallurgical method of solid-liquid extraction. Following the theoretical and experimental researches, were established the technological sequences which must be carried for recovering precious metals from used automotive catalysts, in the pilot phase. The proposed technology has been applied for a quantity of 10 kg of used automotive catalysts of ceramic monolithic type, at the end of the recovery process and selective separation, resulting the following recovery efficiencies: 95 % for Platinum, 95 % for Palladium and 92 % for Rhodium. Finally, there were highlighted the main advantages of hydrometallurgical processes: versatility, economicity, high efficiencies and relatively low costs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Nam, Seung-Eun, Yeon-Kyung Seong, Jae Wook Lee y Kew-Ho Lee. "Preparation of highly stable palladium alloy composite membranes for hydrogen separation". Desalination 236, n.º 1-3 (enero de 2009): 51–55. http://dx.doi.org/10.1016/j.desal.2007.10.050.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "Separation (Technology) Palladium"

1

Keuler, Johan Nico. "Preparation and characterisation of palladium composite membranes". Thesis, Link to the online version, 1997. http://hdl.handle.net/10019/1431.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Ling, Chen. "First-principles study of palladium-based metal alloys as hydrogen purification membranes". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31798.

Texto completo
Resumen
Thesis (Ph.D)--Chemical Engineering, Georgia Institute of Technology, 2010.
Committee Chair: Sholl, David; Committee Member: Agrawal, Pradeep; Committee Member: Alamgir, Faisal; Committee Member: Fuller, Tom; Committee Member: Jones, Christopher. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

McLeod, Logan Scott. "Hydrogen permeation through microfabricated palladium-silver alloy membranes". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/31672.

Texto completo
Resumen
Thesis (Ph.D)--Mechanical Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Fedorov, Andrei; Committee Co-Chair: Degertekin, Levent; Committee Member: Koros, William; Committee Member: Liu, Meilin; Committee Member: Mayor, J. Rhett. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Ma, Rui. "Development and experimental validation of a CFD model for Pd-based membrane technology in H2 separation and process intensification". Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-dissertations/544.

Texto completo
Resumen
Syngas production and hydrogen separation technologies are very mature, and also extremely important for energy and chemical industries. Furthermore, these processes are the most expensive elements for many applications such as hydrogen production from renewable sources. Enhancing or intensifying these very mature technologies is very challenging, but would have tremendous impact on the performance and economics of many processes. Traditional Integrated Gasification Combined Cycle (IGCC) for syngas production need to include a carbon capture process in order to regulate their carbon dioxide emission as more and more countries and regions have implemented carbon tax policy. Integration of this process with Pd membrane has long been considered a key component to make it more feasible. With these two technologies combined together, we can produce high purity hydrogen while capturing carbon dioxide and toxic gases from the syngas product. Besides, although manufacturing the membrane reactor is expensive, after considering the carbon tax factor, it actually is more economically preferable compare with the traditional Pressure Swing Adsorption (PSA) process. Most research on Pd membrane technology has been conducted at lab scale; nonetheless, the contribution of a palladium membrane technology to economic and societal development requires its commercialization, diffusion and utilization. To generate enough incentives for commercialization, it is necessary to demonstrate the scalability and robustness of the membranes in industrial settings. Consequently, a multitube membrane module suitable for IGCC system was designed and manufactured and sent to National Carbon Capture Center (NCCC) for testing. This work developed a Computational Fluid Dynamics (CFD) model for the module and validated the model utilizing the pilot-scale experimental data generated under industrial conditions. The model was then up-scaled and used to determine the intrinsic phenomena of palladium membrane scale up. This study reveals the technical/engineering requirements for the effective design of large-scale multitube membrane modules. Mass transfer limitations and concentration polarization effects were studied quantitatively with the developed model. Methods for diminishing the concentration polarization effect were proposed and tested through the simulations such as i) increasing convective forces and ii) designing baffles to create gas recirculation. For scaled-up membrane modules, mass transfer limitation is an important parameter to consider as large modules showed severe concentration polarization effects. IGCC systems produce H2 from coal combustion; other ways of H2 production include steam-reforming processes, using natural gas or bio-ethanol as the reactant. The product contains a mixture of H2, CH4, CO, CO2 and steam. Thus, steam-reforming processes are often followed by a Pressure Swing Adsorption (PSA) unit in order to obtain pure hydrogen. Palladium membrane, on the other hand, can be integrated with steam-reforming processes and achieve the simultaneous production and purification of H2 in a single unit by reaching process intensification. Higher H2 production rate can be reached by process intensification as one of the products H2 is constantly being removed. Temperature control is a very important topic in steam reforming processes, as the reaction is overall highly endothermic; although implementing an in-unit membrane improves H2 production rate, it also makes the temperature control more difficult as the reaction equilibrium is altered by the removal of one of the products H2. Hereby, an experimental study of catalytic membrane reactor (CMR) was carried out along with both isothermal and non-isothermal CFD simulations that are validated by the experimental data in order to visualize the temperature distribution inside the reactor and understand the influence of the operating conditions including temperature, pressure and the sweep gas flow patter on the permeate side.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Akis, B. Ceylan. "Preparation of Pd-Ag/PSS composite membranes for hydrogen separation". Link to electronic thesis, 2004. http://www.wpi.edu/Pubs/ETD/Available/etd-0430104-113019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Nkabyo, Henry Ane. "A study on the reversible photo-induced isomerisation of platinum(II) and palladium(II) complexes of the N,N-dialkyl-N’-acyl(aroyl)thioureas with reversed-phase HPLC separation from related rhodium(III), ruthenium(III) and iridium(III) complexes". Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86773.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Gu, Yingying. "Membranes polymères fonctionnalisées par des poly(liquide ionique)s et des nanoparticules de palladium : applications au captage de CO2 et aux membranes catalytiques". Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30157/document.

Texto completo
Resumen
Des membranes supports en polymère ont été photo-greffées par des poly(liquide ionique)s (polyLIs) à base d'imidazolium. Les polyLIs permettent de séparer le CO2 d'autres gaz et de stabiliser des nanoparticules. Dans le cas du captage de CO2, les expériences montrent qu'une couche fine homogène de gel réticulé en polyLI gonflé par du liquid ionique (LI) est obtenue sur la surface de fibres creuses. Les fibres ainsi obtenues ont montré des perméances au CO2 plus élevées (600-700 GPU) que des membranes commerciales et des sélectivités de CO2/N2 comparables (13 et 17). Dans le cas de membranes catalytiques, des nanoparticules de palladium (NPPd) servant de catalyseur ont été immobilisées en forte concentration locale au sein d'une couche de polyLI greffée à la surface de membranes. La réactivité des membranes catalytiques a été testée en configuration de contacteur traversé sur différentes réactions (couplage croisé C-C, hydrogénation, etc). Une conversion totale est obtenue pour des temps de séjours de quelques secondes, sans aucun sous-produit formé. Comparée aux NPPd colloïdaux dans un réacteur en batch, la membrane catalytique accélère les réactions d'environ 2000 fois en terme de temps de réaction sans perte de NPPd; la sélectivité est aussi accrue. Le réacteur membranaire catalytique a été modélisé afin d'obtenir les profils de concentration et de température et une meilleure compréhension des performances obtenues. Les membranes catalytiques se révèlent isothermes et les constantes cinétiques sont calculées. Enfin, les capacités de production de ces membranes catalytiques à une échelle industrielle sont estimées à environ 3 t/(hm3) pour le couplage de Suzuki
Polymeric support membranes were modified via photo-grafting by poly(ionic liquid)s (polyILs), featuring in the capability to separate CO2 from other gases and to stabilize metallic nanoparticles (MNPs). For CO2 capture, a thin polyIL-IL gel layer was homogenously coated on support hollow fibers. The composite fibers show high CO2 permeance and reasonable CO2/N2 selectivity. For the catalytic membrane, palladium NPs were generated inside a grafted polyLI layer. Compared to colloidal palladium system in a batch reactor, the catalytic membrane, as a contactor membrane reactor, is more efficient in terms of reaction time (ca. 2000 times faster), selectivity and MNP retainability. Theoretical study on reactor modeling, concentration & temperature profiles, and production capacity was done for an overall understanding of the catalytic membrane
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

"Phase separation and crystallization in undercooled Pd-Si melts". Chinese University of Hong Kong, 1996. http://library.cuhk.edu.hk/record=b5888833.

Texto completo
Resumen
Lee Ka-lun.
Thesis (Ph.D.)--Chinese University of Hong Kong, 1996.
Includes bibliographical references.
Acknowledgments --- p.ii
Abstract --- p.iii
Table of Contents --- p.v
Chapter Chapter 1: --- Introduction --- p.1
Chapter 1.1 --- Phase Separation in Glass-Forming Alloys --- p.2
Chapter 1.1.1 --- Metallic Glass --- p.2
Chapter 1.1.2 --- Phase Separation in Metallic Glasses --- p.3
Chapter 1.1.3 --- Phase Separation in the Undercooled Melts of Glass-Forming Alloys --- p.4
Chapter 1.2 --- Theory of Phase Separation --- p.5
Chapter 1.2.1 --- Thermodynamics of Phase Separation --- p.5
Chapter 1.2.2 --- Phase Separation by Nucleation and Growth --- p.7
Chapter 1.2.3 --- Cahn's Theory of Spinodal Decomposition --- p.8
Chapter 1.3 --- Experimental Method to Achieve High Undercooling --- p.11
References --- p.14
Figures --- p.15
Chapter Chapter 2: --- Phase Separation in Undercooled Molten Pd80Si20 --- p.23
Abstract --- p.24
Introduction --- p.25
Experimental --- p.29
Results --- p.30
Discussions --- p.36
References --- p.45
Figures --- p.47
Chapter Chapter 3: --- Metastable Liquid Phase Separation in Undercooled Molten Pd40.5Ni40.5P19 --- p.60
Abstract --- p.61
Introduction --- p.62
Experimental --- p.62
Results and Discussions --- p.63
References --- p.68
Figures --- p.69
Chapter Chapter 4: --- Crystallization of Spinodal Decomposed Melts of Pd80Si20 --- p.74
Introduction --- p.75
Experimental --- p.76
Results --- p.77
Discussions --- p.80
References --- p.84
Figures --- p.85
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Separation (Technology) Palladium"

1

Bientinesi, M. Preparation of thin film Pd membranes for H2 separation from synthesis gas and detailed design of a permeability testing unit. Hauppauge, N.Y: Nova Science Publishers, 2009.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Separation (Technology) Palladium"

1

Karnik, Sooraj V., Miltiadis K. Hatalis y Mayuresh V. Kothare. "Palladium based Micro-Membrane for Water Gas Shift Reaction and Hydrogen Gas Separation". En Microreaction Technology, 295–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56763-6_30.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Separation (Technology) Palladium"

1

Pokhitonov, Yu, V. Romanovski y P. Rance. "Distribution of Palladium During Spent Fuel Reprocessing". En ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation. ASMEDC, 2003. http://dx.doi.org/10.1115/icem2003-4766.

Texto completo
Resumen
The principal purpose of spent fuel reprocessing consists in the recovery of the uranium and plutonium and the separation of fission products so as to allow re-use of fissile and fertile isotopes and facilitate disposal of waste elements. Amongst the fission products present in spent nuclear fuel of Nuclear Power Plants (NPPs,) there are considerable quantities of platinum group metals (PGMs): ruthenium, rhodium and palladium. Given current predictions for nuclear power generation, it is predicted that the quantities of palladium to be accumulated by the middle of this century will be comparable with those of the natural sources, and the quantities of rhodium in spent nuclear fuel may even exceed those in natural sources. These facts allow one to consider spent nuclear fuel generated by NPPs as a potential source for creation of a strategic stock of platinum group metals. Despite of a rather strong prediction of growth of palladium consumption, demand for “reactor” palladium in industry should not be expected because it contains a long-lived radioactive isotope 107Pd (half-life 6,5·105 years) and will thus be radioactive for a very considerable period, which, naturally, restricts its possible applications. It is presently difficult to predict all the areas for potential use of “reactor” palladium in the future, but one can envisage that the use of palladium in radwaste reprocessing technology (e.g. immobilization of iodine-129 and trans-plutonium elements) and in the hydrogen energy cycle may play a decisive role in developing the demand for this metal. Realization of platinum metals recovery operation before HLW vitrification will also have one further benefit, namely to simplify the vitrification process, because platinum group metals may in certain circumstances have adverse effects on the vitrification process. The paper will report data on platinum metals (PGM) distribution in spent fuel reprocessing products and the different alternatives of palladium separation flowsheets from HLW are presented. It is shown, that spent fuel dissolution conditions can affect the palladium distribution between solution and insoluble precipitates. The most important factors, which determine the composition and the yield of residues resulting from fuel dissolution, are the temperature and acid concentration. Apparently, a careful selection of fuel dissolution process parameters would make it possible to direct the main part of palladium to the 1st cycle raffinate together with the other fission products. In the authors’ opinion, the development of an efficient technology for palladium recovery requires the conception of a suitable flow-sheet and the choice of optimal regimes of “reactor” palladium recovery concurrently with the resolution of the problem of HLW partitioning when using the same facilities.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Separation (Technology) Palladium"

1

Low cost hydrogen/novel membranes technology for hydrogen separation from synthesis gas, Phase 1. [Palladium-silver/poly(etherimide), polysulfone/poly(dimethylsiloxane)/poly(ether-esteramide)composite membranes]. Office of Scientific and Technical Information (OSTI), enero de 1987. http://dx.doi.org/10.2172/5045913.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía