Siga este enlace para ver otros tipos de publicaciones sobre el tema: Separation (Technology) Palladium.

Artículos de revistas sobre el tema "Separation (Technology) Palladium"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Separation (Technology) Palladium".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Roshan, N. R., S. V. Gorbunov, E. M. Chistov, F. R. Karelin, K. A. Kuterbekov, K. Zh Bekmyrza y E. T. Abseitov. "Palladiuum-based membranes for separation of high-purity hydrogen". Perspektivnye Materialy, n.º 11 (2020): 47–57. http://dx.doi.org/10.30791/1028-978x-2020-6-47-57.

Texto completo
Resumen
In the present study, using the improved technology, high-quality vacuum-tight foils 10 – 20 µm in thickness were prepared from effective Pd – 6 wt. % In – 0.5 wt. % Ru, Pd – 6 wt. % Ru, Pd – 40 wt. % Cu palladium alloys. Using a combination of deformation and annealing modes, the Pd – 40 wt. % Cu alloy foil consisting of the ordered β-phase (97%) with the CsCl-type structure that exhibits the maximum hydrogen permeability in this system. The mechanical properties and hydrogen permeability of the prepared foils were studied and compared with those of alloy foils 50 µm thickness. The thermal concentration dilatation in hydrogen was studied at different temperatures. Data on the dilatation of palladium-based membranes are of primary importance for designing membrane filtering elements and selection of optimal conditions for their operation, since these data determine the operation life membranes. Based on the Pd – 6 wt. % In – 0.5 wt. % Ru alloy, the Pd – 6 wt. % In – 0.5 wt. % Ru – 1.25 wt. % Co alloy was developed; it is characterized by increased strength characteristics and lower α ↔ β hydride transition temperature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Mobarake, Mostafa Dehghani y Leila Samiee. "Preparation of palladium/NaX/PSS membrane for hydrogen separation". International Journal of Hydrogen Energy 41, n.º 1 (enero de 2016): 79–86. http://dx.doi.org/10.1016/j.ijhydene.2015.10.009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Schiavo, Loredana, Lucrezia Aversa, Roberta Tatti, Roberto Verucchi y Gianfranco Carotenuto. "Structural Characterizations of Palladium Clusters Prepared by Polyol Reduction of [PdCl4]2−Ions". Journal of Analytical Methods in Chemistry 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/9073594.

Texto completo
Resumen
Palladium nanoparticles are of great interest in many industrial fields, ranging from catalysis and hydrogen technology to microelectronics, thanks to their unique physical and chemical properties. In this work, palladium clusters have been prepared by reduction of [PdCl4]2−ions with ethylene glycol, in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) as stabilizer. The stabilizer performs the important role of nucleating agent for the Pd atoms with a fast phase separation, since palladium atoms coordinated to the polymer side-groups are forced at short distances during nucleation. Quasispherical palladium clusters with a diameter of ca. 2.6 nm were obtained by reaction in air at 90°C for 2 hours. An extensive materials characterization by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and other characterizations (TGA, SEM, EDS-SEM, and UV-Vis) has been performed in order to evaluate the structure and oxidation state of nanopalladium.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Kilgus, Mirjam, Vanessa Gepert, Nicole Dinges, Clemens Merten, Gerhart Eigenberger y Thomas Schiestel. "Palladium coated ceramic hollow fibre membranes for hydrogen separation". Desalination 200, n.º 1-3 (noviembre de 2006): 95–96. http://dx.doi.org/10.1016/j.desal.2006.03.255.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Ghohe, Farangis Mahdizadeh y Faramarz Hormozi. "A numerical investigation on H2 separation by a conical palladium membrane". International Journal of Hydrogen Energy 44, n.º 21 (abril de 2019): 10653–65. http://dx.doi.org/10.1016/j.ijhydene.2019.02.149.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Suhaimi, Hani Shazwani Mohd, Choe Peng Leo y Abdul Latif Ahmad. "Hydrogen separation using polybenzimidazole membrane with palladium nanoparticles stabilized by polyvinylpyrrolidone". International Journal of Energy Research 45, n.º 10 (20 de abril de 2021): 15171–81. http://dx.doi.org/10.1002/er.6793.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Klette, H. y R. Bredesen. "Sputtering of very thin palladium-alloy hydrogen separation membranes". Membrane Technology 2005, n.º 5 (mayo de 2005): 7–9. http://dx.doi.org/10.1016/s0958-2118(05)70414-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Hu, Xiaojuan, Yan Huang, Shili Shu, Yiqun Fan y Nanping Xu. "Toward effective membranes for hydrogen separation: Multichannel composite palladium membranes". Journal of Power Sources 181, n.º 1 (junio de 2008): 135–39. http://dx.doi.org/10.1016/j.jpowsour.2008.02.091.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Ilie, Sorin, Adrian Miuţescu, Mircea Stoianovici y Gabriela Mitran. "Recovery of Precious Metals from Catalytic Converters of Automobiles by Hydrometallurgical Solid-Liquid Extraction Processes". Advanced Materials Research 837 (noviembre de 2013): 105–9. http://dx.doi.org/10.4028/www.scientific.net/amr.837.105.

Texto completo
Resumen
Today, among the basic requirements to be fulfilled by an automobile, those relating to environmental protection and recyclability are of great importance. This paper aims to present a new technological solution to recover rare metals - Platinum, Palladium and Rhodium - from automotive used catalysts, based on hydrometallurgical method of solid-liquid extraction. Following the theoretical and experimental researches, were established the technological sequences which must be carried for recovering precious metals from used automotive catalysts, in the pilot phase. The proposed technology has been applied for a quantity of 10 kg of used automotive catalysts of ceramic monolithic type, at the end of the recovery process and selective separation, resulting the following recovery efficiencies: 95 % for Platinum, 95 % for Palladium and 92 % for Rhodium. Finally, there were highlighted the main advantages of hydrometallurgical processes: versatility, economicity, high efficiencies and relatively low costs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Nam, Seung-Eun, Yeon-Kyung Seong, Jae Wook Lee y Kew-Ho Lee. "Preparation of highly stable palladium alloy composite membranes for hydrogen separation". Desalination 236, n.º 1-3 (enero de 2009): 51–55. http://dx.doi.org/10.1016/j.desal.2007.10.050.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Sajjan, Pradeep, Vignesh Nayak, Mahesh Padaki, V. Yu Zadorozhnyy, Semen N. Klyamkin y P. A. Konik. "Fabrication of Cellulose Acetate Film through Blending Technique with Palladium Acetate for Hydrogen Gas Separation". Energy & Fuels 34, n.º 9 (18 de agosto de 2020): 11699–707. http://dx.doi.org/10.1021/acs.energyfuels.0c02030.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Ilias, S., N. Su, U. I. Udo-Aka y F. G. King. "Application of Electroless Deposited Thin-Film Palladium Composite Membrane in Hydrogen Separation". Separation Science and Technology 32, n.º 1-4 (enero de 1997): 487–504. http://dx.doi.org/10.1080/01496399708003211.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Oyinbo, Sunday Temitope, Tien-Chien Jen, Samson A. Aasa, Olayinka Oluwatosin Abegunde y Yudan Zhu. "Development of palladium nanoparticles deposition on a copper substrate using a molecular dynamic (MD) simulation: a cold gas dynamic spray process". Manufacturing Review 7 (2020): 29. http://dx.doi.org/10.1051/mfreview/2020028.

Texto completo
Resumen
The objective of this study is to create an ultra-thin palladium foil with a molecular dynamic (MD) simulation technique on a copper substrate surface. The layer formed onto the surface consists of a singular 3D palladium (Pd) nanoparticle structure which, by the cold gas dynamic spray (CGDS) technique, is especially incorporated into the low-cost copper substrate. Pd and Cu have been chosen for their possible hydrogen separation technology applications. The nanoparticles were deposited to the substrate surface with an initial velocity ranging from 500 to 1500 m/s. The particle radius was 1 to 4 nm and an angle of impact of 90° at room temperature of 300 K, in order to evaluate changes in the conduct of deformation caused by effects of size. The deformation mechanisms study revealed that the particle and substrate interface is subject to the interfacial jet formation and adiabatic softening resulting in a uniform layering. However, shear instabilities at high impact speeds were confirmed by the evolution of von Mises shear strain, temperature evolution and plastic strain. The results of this study can be used to further our existing knowledge in the complex spraying processes of cold gas dynamic spray technology.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

TIMOFEEV, N., F. BERSENEVA y V. MAKAROV. "New palladium-based membrane alloys for separation of gas mixtures to generate ultrapure hydrogen". International Journal of Hydrogen Energy 19, n.º 11 (noviembre de 1994): 895–98. http://dx.doi.org/10.1016/0360-3199(94)90042-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Sadyrbaeva, T. Zh. "Separation of Palladium(II) and Platinum(IV) by Bulk Liquid Membranes during Electrodialysis". Separation Science and Technology 41, n.º 14 (octubre de 2006): 3213–28. http://dx.doi.org/10.1080/01496390600725653.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Paglieri, S. N. y J. D. Way. "INNOVATIONS IN PALLADIUM MEMBRANE RESEARCH". Separation and Purification Methods 31, n.º 1 (31 de julio de 2002): 1–169. http://dx.doi.org/10.1081/spm-120006115.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Sánchez, J. M., M. M. Barreiro y M. Maroño. "Bench-scale study of separation of hydrogen from gasification gases using a palladium-based membrane reactor". Fuel 116 (enero de 2014): 894–903. http://dx.doi.org/10.1016/j.fuel.2013.02.051.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

FARHADI, KHALIL y MOJTABA SHAMSIPUR. "Separation Study of Palladium through a Bulk Liquid Membrane Containing Thioridazine·HCl and Oleic Acid". Separation Science and Technology 35, n.º 6 (6 de enero de 2000): 859–68. http://dx.doi.org/10.1081/ss-100100197.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Kakoi, Takahiko, Masahiro Goto y Fumiyuki Nakashio. "Separation of Palladium and Silver from a Nitric Acid Solution by Liquid Surfactant Membranes". Separation Science and Technology 32, n.º 8 (mayo de 1997): 1415–32. http://dx.doi.org/10.1080/01496399708000969.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Tripathi, S. C., U. Jambunathan, P. K. Dey, R. Kameshwaran y Manmohan Kumar. "Some Parametric Studies on Separation of Palladium from Perchloric Acid Medium by Radiolytic Reduction". Separation Science and Technology 41, n.º 1 (enero de 2006): 217–31. http://dx.doi.org/10.1080/01496390500445709.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Moon, Jei‐Kwon, Chong‐Hun Jung, Byung‐Chul Lee y Chae‐Ho Shin. "Adsorptive Separation of Palladium from a Simulated Nuclear Waste Solution with Activated Carbon Fibers". Separation Science and Technology 43, n.º 3 (febrero de 2008): 567–81. http://dx.doi.org/10.1080/01496390701784146.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Kanagare, Anant B., K. K. Singh, K. K. Bairwa, R. Ruhela, V. S. Shinde, M. Kumar y A. K. Singh. "Dithiodiglycolamide impregnated XAD-16 beads for separation and recovery of palladium from acidic waste". Journal of Environmental Chemical Engineering 4, n.º 3 (septiembre de 2016): 3357–63. http://dx.doi.org/10.1016/j.jece.2016.06.031.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Jiang, Ji, Syed Islam, Qiaobei Dong, Fanglei Zhou, Shiguang Li y Miao Yu. "Deposition of an ultrathin palladium (Pd) coating on SAPO-34 membranes for enhanced H2/N2 separation". International Journal of Hydrogen Energy 45, n.º 58 (noviembre de 2020): 33648–56. http://dx.doi.org/10.1016/j.ijhydene.2020.09.087.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Trucillo, Paolo, Ernesto Di Maio, Amedeo Lancia y Francesco Di Natale. "Selective Gold and Palladium Adsorption from Standard Aqueous Solutions". Processes 9, n.º 8 (25 de julio de 2021): 1282. http://dx.doi.org/10.3390/pr9081282.

Texto completo
Resumen
The intensive exploitation of resources on a global level has led to a progressive depletion of mineral reserves, which were proved to be insufficient to meet the high demand for high-technological devices. On the other hand, the continuous production of Waste from Electrical and Electronic Equipment (WEEE) is causing serious environmental problems, due to the complex composition of WEEE, which makes the recycling and reuse particularly challenging. The average metal content of WEEE is estimated to be around 30% and varies depending on the manufacturing period and brand of production. It contains base metals and precious metals, such as gold and palladium. The remaining 70% of WEEEs is composed of plastics, resins, and glassy materials. The recovery of metals from WEEEs is characterized by two main processes well represented by the literature: Pyrometallurgy and hydrometallurgy. Both of them require the pre-treatment of WEEEs, such as dismantling and magnetic separation of plastics. In this work, the selective adsorption of precious metals has been attempted, using copper, gold, and palladium aqueous solutions and mixtures of them. A screening on different adsorbent materials such as granular activated carbons and polymers, either as pellets or foams, has been performed. Among these, PolyEther Block Amide (PEBA) was elected as the most performing adsorbent in terms of gold selectivity over copper. Spent PEBA has been then characterized using scanning electron microscope, coupled with energy dispersive spectroscopy, demonstrating the predominant presence of gold in most analyzed sites, either in the pellet or foam form.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Chen, Wei-Hsin y Jau-Jang Lu. "Hydrogen production from water gas shift reactions in association with separation using a palladium membrane tube". International Journal of Energy Research 36, n.º 3 (13 de diciembre de 2010): 346–54. http://dx.doi.org/10.1002/er.1801.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Ji, Yeling, Xuebing Ma, Xinjun Wu y Qiang Wang. "Titanium phosphonate-supported palladium catalyst for the hydrogenation of acetophenone with one-phase catalysis and two-phase separation". Applied Catalysis A: General 332, n.º 2 (noviembre de 2007): 247–56. http://dx.doi.org/10.1016/j.apcata.2007.08.022.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Qiao, Ailing, Ke Zhang, Ye Tian, Lili Xie, Huajiang Luo, Y. S. Lin y Yongdan Li. "Hydrogen separation through palladium–copper membranes on porous stainless steel with sol–gel derived ceria as diffusion barrier". Fuel 89, n.º 6 (junio de 2010): 1274–79. http://dx.doi.org/10.1016/j.fuel.2009.12.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Fernández, Alberto, Cintia Casado, David Alique, José Antonio Calles y Javier Marugán. "Modeling of H2 Permeation through Electroless Pore-Plated Composite Pd Membranes Using Computational Fluid Dynamics". Membranes 11, n.º 2 (9 de febrero de 2021): 123. http://dx.doi.org/10.3390/membranes11020123.

Texto completo
Resumen
This work focused on the computational fluid dynamics (CFD) modeling of H2/N2 separation in a membrane permeator module containing a supported dense Pd-based membrane that was prepared using electroless pore-plating (ELP-PP). An easy-to-implement model was developed based on a source–sink pair formulation of the species transport and continuity equations. The model also included the Darcy–Forcheimer formulation for modeling the porous stainless steel (PSS) membrane support and Sieverts’ law for computing the H2 permeation flow through the dense palladium film. Two different reactor configurations were studied, which involved varying the hydrogen flow permeation direction (in–out or out–in). A wide range of experimental data was simulated by considering the impact of the operating conditions on the H2 separation, such as the feed pressure and the H2 concentration in the inlet stream. Simulations of the membrane permeator device showed an excellent agreement between the predicted and experimental data (measured as permeate and retentate flows and H2 separation). Molar fraction profiles inside the permeator device for both configurations showed that concentration polarization near the membrane surface was not a limit for the hydrogen permeation but could be useful information for membrane reactor design, as it showed the optimal length of the reactor.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Zhao, Renni, Rakesh Govind y Naotsugu Itoh. "Studies on Palladium Membrane Reactor for Dehydrogenation Reaction". Separation Science and Technology 25, n.º 13-15 (octubre de 1990): 1473–88. http://dx.doi.org/10.1080/01496399008050404.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Fu, Jianshun, Shigeto Nakamura y Kenichi Akiba. "Transport of Palladium(II) through Trioctylamine Liquid Membrane". Separation Science and Technology 30, n.º 5 (marzo de 1995): 793–803. http://dx.doi.org/10.1080/01496399508013892.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Ishitsuka, M., S. Hara, M. Mukaida, K. Haraya, K. Kita y K. Kato. "Hydrogen separation from dry gas mixtures using a membrane module consisting of palladium-coated amorphous-alloy". Desalination 234, n.º 1-3 (diciembre de 2008): 293–99. http://dx.doi.org/10.1016/j.desal.2007.09.097.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Asai, Junki y Kei Noda. "Temperature dependence of photoinduced hydrogen production and simultaneous separation in TiO2 nanotubes/palladium bilayer membrane". Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 36, n.º 4 (julio de 2018): 04H101. http://dx.doi.org/10.1116/1.5029281.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Guibal, Eric y Thierry Vincent. "Palladium Recovery from Dilute Effluents using Biopolymer‐Immobilized Extractant". Separation Science and Technology 41, n.º 11 (agosto de 2006): 2533–53. http://dx.doi.org/10.1080/01496390600742765.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Suhaimi, H. S. M., C. P. Leo y A. L. Ahmad. "Preparation and characterization of polysulfone mixed matrix membrane incorporated with palladium nanoparticles in the inversed microemulsion for hydrogen separation". Chemical Engineering and Processing: Process Intensification 77 (marzo de 2014): 30–37. http://dx.doi.org/10.1016/j.cep.2014.01.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

BERSENEVA, F., N. TIMOFEEV y A. ZAKHAROV. "Alloys of palladium with metals of the platinum group as hydrogen-permeable membrane components at high temperatures of gas separation". International Journal of Hydrogen Energy 18, n.º 1 (enero de 1993): 15–18. http://dx.doi.org/10.1016/0360-3199(93)90097-t.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Tyson, David R. y Renato G. Bautista. "Leaching Kinetics of Platinum and Palladium from Spent Automotive Catalysts". Separation Science and Technology 22, n.º 2-3 (febrero de 1987): 1149–67. http://dx.doi.org/10.1080/01496398708069004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Moordini, Roohollah, Alireza Badiei y Daryoush Afzali. "Separation of trace amounts of palladium from water and wastewater samples using MPTMS-SBA-15 mesoporous silica sorbents". Separation Science and Technology 52, n.º 18 (28 de septiembre de 2017): 2829–36. http://dx.doi.org/10.1080/01496395.2017.1377248.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Meng, Lifen, Jiaxi Cheng y Yaling Yang. "Supramolecular solvent-based extraction coupled with vortex-mixing for determination of palladium and silver in water samples by flame atomic absorption spectrometry". Water Science and Technology 69, n.º 3 (18 de noviembre de 2013): 580–86. http://dx.doi.org/10.2166/wst.2013.749.

Texto completo
Resumen
A simple and practical extraction method of supramolecular solvents (SUPRAS) was developed for separation and enrichment of trace amounts of palladium (Pd) and silver (Ag) in water samples prior to flame atomic absorption spectrometry (FAAS) analysis. The SUPRAS selected was made up of an aqueous solution containing tetrahydrofuran and nonanoic acid. Pd and Ag reacted with diethyldithiocarbamate to form hydrophobic chelates, which were extracted into the vesicles of SUPRAS. Different parameters such as the concentration of chelating agent, sample pH, supramolecular solvent and the effect of foreign ions were studied. Under the optimal conditions, the linear ranges of Pd and Ag were from 10 to 1,000 μg/L. The relative recoveries of Pd and Ag in tap and river water samples at the spiking level of 10 ug/mL ranged from 90.8 to 116%. The relative standard deviations were 3.6–4.0% (n = 9), the limits of detection were 2.8 and 1.9 μg/L and the enrichment factors were 36 and 18 for Pd and Ag, respectively. The quantification limits were 3.2 and 2.4 μg/L. The method was successfully applied to the determination of Pd and Ag in water samples.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Hassanien, Mohamed M. y Khaled S. Abou-El-Sherbini. "Selective separation of palladium (II) from precious metal ions using thiosemicarbazone derivatives from acidic media by solid phase and solvent extractions". Desalination and Water Treatment 16, n.º 1-3 (abril de 2010): 329–38. http://dx.doi.org/10.5004/dwt.2010.1059.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Endo, Naruki, Norikazu Dezawa, Yasuhiro Komo y Tetsuhiko Maeda. "One-step electroplating of palladium–copper alloy layers on a vanadium membrane for hydrogen separation: Quick, easy, and low-cost preparation". International Journal of Hydrogen Energy 46, n.º 64 (septiembre de 2021): 32570–76. http://dx.doi.org/10.1016/j.ijhydene.2021.07.114.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Kakoi, Takahiko, Naoki Horinouchi, Masahiro Goto y Fumiyuki Nakashio. "Recovery of Palladium from an Industrial Wastewater Using Liquid Surfactant Membranes". Separation Science and Technology 31, n.º 3 (febrero de 1996): 381–99. http://dx.doi.org/10.1080/01496399608000702.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Rizvi, G. H., J. N. Mathur, M. S. Murali y R. H. Iyer. "Recovery of Fission Product Palladium from Acidic High Level Waste Solutions". Separation Science and Technology 31, n.º 13 (julio de 1996): 1805–16. http://dx.doi.org/10.1080/01496399608001011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Yasuda, Isamu y Yoshinori Shirasaki. "Development and Demonstration of Membrane Reformer System for Highly-Efficient Hydrogen Production from Natural Gas". Materials Science Forum 539-543 (marzo de 2007): 1403–8. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.1403.

Texto completo
Resumen
A membrane reformer is composed of a steam reformer equipped with palladium-based alloy modules in its catalyst bed, and can perform steam reforming reaction and hydrogen separation processes simultaneously, without shift converters and purification systems. It thus can be configured much more compactly and can provide much higher efficiency than the conventional technologies. We have manufactured and tested a world-largest scale membrane reformer with a rated hydrogen production capacity of 40 Nm3/h. The operation test has successfully been proceeding for over 3,000 hours in one of the hydrogen refueling stations in Tokyo, which has demonstrated the potential advantages of the membrane reformer: simple system configuration as benefited by single-step production of high-purity (99.999% level) hydrogen from natural gas, compactness and energy efficiency as high as 70 to 76% under both the rated and partial-load operating conditions. The system has thus been proved to give the highest efficiency in producing hydrogen from natural gas among various competing technologies. The paper will present the latest achievements and the future plan of the membrane reformer technology development.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Vincent, Thierry, Eric Guibal y Renato Chiarizia. "Palladium Recovery by Reactive Precipitation using a Cyanex 301‐Based Stable Emulsion". Separation Science and Technology 42, n.º 16 (diciembre de 2007): 3517–36. http://dx.doi.org/10.1080/01496390701626735.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Dakshinamoorthy, A., P. S. Dhami, P. W. Naik, N. L. Dudwadkar, S. K. Munshi, P. K. Dey y V. Venugopal. "Separation of palladium from high level liquid waste of PUREX origin by solvent extraction and precipitation methods using oximes". Desalination 232, n.º 1-3 (noviembre de 2008): 26–36. http://dx.doi.org/10.1016/j.desal.2007.11.052.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Iyer, N., R. Ruhela, A. Das, M. Yadav, A. K. Singh y J. K. Chakravartty. "Novel imino diacetamide grafted styrene divinyl benzene resin for separation and recovery of palladium from simulated high level liquid waste". Separation Science and Technology 51, n.º 12 (17 de junio de 2016): 1971–78. http://dx.doi.org/10.1080/01496395.2016.1199570.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Lee, S. H. y H. Chung. "Ion Exchange Characteristics of Palladium and Ruthenium from a Simulated Radioactive Liquid Waste". Separation Science and Technology 38, n.º 14 (9 de enero de 2003): 3459–72. http://dx.doi.org/10.1081/ss-120023411.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Khogare, B. T., M. A. Anuse, P. B. Piste y B. N. Kokare. "Development of a solvent extraction system with 4-heptylaminopyridine for the selective separation of palladium(II) from synthetic mixtures, catalysts and water samples". Desalination and Water Treatment 57, n.º 45 (28 de diciembre de 2015): 21634–44. http://dx.doi.org/10.1080/19443994.2015.1124054.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Vatta, Laura L., Jurjen Kramer y Klaus R. Koch. "Diethylenetriamine Functionalized Silica Coated Magnetite Nanoparticles for Selective Palladium Ion Extraction from Aqueous Solutions". Separation Science and Technology 42, n.º 9 (junio de 2007): 1985–2002. http://dx.doi.org/10.1080/01496390701401402.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Uheida, Abdusalam, Yu Zhang y Mamoun Muhammed. "Thermodynamic Modeling of Extraction Equilibria of Platinum and Palladium with Nonylthiourea from Hydrochloric Acid Media". Separation Science and Technology 39, n.º 15 (2 de enero de 2005): 3665–77. http://dx.doi.org/10.1081/ss-200039123.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía