Siga este enlace para ver otros tipos de publicaciones sobre el tema: Shack- Hartmann Sensor.

Artículos de revistas sobre el tema "Shack- Hartmann Sensor"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Shack- Hartmann Sensor".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Siv, Julie, Rafael Mayer, Guillaume Beaugrand, Guillaume Tison, Rémy Juvénal y Guillaume Dovillaire. "Testing and characterization of challenging optics and optical systems with Shack Hartmann wavefront sensors". EPJ Web of Conferences 215 (2019): 06003. http://dx.doi.org/10.1051/epjconf/201921506003.

Texto completo
Resumen
The Shack-Hartman wavefront sensor is a common metrology tool in the field of laser, adaptive optics and astronomy. However, this technique is still scarcely used in optics and optical system metrology. With the development of manufacturing techniques and the increasing need for optical characterization in the industry, the Shack-Hartmann wavefront sensor emerges as an efficient complementary tool to the well-established Fizeau interferometry for optical system metrology. Moreover, the raise of smart vehicles equipped with optical sensors and augmented reality, the optical characterization of glass and transparent flat materials becomes an issue that can be addressed with Shack-Hartmann sensors. Aberration measurements of challenging optics will be presented such as optical filters, thin flat optics, aspheric lenses and large optical assemblies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Seifert, L., J. Liesener y H. J. Tiziani. "The adaptive Shack–Hartmann sensor". Optics Communications 216, n.º 4-6 (febrero de 2003): 313–19. http://dx.doi.org/10.1016/s0030-4018(02)02351-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Rha, Jungtae. "Reconfigurable Shack-Hartmann wavefront sensor". Optical Engineering 43, n.º 1 (1 de enero de 2004): 251. http://dx.doi.org/10.1117/1.1625950.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Jain, Prateek y Jim Schwiegerling. "RGB Shack–Hartmann wavefront sensor". Journal of Modern Optics 55, n.º 4-5 (20 de febrero de 2008): 737–48. http://dx.doi.org/10.1080/09500340701467728.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

MANSURIPUR, MASUD. "The Shack-Hartmann Wavefront Sensor". Optics and Photonics News 10, n.º 4 (1 de abril de 1999): 48. http://dx.doi.org/10.1364/opn.10.4.000048.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Zhao, Liping, Wenjiang Guo, Xiang Li y I.-Ming Chen. "Reference-free Shack–Hartmann wavefront sensor". Optics Letters 36, n.º 15 (19 de julio de 2011): 2752. http://dx.doi.org/10.1364/ol.36.002752.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Xia, Fei, David Sinefeld, Bo Li y Chris Xu. "Two-photon Shack–Hartmann wavefront sensor". Optics Letters 42, n.º 6 (10 de marzo de 2017): 1141. http://dx.doi.org/10.1364/ol.42.001141.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Podanchuk, Dmytro V. "Shack-Hartmann wavefront sensor with holographic memory". Optical Engineering 42, n.º 11 (1 de noviembre de 2003): 3389. http://dx.doi.org/10.1117/1.1614264.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Pfund, Johannes, Norbert Lindlein y Johannes Schwider. "Misalignment effects of the Shack–Hartmann sensor". Applied Optics 37, n.º 1 (1 de enero de 1998): 22. http://dx.doi.org/10.1364/ao.37.000022.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Basden, Alastair, Deli Geng, Dani Guzman, Tim Morris, Richard Myers y Chris Saunter. "Shack-Hartmann sensor improvement using optical binning". Applied Optics 46, n.º 24 (14 de agosto de 2007): 6136. http://dx.doi.org/10.1364/ao.46.006136.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Martínez-Cuenca, Raúl, Vicente Durán, Vicent Climent, Enrique Tajahuerce, Salvador Bará, Jorge Ares, Justo Arines, Manuel Martínez-Corral y Jesús Lancis. "Reconfigurable Shack–Hartmann sensor without moving elements". Optics Letters 35, n.º 9 (22 de abril de 2010): 1338. http://dx.doi.org/10.1364/ol.35.001338.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Akondi, Vyas y Alfredo Dubra. "Shack-Hartmann wavefront sensor optical dynamic range". Optics Express 29, n.º 6 (3 de marzo de 2021): 8417. http://dx.doi.org/10.1364/oe.419311.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Ko, Jonathan y Christopher C. Davis. "Comparison of the plenoptic sensor and the Shack–Hartmann sensor". Applied Optics 56, n.º 13 (24 de abril de 2017): 3689. http://dx.doi.org/10.1364/ao.56.003689.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

LI Wen-jie, 李文杰, 穆全全 MU Quan-quan, 王少鑫 WANG Shao-xin, 王海萍 WANG Hai-ping, 杨程亮 YANG Cheng-liang, 曹召良 CAO Zhao-liang y 宣丽 XUAN Li. "High precision adjustable mechanism for Shack-Hartmann sensor". Optics and Precision Engineering 23, n.º 10 (2015): 2852–59. http://dx.doi.org/10.3788/ope.20152310.2852.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Yang Jinsheng, 杨金生, 饶学军 Rao Xuejun y 饶长辉 Rao Changhui. "A Corneal Topography Based on Hartmann-Shack Sensor". Chinese Journal of Lasers 37, n.º 3 (2010): 826–31. http://dx.doi.org/10.3788/cjl20103703.0826.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Primot, Jérôme. "Theoretical description of Shack–Hartmann wave-front sensor". Optics Communications 222, n.º 1-6 (julio de 2003): 81–92. http://dx.doi.org/10.1016/s0030-4018(03)01565-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Hampson, KM, SS Chin y EAH Mallen. "Binocular Shack–Hartmann sensor for the human eye". Journal of Modern Optics 55, n.º 4-5 (20 de febrero de 2008): 703–16. http://dx.doi.org/10.1080/09500340701469674.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Gong, Hai, Oleg Soloviev, Dean Wilding, Paolo Pozzi, Michel Verhaegen y Gleb Vdovin. "Holographic imaging with a Shack-Hartmann wavefront sensor". Optics Express 24, n.º 13 (13 de junio de 2016): 13729. http://dx.doi.org/10.1364/oe.24.013729.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Xia, Mingliang, Chao Li, Lifa Hu, Zhaoliang Cao, Quanquan Mu y Li Xuan. "Shack-Hartmann wavefront sensor with large dynamic range". Journal of Biomedical Optics 15, n.º 2 (2010): 026009. http://dx.doi.org/10.1117/1.3369810.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Arines, Justo, Paula Prado y Salvador Bará. "Pupil tracking with a Hartmann-Shack wavefront sensor". Journal of Biomedical Optics 15, n.º 3 (2010): 036022. http://dx.doi.org/10.1117/1.3447922.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Li, Chao, Mingliang Xia, Zhaonan Liu, Dayu Li y Li Xuan. "Optimization for high precision Shack–Hartmann wavefront sensor". Optics Communications 282, n.º 22 (noviembre de 2009): 4333–38. http://dx.doi.org/10.1016/j.optcom.2009.07.058.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Seifert, L., H. J. Tiziani y W. Osten. "Wavefront reconstruction with the adaptive Shack–Hartmann sensor". Optics Communications 245, n.º 1-6 (enero de 2005): 255–69. http://dx.doi.org/10.1016/j.optcom.2004.09.074.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Zhariy, Mariya, Andreas Neubauer, Matthias Rosensteiner y Ronny Ramlau. "Cumulative wavefront reconstructor for the Shack-Hartmann sensor". Inverse Problems & Imaging 5, n.º 4 (2011): 893–913. http://dx.doi.org/10.3934/ipi.2011.5.893.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Potanin, S. A. y P. S. Kotlyar. "Shack-Hartmann wavefront sensor in a convergent beam". Astronomy Letters 32, n.º 6 (junio de 2006): 427–30. http://dx.doi.org/10.1134/s1063773706060077.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Lane, R. G. y M. Tallon. "Wave-front reconstruction using a Shack–Hartmann sensor". Applied Optics 31, n.º 32 (10 de noviembre de 1992): 6902. http://dx.doi.org/10.1364/ao.31.006902.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Ma, Chenhao, Yuegang Fu, Wenjun He, Yan Liu, Mingzhao Ouyang y Jiake Wang. "Hartmann–Shack sensor based micro-scanning image detection". Optik 126, n.º 6 (marzo de 2015): 609–13. http://dx.doi.org/10.1016/j.ijleo.2015.01.036.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Guthery, Charlotte E. y Michael Hart. "Pyramid and Shack–Hartmann hybrid wave-front sensor". Optics Letters 46, n.º 5 (19 de febrero de 2021): 1045. http://dx.doi.org/10.1364/ol.417305.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Song Jingwei, 宋静威, 李常伟 Li Changwei y 张思炯 Zhang Sijiong. "基于离焦型夏克-哈特曼传感器的定量相位成像技术". Acta Optica Sinica 41, n.º 9 (2021): 0911002. http://dx.doi.org/10.3788/aos202141.0911002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Liang Chun, 梁春, 廖文和 Liao Wenhe, 沈建新 Shen Jianxin y 周宇 Zhou Yu. "An Adaptive Detecting Centroid Method for Hartmann-Shack Wavefront Sensor". Chinese Journal of Lasers 36, n.º 2 (2009): 430–34. http://dx.doi.org/10.3788/cjl20093602.0430.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Roh, Kyung-Wan, Tae-Kyoung Uhm, Ji-Yeon Kim, Sung-Kie Youn y Jun Ho Lee. "Noise-Insensitive Centroiding Algorithm for a Shack-Hartmann Sensor". Journal of the Korean Physical Society 52, n.º 1 (15 de enero de 2008): 160–69. http://dx.doi.org/10.3938/jkps.52.160.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Xie Hongsheng, 解洪升, 杨乐宝 Yang Lebao, 李大禹 Li Dayu, 宣丽 Xuan Li y 夏明亮 Xia Mingliang. "Influence of Chromatic Aberration on Shack-Hartmann Wavefront Sensor". Laser & Optoelectronics Progress 52, n.º 3 (2015): 030801. http://dx.doi.org/10.3788/lop52.030801.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Kanev, Fedor, Valerii Aksenov y Igor Veretekhin. "Registration of Optical Vortices by the Shack – Hartmann Sensor". Vestnik RFFI 4, n.º 100 (15 de octubre de 2018): 8–10. http://dx.doi.org/10.22204/2410-4639-2018-100-04-8-10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Baik, Sung-Hoon, Seung-Kyu Park, Cheol-Jung Kim y Byungheon Cha. "A center detection algorithm for Shack–Hartmann wavefront sensor". Optics & Laser Technology 39, n.º 2 (marzo de 2007): 262–67. http://dx.doi.org/10.1016/j.optlastec.2005.08.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Carmon, Yuval y Erez N. Ribak. "Phase retrieval by demodulation of a Hartmann–Shack sensor". Optics Communications 215, n.º 4-6 (enero de 2003): 285–88. http://dx.doi.org/10.1016/s0030-4018(02)02254-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Oliveira, O. G., D. W. de Lima Monteiro y R. F. O. Costa. "Optimized microlens-array geometry for Hartmann–Shack wavefront sensor". Optics and Lasers in Engineering 55 (abril de 2014): 155–61. http://dx.doi.org/10.1016/j.optlaseng.2013.11.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Akondi, Vyas, Claas Falldorf, Susana Marcos y Brian Vohnsen. "Phase unwrapping with a virtual Hartmann-Shack wavefront sensor". Optics Express 23, n.º 20 (21 de septiembre de 2015): 25425. http://dx.doi.org/10.1364/oe.23.025425.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Aftab, Maham, Heejoo Choi, Rongguang Liang y Dae Wook Kim. "Adaptive Shack-Hartmann wavefront sensor accommodating large wavefront variations". Optics Express 26, n.º 26 (18 de diciembre de 2018): 34428. http://dx.doi.org/10.1364/oe.26.034428.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Zou, Weiyao, Kevin P. Thompson y Jannick P. Rolland. "Differential Shack-Hartmann curvature sensor: local principal curvature measurements". Journal of the Optical Society of America A 25, n.º 9 (21 de agosto de 2008): 2331. http://dx.doi.org/10.1364/josaa.25.002331.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Tiziani, H. J. y J. H. Chen. "Shack-Hartmann sensor for fast infrared wave-front testing". Journal of Modern Optics 44, n.º 3 (marzo de 1997): 535–41. http://dx.doi.org/10.1080/09500349708232919.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Ares, M., S. Royo y J. Caum. "Shack-Hartmann sensor based on a cylindrical microlens array". Optics Letters 32, n.º 7 (5 de marzo de 2007): 769. http://dx.doi.org/10.1364/ol.32.000769.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Anugu, Narsireddy y J. P. Lancelot. "Study of atmospheric turbulence with Shack Hartmann wavefront sensor". Journal of Optics 42, n.º 2 (26 de enero de 2013): 128–40. http://dx.doi.org/10.1007/s12596-012-0112-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

YIN, XIAOMING, LIPING ZHAO, XIANG LI y ZHONGPING FANG. "ONLINE SURFACE MEASUREMENT WITH DIGITAL SHACK–HARTMANN WAVEFRONT SENSOR". International Journal of Nanoscience 09, n.º 03 (junio de 2010): 123–33. http://dx.doi.org/10.1142/s0219581x10006715.

Texto completo
Resumen
Shack–Hartmann wavefront sensor splits the incident wavefront into many subsections and transfers the distorted wavefront detection into the centroid measurement. The accuracy of the centroid measurement determines the accuracy of the SHWS. In this paper, we have presented an automatic centroid measurement method based on the image processing technology for practical applications of the digital SHWS in surface profile measurement. The method can detect the centroid of each focal spot accurately and robustly by eliminating the influences of various noises. Based on this centroid detection method, we have developed a digital SHWS system which can automatically detect centroids of focal spots, reconstruct the wavefront, and measure the 3D profile of the surface. The experimental results demonstrate that the system has good accuracy, repeatability and compatibility to optical misalignment. The system is suitable for online applications of surface measurement.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Liang, C., W. H. Liao y J. X. Sheng. "Parameter Calibration of Hartmann-Shack Wavefront Sensor Based on Mode-Construction Algorithm". Key Engineering Materials 426-427 (enero de 2010): 638–42. http://dx.doi.org/10.4028/www.scientific.net/kem.426-427.638.

Texto completo
Resumen
The principle of Hartmann-Shack wavefront sensor decided that the distance between micro-lens array and the CCD is the essence of reconstruction algorithm. Because of lacking way to measure the parameter and the existing of assembly error, it will obviously cause error by using the micro-lens focus instead of actual parameter. After analyzing the Zernike polynomial for describing wavrfront aberration, a new Self-reference method is given in this paper to calibrate the parameter. The method is based on the truth that the primary aberration of point light source is defocusing amount. Through this way, the requirement of sensor assembly-precision is reduced, and the detection accuracy of Hartmann-Shack sensor is also improved in the meanwhile. Satisfying results has been achieved under the normal experimental condition using the method given in this paper.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Canales Pacheco, Benito. "Sensor nulo de Shack-Hartmann para evaluar una superficie cóncava esférica y una parabólica / Null Shack-Hartmann Sensor for evaluating a concave spherical surface and a satellite dish". RECI Revista Iberoamericana de las Ciencias Computacionales e Informática 4, n.º 8 (14 de enero de 2016): 49. http://dx.doi.org/10.23913/reci.v4i8.32.

Texto completo
Resumen
Actualmente existen muchas pruebas ópticas que analizan una superficie o un sistema óptico. Según la literatura científica las hay de dos clases, dependiendo del método que utilicen: las denominadas no interferométrícas, es decir, la prueba de Hartmann, Alambre, Estrella, Foucault, Ronchi [1]. Dichas pruebas permiten obtener información sobre la derivada del frente de onda (∂w/∂y). Por otro lado, están las denominadas pruebas interferométricas, por ejemplo: el Interferómetro de Tyman Green, Fizeau, Newton, Murty (desplazamiento lateral) [2]. Con este tipo de pruebas se obtiene información directa del frente de onda (W). El presente trabajo utiliza el principio físico de la prueba de Hartmann para construir un sensor de frente de onda tipo Shack-Hartmann, que permita evaluar una superficie óptica esférica y una parabólica.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Abecassis, Úrsula, Davies de Lima Monteiro, Luciana Salles, Carlos de Moraes Cruz y Pablo Agra Belmonte. "Impact of CMOS Pixel and Electronic Circuitry in the Performance of a Hartmann-Shack Wavefront Sensor". Sensors 18, n.º 10 (29 de septiembre de 2018): 3282. http://dx.doi.org/10.3390/s18103282.

Texto completo
Resumen
This work presents a numerical simulation of a Hartmann-Shack wavefront sensor (WFS) that assesses the impact of integrated electronic circuitry on the sensor performance, by evaluating a full detection chain encompassing wavefront sampling, photodetection, electronic circuitry and wavefront reconstruction. This platform links dedicated C algorithms for WFS to a SPICE circuit simulator for integrated electronics. The complete codes can be easily replaced in order to represent different detection or reconstruction methods, while the circuit simulator employs reliable models of either off-the-shelf circuit components or custom integrated circuit modules. The most relevant role of this platform is to enable the evaluation of the applicability and constraints of the focal plane of a given wavefront sensor prior to the actual fabrication of the detector chip. In this paper, we will present the simulation results for a Hartmann-Shack wavefront sensor with an orthogonal array of quad-cells (QC) integrated along with active-pixel (active-pixel sensor (APS)) circuitry and analog-to-digital converters (ADC) on a “complementary metal oxide semiconductor” (CMOS) process and deploying a modal wavefront reconstructor. This extended simulation capability for wavefront sensors enables the test and verification of different photosensitive and circuitry topologies for position-sensitive detectors combined with the simulation of sampling microlenses and reconstruction algorithms, with the goal of enhancing the accuracy in the prediction of the wavefront-sensor performance before a detector CMOS chip is actually fabricated.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Li Jing, 李晶 y 巩岩 Gong Yan. "Insert Algorithm of Wavefront Reconstructions for Hartmann-Shack Wavefront Sensor". Laser & Optoelectronics Progress 49, n.º 12 (2012): 120101. http://dx.doi.org/10.3788/lop49.120101.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Xu, A. C., J. B. Chen, P. M. Zhang y J. J. Wu. "Off-Axis Aberration Measurement Based on the Hartmann-Shack Sensor". Advanced Materials Research 670 (marzo de 2013): 183–92. http://dx.doi.org/10.4028/www.scientific.net/amr.670.183.

Texto completo
Resumen
Human eyes is an imperfect imaging system that has various aberrations such as on axis and off axis aberrations, which often affect the imaging quality of retina. However, the available aberration methods are mainly concerned with on-axis aberration measurement, which include defocusing, astigmation, and some higher order aberration measurements. Therefore, off-axis aberration measurement under the principle of Hartmann-Shack sensor is proposed in this paper with an empirical study, the results of which showed that the imaging quality of human eyes’ peripheral field decreased with the enlargement of off axis angle. The enlargement of human eyes’ off axis aberration and the decrease of photosensory cell density of the peripheral field are two reasons for such a result.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Zhang Jinping, 张金平, 张忠玉 Zhang Zhongyu, 张学军 Zhang Xuejun y 李锐钢 Li Ruigang. "Algorithm for Extending Dynamic Range of Shack-Hartmann Wavefront Sensor". Acta Optica Sinica 31, n.º 8 (2011): 0812006. http://dx.doi.org/10.3788/aos201131.0812006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Dai, Yang, Faquan Li, Xuewu Cheng, Zhiling Jiang y Shunsheng Gong. "Analysis on Shack–Hartmann wave-front sensor with Fourier optics". Optics & Laser Technology 39, n.º 7 (octubre de 2007): 1374–79. http://dx.doi.org/10.1016/j.optlastec.2006.10.014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Zheng Hanqing, 郑翰清, 饶长辉 Rao Changhui, 饶学军 Rao Xuejun, 姜文汉 Jiang Wenhan y 杨金生 Yang Jinsheng. "Wavefront Stitching Detection Method Based on Hartmann-Shack Wavefront Sensor". Acta Optica Sinica 29, n.º 12 (2009): 3385–90. http://dx.doi.org/10.3788/aos20092912.3385.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía