Tesis sobre el tema "Single Photon Detectors"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Single Photon Detectors".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Fitzpatrick, Catherine Rose. "Single-photon metrology with superconducting nanowire single-photon detectors". Thesis, Heriot-Watt University, 2013. http://hdl.handle.net/10399/2633.
Texto completoNajafi, Faraz. "Superconducting nanowire single-photon detectors : new detector architectures and integration with photonic chips". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99836.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 153-161).
Superconducting nanowire single-photon detectors (SNSPDs) are a promising technology for long-distance optical communication and quantum information processing. Recent advances in single-photon generation, storage and detection technologies have spurred interest in integration of these components onto a single microchip, which would act as a low-power non-classical optical processor. In this thesis, I will present a method for the scalable integration of SNSPDs with photonic chips. I will show that, using a micron-scale flip-chip process, waveguide-coupled SNSPDs can be integrated onto a variety of material systems with high yield. This technology enabled the assembly of the first photonic chip with multiple adjacent SNSPDs with average system detection efficiencies beyond 10%. Using this prototype, we will show the first on-chip detection of non-classical light. I will further demonstrate optimizations to the detector design and fabrication processes. These optimizations increased the direct fabrication yield and improved the timing jitter to 24 ps for detectors with high internal efficiency. Furthermore, I will show a novel single-photon detector design that may have the potential to reach photodetection dead times below 1ns.
by Faraz Najafi.
Ph. D.
Natarajan, Chandra Mouli. "Superconducting nanowire single-photon detectors for advanced photon-counting applications". Thesis, Heriot-Watt University, 2011. http://hdl.handle.net/10399/2432.
Texto completoDauler, Eric A. (Eric Anthony) 1980. "Multi-element superconducting nanowire single photon detectors". Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/46377.
Texto completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 140-148).
Single-photon-detector arrays can provide unparalleled performance and detailed information in applications that require precise timing and single photon sensitivity. Such arrays have been demonstrated using a number of single-photon-detector technologies, but the high performance of superconducting nanowire single photon detectors (SNSPDs) and the unavoidable overhead of cryogenic cooling make SNSPDs particularly likely to be used in applications that require detectors with the highest performance available. These applications are also the most likely to benefit from and fully utilize the large amount of information and performance advantages provided by a single-photon-detector array.Although the performance advantages of individual superconducting nanowire single photon detectors (SNSPDs) have been investigated since their first demonstration in 2001, the advantages gained by building arrays of multiple SNSPDs may be even more unique among single photon detector technologies. First, the simplicity and nanoscale dimensions of these detectors make it possible to easily operate multiple elements and to closely space these elements such that the active area of an array is essentially identical to that of a single element. This ability to eliminate seam-loss between elements, as well as the performance advantages gained by using multiple smaller elements, makes the multi-element approach an attractive way to increase the general detector performance (detection efficiency and maximum counting rate) as well as to provide new capabilities (photon-number, spatial, and spectral resolution). Additionally, in contrast to semiconductor-based single-photon detectors, SNSPDs have a negligible probability of spontaneously emitting photons during the detection process, eliminating a potential source of crosstalk between array elements.
(cont.) However, the SNSPD can be susceptible to other forms of crosstalk, such as thermal or electromagnetic interactions between elements, so it was important to investigate the operation and limitations of multi-element SNSPDs. This thesis will introduce the concept of a multi-element SNSPD with a continuous active area and will investigate its performance advantages, its potential drawbacks and finally its application to intensity correlation measurements.This work is sponsored by the United States Air Force under Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government.
by Eric Dauler.
Ph.D.
Zhu, Di S. M. Massachusetts Institute of Technology. "Superconducting nanowire single-photon detectors on aluminum nitride photonic integrated circuits". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/108974.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 85-91).
With recent advances in integrated single-photon sources and quantum memories, onchip integration of high-performance single-photon detectors becomes increasingly important. The superconducting nanowire single-photon detector (SNSPD) is the leading single-photon counting technology for quantum information processing. Among various waveguide materials, aluminum nitride (AlN) is a promising candidate because of its exceptionally wide bandgap, and intrinsic piezoelectric and electro-optic properties. In this Master's thesis, we developed a complete fabrication process for making high-performance niobium nitride SNSPDs on AlN, and demonstrated their integration with AlN photonic waveguides. The detectors fabricated on this new substrate material have demonstrated saturated detection efficiency from visible to near-IR, sub-60-ps timing jitter, and ~6 ns reset time. This work will contribute towards building a fully integrated quantum photonic processor.
by Di Zhu.
S.M.
Sunter, Kristen Ann. "Optical Modeling of Superconducting Nanowire Single Photon Detectors". Thesis, Harvard University, 2014. http://nrs.harvard.edu/urn-3:HUL.InstRepos:13106421.
Texto completoEngineering and Applied Sciences
Bellei, Francesco. "Superconducting nanowire single photon detectors for infrared communications". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/109008.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 113-120).
The ever-increasing data sharing demands of modern technologies forces scientists to adopt new methods that can surpass the approaching limits of classical physics. Quantum optical communications and information, based on single-photon detectors offer the most promising possibility to reach new levels of data rate and communication security. Superconducting nanowire single-photon detectors (SNSPDs) have already been used in the past to demonstrate new protocols of quantum key distribution and are currently the best single-photon detection technology to enable quantum optical communication. With the goal of creating a global quantum communication network, both optical fiber and free-space optical communication technologies have been explored. In addition, the scientific community started pursuing smaller and cheaper cryogenic solutions to enable the use of SNSPDs on a large scale. In this thesis, I describe the design and development of a cryogenic SNSPD receivers in free-space and optical-fiber configurations for 1550-nm-wavelength. The first configuration was created with the goal of enabling optical communication in the mid-IR. I present future steps to achieve this goal. The second configuration was designed to enable a compact and scalable integration of multiple SNSPD channels in the same system. Our approach has the potential of enabling SNSPD systems with more than 64 channels.
by Francesco Bellei.
Ph. D.
Najafi, Faraz. "Timing performance of superconducting nanowire single-photon detectors". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/97816.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 83-89).
Superconducting nanowire single-photon detectors (SNSPDs) are becoming increasingly popular for applications in quantum information and long-distance communication. While the detection efficiency of SNSPDs has significantly improved over time, their timing performance has largely remained unchanged. Furthermore, the photodetection process in superconducting nanowires is still not fully understood and subject to ongoing research. In this thesis, I will present a systematic study of the timing performance of different types of nanowire single-photon detectors. I will analyze the photodetection delay histogram (also called instrument response function IRF) of these detectors as a function of bias current, nanowire width and wavelength. The study of the IRF yielded several unexpected results, among them a wavelength-dependent exponential tail of the IRF and a discrepancy between experimental photodetection delay results and the predicted value based on the electrothermal model. These results reveal some shortcomings of the basic models used for SNSPDs, and may include a signature of the initial process by which photons are detected in superconducting nanowires. I will conclude this thesis by presenting a brief introduction into vortices, which have recently become a popular starting point for photodetection models for SNSPDs. Building on prior work, I will show that a simple image method can be used to calculate the current flow in presence of a vortex, and discuss possible implications of recent vortex-based models for timing jitter.
by Faraz Najafi.
S.M.
Kirkwood, Robert A. "Superconducting single photon detectors for quantum information processing". Thesis, University of Glasgow, 2017. http://theses.gla.ac.uk/8136/.
Texto completoBALOSSINO, Ilaria. "Studies of innovative photon detectors working in the single-photon regime for the RICH detector of the CLAS12 experiment". Doctoral thesis, Università degli studi di Ferrara, 2018. http://hdl.handle.net/11392/2488231.
Texto completoLo scopo principale della fisica delle alte energie è investigare la struttura subatomica della natura che ci circonda. Per farlo, molti laboratori ed esperimenti usano diverse tecniche di rivelazione, sfruttando il continuo sviluppo tecnologico, per raggiungere sempre nuovi livelli di precisione per rivelare nuove particelle. Il lavoro presentato si interessa dei rivelatori di fotoni per un innovativo rivelatore Ring Imaging CHerenkov che fa parte del potenziamento dell'esperimento CLAS12: CEBAF (Continuous Electron Beam Accelerator) Large Acceptance Spectrometer at 12 GeV. Questo esperimento si trova presso il laboratorio nazionale Thomas Jefferson ed è il proseguimento del precedente esperimento, CLAS, che usufruiva del fascio di elettroni a 6 GeV. Il laboratorio ha recentemente completato il potenziamento della strumentazione per raddoppiare l'energia del fascio e aumentare la luminosità. La collaborazione in questa fase ha deciso di sostituire una parte del rivelatore Cherenkov a gas con il RICH per poter migliorare le capacità di rivelazione in un intervallo più ampio di energie. Il rivelatore sarà composto da due moduli progettati con un disegno ottico ibrido per poter soddisfare le specifiche di prestazione e i vincoli geometrici dell'esperimento: massimizzazione dell'area attiva di rivelazione, minimizzazione di tempi morti dell'elettronica, alte risoluzioni spaziali e temporali. Sono però stati scelti due rivelatori di fotoni diversi, seguendone principalmente lo sviluppo tecnologico: il primo modulo, già installato, è basato sulla tecnologia matura dei tubi fotomoltiplicatori a multi anodo (MAPMT), mentre il secondo, pronto tra pochi anni, utilizzerà una soluzione innovativa e monterà fotomoltiplicatori al silicio (SiPM). Il RICH di CLAS12 è il primo rivelatore ad utilizzare fotomoltiplicatori a multi anodo di grande area per coprire un’ampia superficie. Per poter lavorare in condizioni di singolo fotone è stata sviluppata un specifica elettronica di front-end. In questo lavoro verranno presentate le diverse fasi che hanno anticipato l'istallazione nella sala sperimentale: preparazione di tutte le componenti (sensori e schede di elettronica) per la caratterizzazione, l'analisi dei dati collezionati in questa fase per definire i parametri di lavoro ottimali durante i run di fisica e preparazione di un set di indicatori di rifermento da confrontare con i futuri dati estratti dai run di calibrazione dell'esperimento. La seconda parte del lavoro riguarda il settore del RICH che verrà installato nel prossimo futuro e che, sfruttando la loro rapida evoluzione tecnologica, prevede l'utilizzo dei SiPM. Gli studi per validare il loro uso in condizioni di singolo fotone sono stati fatti, e presentati in questo documento, a partire da un test di irraggiamento con lo sviluppo di un'analisi ad-hoc per lo studio approfondito del rumore di fondo. Inoltre sono presentati anche i test preliminari fatti per studiare il comportamento delle matrici di SiPM connesse con l'attuale elettronica di lettura del segnale sviluppata appositamente per il RICH. Infine viene descritto il processo di assemblaggio e di messa in opera del rivelatore finale. Un test per lavorare con i raggi cosmici e simulare le condizioni finali di lavoro del foto-rivelatore è stato realizzato prima dell’installazione all’interno del modulo RICH. Questo ha permesso di fare una verifica della mappatura del rivelatore e della risoluzione temporale. Questo lavoro si è concentrato su validazione, caratterizzazione e messa in opera di rivelatori di fotoni innovativi per applicazioni Cherenkov in condizioni di singolo fotone. I risultati ottenuti hanno portato ad installare con successo il primo settore del RICH che ora sta già prendendo dati nell'esperimento e a validare l'utilizzo dei SiPM per il secondo settore ai livelli di radiazione attesi nella sala sperimentale del laboratorio.
Sidorova, Mariia. "Timing Jitter and Electron-Phonon Interaction in Superconducting Nanowire Single-Photon Detectors (SNSPDs)". Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22296.
Texto completoThis Ph.D. thesis is based on the experimental study of two mutually interconnected phenomena: intrinsic timing jitter in superconducting nanowire single-photon detectors (SNSPDs) and relaxation of the electron energy in superconducting films. Microscopically, a building element of any SNSPD device, a superconducting nanowire on top of a dielectric substrate, represents a complex object for both experimental and theoretical studies. The complexity arises because, in practice, the SNSPD utilizes strongly disordered and ultrathin superconducting films, which acoustically mismatch with the underlying substrate, and implies a non-equilibrium state. This thesis addresses the complexity of the most conventional superconducting material used in SNSPD technology, niobium nitride (NbN), by applying several distinct experimental techniques. As an emerging application of the SNSPD technology, we demonstrate a prototype of the dispersive Raman spectrometer with single-photon sensitivity.
Jerjen, Iwan. "Superconducting tunnel junctions as energy resolving single photon detectors /". Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17113.
Texto completoO'Connor, John Alexander. "Nano-optical studies of superconducting nanowire single-photon detectors". Thesis, Heriot-Watt University, 2011. http://hdl.handle.net/10399/2515.
Texto completoRafferty, Helen Marie. "Electronic transport properties of silicon-germanium single photon avalanche detectors". Thesis, University of Leeds, 2017. http://etheses.whiterose.ac.uk/20373/.
Texto completoYang, Joel K. (Joel Kwang wei). "Superconducting nanowire single-photon detectors and sub-10-nm lithography". Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/53307.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (p. 155-169).
Superconducting nanowire single-photon detectors (SNSPDs) are useful in applications such as free-space optical communications to achieve high-speed data transfer across vast distances with minimum transmission power. In this and other applications, SNSPDs with high detection efficiencies are required. To this end, we designed and fabricated an integrated optical cavity and anti-reflection coating that enhanced the detection efficiency of SNSPDs by almost threefold to current record values of 57% at 1550 nm wavelength. We also improved our understanding of SNSPDs by modeling the electro-thermal response of the detector. This model showed that, beyond the initial formation of a photon-induced resistance across the nanowire, Joule heating results in the growth of the resistive segment. While simple, this model was useful in designing SNSPDs that reset more quickly, and also in explaining an undesirable behavior of the SNSPDs where the devices latch into a resistive state and fail to reset. Like many other devices, such as transistors, SNSPDs would benefit from device miniaturization: SNSPDs with narrower nanowires have higher detection efficiencies and increased sensitivity to low-energy photons. In this thesis, we investigated the resolution performance of electron-beam lithography (EBL) by first improving the contrast performance of hydrogen silsesquioxane (HSQ) negative-tone resist. The contrast of HSQ was improved by adding NaCl salt to an aqueous NaOH developer solution. With this improvement, we achieved a high-resolution electron-beam lithography process capable of patterning structures at 9-nm-pitch dimensions.
(cont.) The ability to pattern sub-10-nm structures is useful for fabricating future high-performance SNSPDs, nanoimprint lithography molds, prototypes of next generation transistors and storage media, and templates for controlling the self-assembly of block copolymers (BCPs). While this EBL process affords high-resolution, it is inherently a low-throughput process due to the serial nature of the pattern exposure. As a result, EBL is not cost effective in fabricating densely-patterned devices in large volumes. However, coin-bining this top-down EBL process with bottom-up BCP self-assembly techniques, we can simultaneously achieve high resolution without sacrificing throughput or pattern registration. We demonstrated that high-throughput fabrication of a hexagonally-ordered array of posts could be achieved by patterning only a sparse array of posts with EBL and using block copolymers to complete the missing structures.
by Joel K. Yang.
Ph.D.
Sidorova, Mariia [Verfasser]. "Timing Jitter and Electron-Phonon Interaction in Superconducting Nanowire Single-Photon Detectors (SNSPDs) / Mariia Sidorova". Berlin : Humboldt-Universität zu Berlin, 2021. http://d-nb.info/1226153380/34.
Texto completoHerder, Charles H. (Charles Henry) III. "Designing and implementing a readout strategy for superconducting single photon detectors". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/63024.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (p. 109-112).
Introduction: Photon detection is an integral part of experimental physics, high-speed communication, as well as many other high-tech disciplines. In the realm of communication, unmanned spacecraft are travelling extreme distances, and ground stations need more and more sensitive and selective detectors to maintain a reasonable data rate.[10] In the realm of computing, some of the most promising new forms of quantum computing require consistent and efficient optical detection of single entangled photons.[27] Due to projects like these, demands are increasing for ever more efficient detectors with higher count rates. The Superconducting Nanowire Single-Photon Detector (SNSPD) is one of the most promising new technologies in this field, being capable of counting photons as faster than 100MHz and with efficiencies around 50%. Currently, the leading competition is from the geiger-mode avalanche photodiode, which is capable of ~20- 70% efficiency at a ~5MHz count rate depending on photon energy. In spite of these advantages, the SNSPD is still a brand-new technology and as a result they do not have the same support hardware support as other detectors. As such, SNSPD's are much more difficult to integrate into an existing an experiment. Because of this difficulty, SNSPD's have not been deployed extensively for research or industrial applications. The signal analysis chain that is connected to this detector is one of the key choke points. Each detector count produces a 0.1 mV, 10 nS wide pulse with a maximum count frequency on the order of 100MHz. Currently, this signal is processed outside of the cryostat with a series of RF amplifiers and a high-speed counter. This design works for detector prototyping, but poses a series of problems with actual design implementation. Most importantly, it prevents our design from being scalable. Even though we can fabricate thousands of detectors on a single wafer, it would be extremely difficult to place that many RF lines without crosstalk or other interference. The purpose of this thesis is to build a more robust and scalable readout technology for SNSPDs. First, we will develop intermediate technologies that improve upon current readout technology and will be necessary to develop the final goal. Ultimately, we plan to build circuitry on-chip that will first convert each detector's analog signal to a digital signal and then condense the data from each detector into an externally clocked, single-bit output indicating the presence or absence of a photon at any detector. This will allow simultaneous readout of a large number of detectors on a single wafer. Additionally, our cryogenic will decrease the noise observed by the detector, as the amplifier is no longer operating at room temperature. Finally, our readout will provide a simple hardware API to be interfaced to a computer or embedded processing unit. The catch to this development process is that the entire system must operate at 4.2K or below. As such, one must either use HEMT CMOS or Rapid Single-Flux- Quantum (RSFQ) logic. HEMT CMOS is better suited to analog amplification of the output signal, while RSFQ circuitry is better suited to the construction of the SNSPD interface and digital logic. RSFQ circuitry is better suited as an input stage because input amplification with CMOS is difficult, as one must operate in the linear regime of a HEMT. This requires on the order of 1 mA at 1.8 V minimum, which results in approximately 2 mW per stage. This is to be compared against RSFQ comparators which utilize approximately 0.5 mA at almost no voltage, resulting in muW of dissipation per stage. Given that we are hoping to produce a large number of SNSPD input stages, RSFQ is clearly a better choice. However, we only have a small number of output signals from the cryostat, so it is much more reasonable to use CMOS, as we can attain larger signal amplitudes.
by Charles Henry Herder III.
M.Eng.
Fancey, Stuart James. "Single-photon avalanche diodes for time-resolved photoluminescence measurements in the near infra-red". Thesis, Heriot-Watt University, 1996. http://hdl.handle.net/10399/1309.
Texto completoHu, Xiaolong Ph D. Massachusetts Institute of Technology. "Efficient superconducting-nanowire single-photon detectors and their applications in quantum optics". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/63073.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (p. 123-131).
Superconducting-nanowire single-photon detectors (SNSPDs) are an emerging technology for infrared photon counting and detection. Their advantages include good device efficiency, fast operating speed, low dark-count rate, low timing jitter, free running mode, and no afterpulsing. The challenges to be addressed prior to real applications are cryogenic operations, small active areas, and efficiency-speed tradeoffs. This thesis presents the effort to address these challenges. A fiber-coupled SNSPD system with a large-area detector in a closed-cycle cryocooler has been built, demonstrating 24% system detection efficiency with a darkcount rate of -1000 counts/sec. As a result, the SNSPD system becomes a convenient tool with a single-mode fiber as the input channel and an SMA cable as the output channel. This system has enabled high-quality polarization-entanglement distribution at the wavelength of 1.3 tm. The 99.2% visibility in Hong-Ou-Mandel (HOM) interference measured in this experiment is the highest HOM visibility that has ever been reported for waveguide-based photon-pair sources. After entanglement is distributed, a pair rate of 5.8 pairs/sec at a pump power of 25 iW and two-photon quantum interference visibility of 97.7% have been measured. On the other hand, increasing the active area of the detector does decrease its speed. To address the issue of efficiency-speed tradeoff, SNSPDs have been integrated with optical nano-antennae. A 9- im-by-9- tm detector with 47% device efficiency and 5-ns reset time has been demonstrated. In terms of active area, device efficiency and speed, this SNSPD has the record performance among single-element SNSPDs. Finally, waveguide-integrated SNSPDs have been proposed and designed. The device structure permits efficient coupling of photons into a short nanowire, and thus, efficient and fast SNSPDs. This structure is compatible with on-chip photonic technologies, including inverse-taper couplers and ring resonators, that have been developed in recent years.
by Xiaolong Hu.
Ph.D.
Archer, Lucy Elizabeth. "Optical properties of ultra-thin niobium nitride films for single photon detectors". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112044.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 75-78).
In this thesis I made a study of the properties of reactively sputtered ultra-thin films of niobium nitride (NbN) and niobium titanium nitride (NbTiN). Using Variable Angle Spectral Ellipsometry (VASE), I found that the optical properties of NbN films appear to have a critical thickness above which the optical parameters stabilize. I also found that the deposition process has better stability over time for thicker films than for thinner ones; that is, when films are deposited weeks apart, the thinner films show more variation in thickness and optical properties than do the thicker films. The data also suggest that the crystallinity of the substrate upon which the NbN is deposited has a significant effect on the optical parameters. The set of films deposited for the optical study was also tested against a universal scaling law for thin film superconductors, which seems to support the existence of the critical thickness, below which the properties change significantly and do not conform to the power law scaling that holds for thicker films. Finally, I explored recipes for depositing NbTiN with our sputtering system, in the hope of creating films that have better properties than NbN to be used in device manufacturing. I was able to create films with the same properties as our current NbN films with minimal optimization, and further work in this area should result in NbTiN films that are better than our NbN films.
by Lucy Elizabeth Archer.
S.M.
Schmidt, Wolfgang-Gustav Ekkehart [Verfasser]. "Superconducting Nanowire Single-Photon Detectors for Quantum Photonic Integrated Circuits on GaAs / Wolfgang-Gustav Ekkehart Schmidt". Karlsruhe : KIT Scientific Publishing, 2020. http://d-nb.info/1213447836/34.
Texto completoRichardson, Justin Andrew. "Time resolved single photon imaging in nanometer scale CMOS technology". Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/7588.
Texto completoKahl, Oliver [Verfasser] y M. [Akademischer Betreuer] Wegener. "Superconducting Single-Photon Detectors for Integrated Quantum Optics / Oliver Kahl. Betreuer: M. Wegener". Karlsruhe : KIT-Bibliothek, 2016. http://d-nb.info/1093559098/34.
Texto completoCharaev, Ilya [Verfasser]. "Improving the Spectral Bandwidth of Superconducting Nanowire Single-Photon Detectors (SNSPDs) / Ilya Charaev". Karlsruhe : KIT Scientific Publishing, 2018. http://www.ksp.kit.edu.
Texto completoCarramate, Lara Filipa das Neves Dias. "Development of a single photon counting computed tomography system using MPGDs". Doctoral thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/14003.
Texto completoThe development of computed tomography systems with energy resolving detectors is a current challenge in medical physics and biomedical engineering. A computed tomography system of this kind allows getting complementary informations relatively to conventional systems, that can help the medical diagnosis, being of great interest in medicine. The work described in this thesis is related to the development of a computed tomography system using micropattern gaseous detectors, which allow storing, simultaneously, information about the interaction position and the energy of each single photon that interacts with the detector. This kind of detectors has other advantages concerning the cost and characteristics of operation when compared with solid state detectors. Tomographic acquisitions were performed using a MicroHole & Strip Plate based detector, which allowed reconstructing cross-sectional images using energy windows, applying the energy weighting technique and performing multi-slice and tri-dimensional reconstructions. The contrast-to-noise ratio was improved by 31% by applying the energy weighting technique, comparing with the corresponding image obtained with the current medical systems. A prototype of a computed tomography with flexibility to change the detector was developed, making it possible to apply different detectors based on Thick-COBRA. Several images acquired with these detectors are presented and demonstrate their applicability in X-ray imaging. When operating in NeCH4, the detector allowed a charge gain of 8 104, an energy resolution of 20% (full width at half maximum at 8 keV), a count rate of 1 106 Hz/mm2, a very stable operation (gain fluctuations below 5%) and a spacial resolution of 1.2 mm for an energy photon of 3.6 keV. Operating the detector in pure Kr allowed increasing the detection efficiency and achieving a charge gain of 2 104, an energy resolution of 32% (full width at half maximum at 22 keV), a count rate of 1 105 Hz/mm2, very stable operation and a spatial resolution of 500 m. The software already existing in the group was improved and tools to correct geometric misalignments of the system were also developed. The reconstructions obtained after geometrical correction are free of artefacts due to the referred misalignments.
O desenvolvimento de sistemas de tomografia computorizada que incorporem detetores com resolução em energia é um desafio atual em física médica e engenharia biomédica. Um sistema de tomografia computorizada espetral permite obter informações complementares comparativamente a um sistema convencional, que podem auxiliar no diagnóstico médico, sendo por isso de grande interesse em medicina. O trabalho exposto nesta tese prende-se com o desenvolvimento de um sistema de tomografia usando detetores gasosos microestruturados que permitem, simultaneamente, ter informação da posição de interacção e da energia de cada fotão que interage com o detetor. Este tipo de detetores possui ainda outras vantagens relativamente a custo ou características de funcionamento quando comparados com detetores de estado sólido. Foram realizadas aquisições tomográficas usando um detetor baseado numa MicroHole & Srip Plate que permitiu reconstruir imagens utilizando diferentes gamas de energia, aplicar técnicas de ponderação em energia e fazer pela primeira vez reconstrução multi-corte e obter imagens tri-dimensionais. Aplicando a técnica de ponderação em energia foi possível melhorar a relação contraste-ruído em 31% comparativamente à imagem correspondente aquela obtida nos actuais sistemas médicos. Posteriormente, foi desenvolvido um protótipo de um sistema de tomografia computorizada com flexibilidade para alterar o detetor, tornando possível utilizar vários detetores baseados na microestrutura Thick-COBRA. São apresentadas várias imagens adquiridas com estes detetores que evidenciam a sua aplicabilidade em imagiologia por raio-X. A operar no meio gasoso NeCH4 o detetor permitiu um ganho de 8 104, uma resolução em energia de 20% (largura a meia altura a 8 keV), uma taxa de contagem de 1 106 Hz/mm2, um funcionamento muito estável (variações de ganho inferiores a 5%) e uma resolução espacial de 1.2 mm para fotões de 3.6 keV. A operar em Kr puro foi possível aumentar a eficiência de deteção e alcançar um ganho de 2 104, uma resolução em energia de 32% (largura a meia altura a 22 keV), uma taxa de contagem de 1 105 Hz/mm2, um funcionamento também bastante estável e uma resolução espacial de 500 m. O software já existente no grupo para reconstrução de imagem foi melhorado e foram ainda desenvolvidas ferramentas para correcção de desalinhamentos geométricos do sistema. As reconstruções obtidas após correção geométrica surgem livres de artefactos originados pelos referidos desalinhamentos.
Daibes, Figueroa Said. "Discrete NaI(TI) crystal detector optimization for small animal SPECT molecular imaging". Diss., Columbia, Mo. : University of Missouri-Columbia, 2005. http://hdl.handle.net/10355/5821.
Texto completoThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (November 15, 2006) Vita. Includes bibliographical references.
Xu, Hesong. "Solid-state single-photon Detectors and CMOS Readaout Circuits for Positron Emission Tomography Applications". Doctoral thesis, Università degli studi di Trento, 2016. https://hdl.handle.net/11572/368477.
Texto completoShastri, Vasant. "Single-photon-counting technique for luminescence spectra and decay measurements". Ohio : Ohio University, 1987. http://www.ohiolink.edu/etd/view.cgi?ohiou1183060409.
Texto completoThÃ, George Andrà Pereira. "Teoria e implementaÃÃo de detectores de fÃtons isolados para comunicaÃÃes quÃnticas em redes Ãpticas". Universidade Federal do CearÃ, 2006. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=2111.
Texto completoTecnologia da InformaÃÃo QuÃntica à uma Ãrea multidisciplinar nova que tem recebido muita atenÃÃo por ser promissora e devido a seu alto potencial em resolver problemas ainda nÃo solucionados. Dentro desta grande Ãrea, as ComunicaÃÃes QuÃnticas estÃo bastante desenvolvidas. Nesta sub-Ãrea, distribuiÃÃo QuÃntica de Chaves à o campo mais avanÃado. Ela permite que duas partes, chamadas Alice e Bob, compartilhem uma chave criptogrÃfica atravÃs de um canal seguro (seguranÃa garantida por leis da mecÃnica quÃntica). A maior parte dos Sistemas de DistribuiÃÃo QuÃntica de Chaves à executada em enlaces de fibras Ãpticas e, nestes sistemas, a mais importante parte à o Detector de FÃtons Isolados. Detector de FÃtons Isolados à um equipamento capaz de absorver um fÃton e gerar um sinal TTL. Assim, em um Detector de FÃtons Isolados ideal, cada fÃton que chega deve disparar um pulso TTL na saÃda. Dado que a energia de um fÃton isolado à muito baixa, um fotodiodo de avalanche à usado para realizar o processo absorÃÃo do fÃtongeraÃÃo de portador, uma vez que este fotodiodo, se corretamente polarizado, pode disparar uma avalanche de portadores detectÃvel. ApÃs a avalanche ter se iniciado, ela deve ser extinta para evitar qualquer dano ao fotodiodo, o que à feito por um circuito de extinÃÃo de avalanche. O fotodiodo de avalanche à o elemento mais importante de um Detector de FÃtons Isolados e sua caracterizaÃÃo requer muita atenÃÃo. Neste contexto, esta dissertaÃÃo lida com aspectos teÃricos e prÃticos de Detectores de FÃtons Isolados para ComunicaÃÃes QuÃnticas. Inicia com a teoria de fotodiodos de avalanche e circuitos de extinÃÃo (resultados numÃricos de circuitos de extinÃÃo tambÃm sÃo mostrados), e segue atà a caracterizaÃÃo de um Detector de FÃtons Isolados construÃdo em laboratÃrio e suas aplicaÃÃes em metrologia de dispositivos Ãpticos, bem como em resoluÃÃo de nÃmero de fÃtons.
Quantum Information Technology is a new multi-disciplinary area which has received a lot of attention due to its promises and its high potential in solving problems still unsolved. In this big area, Quantum Communication is too much developed. In this subarea, Quantum Key Distribution is the most advanced field. It permits two parties, named Alice and Bob, sharing a cryptography key through a secure channel (guaranteed by laws of quantum mechanics). The most of Quantum Key Distribution Systems run over optical fiber links and, in these systems, the most important part is the Single-Photon Detector. Single-Photon Detector is an equipment able to absorb a photon and generate a TTL pulse. Thus, in an ideal Single-Photon Detector, each photon incoming must trigger a TTL pulse at the output. Since the energy level of a single-photon is too much low, an avalanche photodiode is used to perform the photon absorption-carrier generation process, once this photodiode if correctly biased can trigger a detectable avalanche of carriers. After the avalanche has been started, it must be quenched in order to avoid any damage to the photodiode, which is made by an avalanche quenching circuit. The avalanche photodiode is the most important element of a Single-Photon Detector and its characterization requires much attention. In this context, this dissertation deals with theoretical and practical aspects of Single-Photon Detectors for Quantum Communication. It starts from the theory of avalanche photodiodes and quenching circuits (numerical results of quenching circuits are also shown) and follows until the characterization of a home-made Single-Photon Detector and its applications in Metrology of optical devices and in Photon-Number Resolution as well.
Schmidt, Wolfgang-Gustav Ekkehart [Verfasser] y M. [Akademischer Betreuer] Siegel. "Superconducting Nanowire Single-Photon Detectors for Quantum Photonic Integrated Circuits on GaAs / Wolfgang-Gustav Ekkehart Schmidt ; Betreuer: M. Siegel". Karlsruhe : KIT-Bibliothek, 2019. http://d-nb.info/119312672X/34.
Texto completoBenetti, Michele. "Simulation and Characterization of Single Photon Detectors for Fluorescence Lifetime Spectroscopy and Gamma-ray Applications". Doctoral thesis, Università degli studi di Trento, 2012. https://hdl.handle.net/11572/367882.
Texto completoHenrich, Dagmar [Verfasser]. "Influence of Material and Geometry on the Performance of Superconducting Nanowire Single-Photon Detectors / Dagmar Henrich". Karlsruhe : KIT Scientific Publishing, 2013. http://www.ksp.kit.edu.
Texto completoMüller, Ingmar. "Linking detector radiometry from milliwatts radiant power to single photons". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2014. http://dx.doi.org/10.18452/16883.
Texto completoThis thesis addresses the bridging of the radiometric gap in the transition from classical radiometry to the few and single photon radiometry. In this context, two main tasks were emphasised. First: A new radiometric primary detector standard for wavelengths between 400 nm and 800 nm, suitable for classical and few photon radiometry, the so-called “Predictable Quantum Efficient Detector” (PQED) was characterised and validated. For the validation of the PQED, the relative uncertainties achievable in classical radiometry and, in particular, with cryogenic radiometers had to be reduced to a level of 10E−5 with the commissioning of a new cryogenic radiometer facility. Second: A calibration method for single photon detectors in the visible and NIR has been used which is based on the unique properties of synchrotron radiation. This calibration method allows radiometric single photon detector calibrations with the lowest uncertainties reported so far. This method can be used to calibrate free space and fibre-coupled single photon detectors traceable to the international system of units at practically every desired optical wavelength. With the new cryogenic radiometer, the PQED, and the calibration method based on synchrotron radiation, the uncertainties in radiometry have been significantly reduced in the range from milliwatts of radiant power down to attowatts corresponding to a few photons per second.
McWhirter, Ian. "Imaging photon detectors and their use with single and multiple Fabry-Perot etalon systems for atmospheric wind measurements". Thesis, University College London (University of London), 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360191.
Texto completoMeng, Xiao. "InGaAs/InAlAs single photon avalanche diodes at 1550 nm and X-ray detectors using III-V semiconductor materials". Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/11405/.
Texto completoHsu, Mark J. "Development of shallow trench isolation bounded single-photon avalanche detectors for acousto-optic signal enhancement and frequency up-conversion". Diss., [La Jolla] : University of California, San Diego, 2010. http://wwwlib.umi.com/cr/ucsd/fullcit?p3407959.
Texto completoTitle from first page of PDF file (viewed June 17, 2010). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (leaves 172-191).
Rae, Bruce R. "Micro-systems for time-resolved fluorescence analysis using CMOS single-photon avalanche diodes and micro-LEDs". Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/4219.
Texto completoMelbourne, Thomas. "Magnesium Diboride Devices and Applications". Thesis, Temple University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10689307.
Texto completoMagnesium diboride MgB2 is an interesting material that was discovered to be a superconductor in 2001. It has a remarkably high critical temperature of 39 K which is much greater than was previously thought possible for a phonon-mediated superconductor. MgB2 was also the first material found to exhibit multiple gap superconductivity. It has two energy gaps, the pi gap with a value of 2.3 meV, and the sigma gap with a value of 7.1 meV. Both the high critical temperature and the multiple large energy gaps make MgB2 an attractive candidate for superconducting devices. While the initial discovery of MgB2 was accompanied by much excitement, the enthusiasm has mostly disappeared due to the lack of progress made in implementing MgB2 in practical devices. The aim of this thesis is to attempt to reinvigorate interest in this remarkable material through a study of a variety of practical superconducting devices made with MgB2 thin films grown by hybrid physical-chemical vapor deposition (HPCVD).
Two different methods of fabricating MgB2 Josephson junctions are explored. The first is a sandwich type trilayer configuration with a barrier made by magnetron sputtered MgO. Junctions of this sort have been previously studied and implemented in a variety of devices. While they do show some attractive properties, the on-chip spread in critical current due to barrier non-uniformity was too high to be considered a viable option for use in many-junction devices. By developing a fabrication scheme which utilizes electron beam lithography, modest improvements were made in the on-chip parameter spread, and miniaturization of junction size yielded some insight into the non-uniform barriers.
The second approach of creating MgB2 Josephson junctions utilized a planar geometry with a normal metal barrier created by irradiating nano-sized strips of the material with a focused helium ion beam. The properties of these junctions are investigated for different irradiation doses. This new technique is capable of producing high quality junctions and furthermore the parameter spread is greatly reduced as compared to the sandwich type junctions. While more research is necessary in order to increase the IcR n products, these junctions show promise for use in many-junction devices such as RSFQ circuits.
Prior to this work, the largest substrates that could be coated with HPCVD grown MgB2 were 2" in diameter. A new chamber was designed and constructed which demonstrated the ability to coat substrates as large as 4". This scaled-up system was used to grow MgB2 films on 1 x 10 cm flexible substrates. A method of fabrication was developed which could pattern these 10 cm long samples into ribbon cables consisting of many high frequency transmission lines. This technology can be utilized to increase the cooling efficiency of cryogenic systems used for RSFQ systems which require many connections between low temperature and room temperature electronics.
Finally, a method of producing MgB2 films with thicknesses as low as 8 nm was developed. This is achieved by first growing thicker films and using a low angle ion milling step to gradually reduce the film thickness while still maintaining well connected high quality films. A procedure was developed for fabricating meandering nanowires in these films with widths as low as 100 nm for use as superconducting nanowire single photon detectors (SNSPDs). A study of the transport properties of these devices is first presented. Measurements show low values of kinetic inductance which is ideal for high count rates in SNSPDs. The kinetic inductance measurements also yielded the first measurements of the penetration depth of MgB2 films in the ultra-thin regime. Devices made from these ultra-thin films were found to be photon sensitive by measurements made by our collaborators.
Merzi, Stefano. "Novel applications of FBK SiPMs in the detection of low energy ionizing radiation". Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/276309.
Texto completoMerzi, Stefano. "Novel applications of FBK SiPMs in the detection of low energy ionizing radiation". Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/276309.
Texto completoCorbeil, Therrien Audrey. "Conception et modélisation de détecteurs de radiation basés sur des matrices de photodiodes à avalanche monophotoniques pour la tomographie d'émission par positrons". Thèse, Université de Sherbrooke, 2018. http://hdl.handle.net/11143/11909.
Texto completoAbstract : Positron emission tomography (PET) stands out among other imaging modalities by its ability to locate and quantify the presence of marked molecules, called radiotracers, within an organism. The capacity to measure biological activity of various organic tissues provides unique information, essential to the study of cancerous tumors, brain functions and the pharmacodynamics of new medications. Since the very beginings of PET, scientists dreamed of using the photon's time-of-flight information to improve PET images. With the recent progress of Single Photon Avalanche Diodes (SPAD), this dream is now possible. These photodetectors detect the scintillators' low light emission and offers a greatly amplified response with only a small time uncertainty. However the potential of SPAD has not yet been entirely explored. Instead of summing the currents of a SPAD array, it is possible to use their intrinsically binary operation to build a digital photodetector, able to establish with precision the time of arrival of each scintillation photon. With this information, the time-of-flight measurements will be much more precise. Yet the design of digital SPAD arrays is in its infancy and design tools for this purpose are rare. This project proposes a simulator to aid the design of SPAD arrays, both analog and digital. With this tool, we propose an optimised design for a digital SPAD array fabricated in Teledyne Dalsa HV CMOS \SI{0.8}{\micro\metre} technology. In addition to guiding the design choices of our team, this optimisation led to a better understanding which parameters influence the performance of a PET detector. In addition, since the photodetector is not the sole actor in the performance of a PET detector, a study on the effect of scintillators is also presented. This study evaluates the improvement brought by incorporating a prompt photon emission mechanism in LYSO crystals. Finally, we describe a novel approach to energy discrimination based on the timing information of scintillation photons was developped and tested using the simulator. While this simulator and the studies presented in this thesis focus on PET detectors, SPAD are not limited to this sole application. SPAD arrays are promising for a wide variety of fields, including particle physics, high energy physics, quantum computing, LIDAR and many more.
Zhao, Kai. "III-V single photon avalanche detector with built-in negative feedback for NIR photon detection". Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2008. http://wwwlib.umi.com/cr/ucsd/fullcit?p3320151.
Texto completoTitle from first page of PDF file (viewed September 22, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
Cajgfinger, Thomas. "Etudes théorique et expérimentale du suivi de particules uniques en conditions extrêmes : imagerie aux photons uniques". Phd thesis, Université Claude Bernard - Lyon I, 2012. http://tel.archives-ouvertes.fr/tel-00999629.
Texto completoMeunier, Nathalie. "Caractérisations de détecteurs à base de tellurure de cadmium pour l'imagerie radiologique". Université Joseph Fourier (Grenoble), 1994. http://www.theses.fr/1994GRE10123.
Texto completoLopes, Tiago Neves. "VUV single photon gaseous photomultiplier with position capability". Master's thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/11780.
Texto completoA new position sensitive gas photomultiplier for the Vacuum Ultraviolet (VUV) region is presented in this work. The detector is composed by two THGEMs, followed by a 2D-THCOBRA being operated in Ne/CH4(5%), at 1 bar pressure in single photon mode. The 2D-THCOBRA is an hybrid microstructure which combines the robustness and the resistance to discharges of a THGEM with the two independent charge multiplication stages and the position discrimination of the 2D-MHSP. In this work the 2D-THCOBRA influence in the charge gain and IBF values was studied. The position resolution of the entire system was also studied. The achieved results shown a charge gain of 106 and, for this gain values, an IBF value of about 20%. Position resolutions below 300 μm were also obtained.
O presente trabalho baseia-se no desenvolvimento e estudo de um fotomultiplicador gasoso na região do Utra-Violeta de Vazio (UVV) e com capacidade de discriminação de posição. O detector é constituído por duas THGEM seguidas de uma 2D-THCOBRA, a operar em Ne/CH4(5%) à pressão de 1 bar e em modo de fotão único. A 2D-THCOBRA é uma estrutura híbrida, que resulta da combinação entre uma THGEM e uma 2D-MHSP, beneficiando da robustez e resistência às descargas da primeira e dos dois estágios de multiplicação e da capacidade de discriminação da posição da 2D-MHSP. Neste trabalho foi estudada a influência dos potenciais aplicados aos eléctrodos da 2D-THCOBRA no ganho e no refluxo de iões (IBF) do detector. Foi ainda avaliada a resolução em posição deste detector. Foram medidos ganhos da ordem de 106 e, para estes valores de ganho, IBF na ordem dos 20%. Obteve-se ainda resoluções em posição inferiores a 300 μm.
Wu, Mengqing. "Search for Dark Matter and Supersymmetry in the single photon events with the ATLAS detector". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAY046/document.
Texto completoThis thesis presents the search for new physics in the final state containing a single photon and missing transverse momentum. The analysis is performed on 20.3fb−1 of proton-proton collisions data at a center-of-mass energy of 8 TeV collected by the ATLAS detector at the Large Hadron Collider. Given the good agreement of the data with the Standard Model pre- diction of such events, an upper limit to the visible cross section produced by new physics is derived. The observed limit at 95% confidence level is 3.64 fb.In this thesis, the results are also interpreted as limits in the parameter space of two new physics models. The first model is an effective field theory, inspired by Fermi-LAT results, in which dark matter particles couple to photons via a contact interaction vertex. Limits are set on the effective mass scale and depend on the postulated coupling constants. The limits set in this dark matter model provide an effective constraint in the parameter space of the theory compatible with the Fermi-LAT results. The second one is a simplified supersymmetric model describing squark pair production with their subsequent decay into a quark and a neutralino. The photon is emitted as initial or final state radiation and the spectrum is compressed, i.e. the mass difference between the squark and the neutralino is assumed to be small. Limits are set on the production cross-section; squark masses are excluded up to 250 GeV in the very compressed region. As the photon can be irradiated from the intermediate squark, this final state would eventually provide the possibility to probe the charge of the squark.A preliminary study has also been carried out to show the search sensitivity with 13 TeV data, which indicate that the limits presented in this thesis can already be improved by 10% with 5fb−1
Marchiori, Giovanni. "Prompt photons at the LHC : selection, measurements of single- and di-photon production cross sections, and Higgs boson searches with the ATLAS detector". Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2013. http://tel.archives-ouvertes.fr/tel-00919608.
Texto completoHofherr, Matthias [Verfasser]. "Real-time imaging systems for superconducting nanowire single-photon detector arrays / Matthias Hofherr". Karlsruhe : KIT Scientific Publishing, 2014. http://www.ksp.kit.edu.
Texto completoVedin, Robert. "Simulations of an Effective Model of a Superconducting Nano-Wire Single Photon Detector". Thesis, KTH, Fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235401.
Texto completoHebecker, Dustin. "Development of a single photon detector using wavelength-shifting and light-guiding technology". Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/23231.
Texto completoThe IceCube Neutrino Observatory is an in ice neutrino detector located at the geographic South Pole. In IceCube neutrinos are detected via Cherenkov light produced by secondary particles in neutrino interactions. For the upgraded detector IceCube-Gen2, new and improved light detectors are sought-after. This work describes the development of one of those light detectors based on a novel combination of wavelength-shifting and light-guiding technology. The detector named the Wavelength-shifting Optical Module (WOM) utilizes a large transparent tube, coated with wavelength-shifting paint as a passive photon detector. The wavelength-shifted light is guided via total internal reflection towards small active light detectors, at each end of the tube. This design reduces costs and improves the signal to noise ratio significantly, thereby potentially enabling extragalactic supernova detections in future detectors. As a core component, the wavelength-shifting tube is extensively investigated. Different measurement setups and evaluation techniques are developed and investigated. Iterative improvement of materials and coating techniques as well as measurement methods currently result in a combined photon capture, shift and transport efficiency of 28.1 +/- 5.4 % for the tube. Those results contrast the theoretical maximum of 74.5 %. A model is developed to describe the light propagation and loss processes in the tube and to understand the discrepancies between theory and measurement. The combination of the measurements with the model, validate the descriptive qualities of the model and show that most of the light is lost during the light propagation in the tube. Additionally, the physical properties of the WOM are included in the IceCube simulation framework. A comparison to a competing module showed that the WOM outperforms by a factor of 1.05 +/- 0.07 in photon detection numbers. Where applicable, suggestions and outlooks are given to enhance the performance of the WOM.