Artículos de revistas sobre el tema "Skeletal Muscles"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Skeletal Muscles".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Lieber, Richard L. y Samuel R. Ward. "Skeletal muscle design to meet functional demands". Philosophical Transactions of the Royal Society B: Biological Sciences 366, n.º 1570 (27 de mayo de 2011): 1466–76. http://dx.doi.org/10.1098/rstb.2010.0316.
Texto completoKholodnyi, R. D. "MODELING THE SKELETAL MUSCLE INJURY IN RATS". International Journal of Veterinary Medicine, n.º 3 (18 de octubre de 2022): 253–57. http://dx.doi.org/10.52419/issn2072-2419.2022.3.253.
Texto completoTesta, Marco, Bianca Rocca, Lucia Spath, Franco O. Ranelletti, Giovanna Petrucci, Giovanni Ciabattoni, Fabio Naro, Stefano Schiaffino, Massimo Volpe y Carlo Reggiani. "Expression and activity of cyclooxygenase isoforms in skeletal muscles and myocardium of humans and rodents". Journal of Applied Physiology 103, n.º 4 (octubre de 2007): 1412–18. http://dx.doi.org/10.1152/japplphysiol.00288.2007.
Texto completoHeo, Jun-Won, Su-Zi Yoo, Mi-Hyun No, Dong-Ho Park, Ju-Hee Kang, Tae-Woon Kim, Chang-Ju Kim et al. "Exercise Training Attenuates Obesity-Induced Skeletal Muscle Remodeling and Mitochondria-Mediated Apoptosis in the Skeletal Muscle". International Journal of Environmental Research and Public Health 15, n.º 10 (19 de octubre de 2018): 2301. http://dx.doi.org/10.3390/ijerph15102301.
Texto completoJ Rosochacki, S., T. Sakowski, J. Połoszynowicz, E. Juszczuk-Kubiak, A. Kowalik-Krupa y J. Oprządek. "Lysosomal proteolysis in skeletal muscles of bulls". Czech Journal of Animal Science 49, No. 8 (13 de diciembre de 2011): 340–48. http://dx.doi.org/10.17221/4318-cjas.
Texto completoKostrominova, Tatiana Y., Douglas E. Dow, Robert G. Dennis, Richard A. Miller y John A. Faulkner. "Comparison of gene expression of 2-mo denervated, 2-mo stimulated-denervated, and control rat skeletal muscles". Physiological Genomics 22, n.º 2 (14 de julio de 2005): 227–43. http://dx.doi.org/10.1152/physiolgenomics.00210.2004.
Texto completoPark, Song-Young, Jayson R. Gifford, Robert H. I. Andtbacka, Joel D. Trinity, John R. Hyngstrom, Ryan S. Garten, Nikolaos A. Diakos et al. "Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?" American Journal of Physiology-Heart and Circulatory Physiology 307, n.º 3 (1 de agosto de 2014): H346—H352. http://dx.doi.org/10.1152/ajpheart.00227.2014.
Texto completoEržen, Ida. "PLASTICITY OF SKELETAL MUSCLE STUDIED BY STEREOLOGY". Image Analysis & Stereology 23, n.º 3 (3 de mayo de 2011): 143. http://dx.doi.org/10.5566/ias.v23.p143-152.
Texto completoGomez-Cabrera, M. C., G. L. Close, A. Kayani, A. McArdle, J. Viña y M. J. Jackson. "Effect of xanthine oxidase-generated extracellular superoxide on skeletal muscle force generation". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 298, n.º 1 (enero de 2010): R2—R8. http://dx.doi.org/10.1152/ajpregu.00142.2009.
Texto completoWu, G. Y. y J. R. Thompson. "Is methionine transaminated in skeletal muscle?" Biochemical Journal 257, n.º 1 (1 de enero de 1989): 281–84. http://dx.doi.org/10.1042/bj2570281.
Texto completoPistilli, Emidio E., Parco M. Siu y Stephen E. Alway. "Interleukin-15 responses to aging and unloading-induced skeletal muscle atrophy". American Journal of Physiology-Cell Physiology 292, n.º 4 (abril de 2007): C1298—C1304. http://dx.doi.org/10.1152/ajpcell.00496.2006.
Texto completoMaas, Huub y Thomas G. Sandercock. "Force Transmission between Synergistic Skeletal Muscles through Connective Tissue Linkages". Journal of Biomedicine and Biotechnology 2010 (2010): 1–9. http://dx.doi.org/10.1155/2010/575672.
Texto completoCONTI, Antonio, L. GORZA y Vincenzo SORRENTINO. "Differential distribution of ryanodine receptor type 3 (RyR3) gene product in mammalian skeletal muscles". Biochemical Journal 316, n.º 1 (15 de mayo de 1996): 19–23. http://dx.doi.org/10.1042/bj3160019.
Texto completoAcevedo, Luz M., Ana I. Raya, Rafael Ríos, Escolástico Aguilera-Tejero y José-Luis L. Rivero. "Obesity-induced discrepancy between contractile and metabolic phenotypes in slow- and fast-twitch skeletal muscles of female obese Zucker rats". Journal of Applied Physiology 123, n.º 1 (1 de julio de 2017): 249–59. http://dx.doi.org/10.1152/japplphysiol.00282.2017.
Texto completoVernooij, Carlijn A., Raymond F. Reynolds y Martin Lakie. "Physiological tremor reveals how thixotropy adapts skeletal muscle for posture and movement". Royal Society Open Science 3, n.º 5 (mayo de 2016): 160065. http://dx.doi.org/10.1098/rsos.160065.
Texto completoLaughlin, M. H., T. Simpson, W. L. Sexton, O. R. Brown, J. K. Smith y R. J. Korthuis. "Skeletal muscle oxidative capacity, antioxidant enzymes, and exercise training". Journal of Applied Physiology 68, n.º 6 (1 de junio de 1990): 2337–43. http://dx.doi.org/10.1152/jappl.1990.68.6.2337.
Texto completoBickel, C. Scott, Jill M. Slade, Gordon L. Warren y Gary A. Dudley. "Fatigability and Variable-Frequency Train Stimulation of Human Skeletal Muscles". Physical Therapy 83, n.º 4 (1 de abril de 2003): 366–73. http://dx.doi.org/10.1093/ptj/83.4.366.
Texto completoShi, Wanchun, Siping Hu, Wenhua Wang, Xiaohui Zhou y Wei Qiu. "Skeletal Muscle-Specific CPT1 Deficiency Elevates Lipotoxic Intermediates but Preserves Insulin Sensitivity". Journal of Diabetes Research 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/163062.
Texto completoMeng, H., T. B. Bentley y R. N. Pittman. "Myoglobin content of hamster skeletal muscles". Journal of Applied Physiology 74, n.º 5 (1 de mayo de 1993): 2194–97. http://dx.doi.org/10.1152/jappl.1993.74.5.2194.
Texto completoLin, BL, S. Govindan, S. Sadayappan, L. Zhao, J. Xu y R. Han. "ID: 77: FAST-SKELETAL MYOSIN BINDING PROTEIN-C REGULATES SKELETAL MUSCLE CALCIUM SENSITIVITY". Journal of Investigative Medicine 64, n.º 4 (22 de marzo de 2016): 917.1–917. http://dx.doi.org/10.1136/jim-2016-000120.13.
Texto completoArdhianto, Peter, Jen-Yung Tsai, Chih-Yang Lin, Ben-Yi Liau, Yih-Kuen Jan, Veit Babak Hamun Akbari y Chi-Wen Lung. "A Review of the Challenges in Deep Learning for Skeletal and Smooth Muscle Ultrasound Images". Applied Sciences 11, n.º 9 (28 de abril de 2021): 4021. http://dx.doi.org/10.3390/app11094021.
Texto completoMacdonald, W. A., N. Ørtenblad y O. B. Nielsen. "Energy conservation attenuates the loss of skeletal muscle excitability during intense contractions". American Journal of Physiology-Endocrinology and Metabolism 292, n.º 3 (marzo de 2007): E771—E778. http://dx.doi.org/10.1152/ajpendo.00378.2006.
Texto completoHOLNESS, Mark J., Karen BULMER, Geoffrey F. GIBBONS y Mary C. SUGDEN. "Up-regulation of pyruvate dehydrogenase kinase isoform 4 (PDK4) protein expression in oxidative skeletal muscle does not require the obligatory participation of peroxisome-proliferator-activated receptor α (PPARα)". Biochemical Journal 366, n.º 3 (15 de septiembre de 2002): 839–46. http://dx.doi.org/10.1042/bj20020754.
Texto completoHitachi, Keisuke, Masashi Nakatani y Kunihiro Tsuchida. "Long Non-Coding RNA Myoparr Regulates GDF5 Expression in Denervated Mouse Skeletal Muscle". Non-Coding RNA 5, n.º 2 (8 de abril de 2019): 33. http://dx.doi.org/10.3390/ncrna5020033.
Texto completoFujii, Nobuharu, Marni D. Boppart, Scott D. Dufresne, Patricia F. Crowley, Alison C. Jozsi, Kei Sakamoto, Haiyan Yu et al. "Overexpression or ablation of JNK in skeletal muscle has no effect on glycogen synthase activity". American Journal of Physiology-Cell Physiology 287, n.º 1 (julio de 2004): C200—C208. http://dx.doi.org/10.1152/ajpcell.00415.2003.
Texto completoGeers, C., D. Krüger, W. Siffert, A. Schmid, W. Bruns y G. Gros. "Carbonic anhydrase in skeletal and cardiac muscle from rabbit and rat". Biochemical Journal 282, n.º 1 (15 de febrero de 1992): 165–71. http://dx.doi.org/10.1042/bj2820165.
Texto completoHolness, M. J. y M. C. Sugden. "Changes in rates of glucose utilization and regulation of glucose disposal by fast-twitch skeletal muscles in late pregnancy". Biochemical Journal 292, n.º 2 (1 de junio de 1993): 431–38. http://dx.doi.org/10.1042/bj2920431.
Texto completoRyall, James G., Paul Gregorevic, David R. Plant, Martin N. Sillence y Gordon S. Lynch. "β2-Agonist fenoterol has greater effects on contractile function of rat skeletal muscles than clenbuterol". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 283, n.º 6 (1 de diciembre de 2002): R1386—R1394. http://dx.doi.org/10.1152/ajpregu.00324.2002.
Texto completoHerzog, Walter, Timothy Koh, Evelyne Hasler y Tim Leonard. "Specificity and Plasticity of Mammalian Skeletal Muscles". Journal of Applied Biomechanics 16, n.º 1 (febrero de 2000): 98–109. http://dx.doi.org/10.1123/jab.16.1.98.
Texto completoVignaud, A., C. Hourde, F. Medja, O. Agbulut, G. Butler-Browne y A. Ferry. "Impaired Skeletal Muscle Repair after Ischemia-Reperfusion Injury in Mice". Journal of Biomedicine and Biotechnology 2010 (2010): 1–10. http://dx.doi.org/10.1155/2010/724914.
Texto completoFrueh, Bartley R., Paul Gregorevic, David A. Williams y Gordon S. Lynch. "Specific Force of the Rat Extraocular Muscles, Levator and Superior Rectus, Measured In Situ". Journal of Neurophysiology 85, n.º 3 (1 de marzo de 2001): 1027–32. http://dx.doi.org/10.1152/jn.2001.85.3.1027.
Texto completoIto, Masato, Sadayuki Ujihashi y Hyung Yun Choi. "E4 Biofidelic modeling of skeletal muscles(English session)". Proceedings of the Symposium on sports and human dynamics 2010 (2010): 464–69. http://dx.doi.org/10.1299/jsmeshd.2010.464.
Texto completoVasileiadou, Olga, George G. Nastos, Panagiotis N. Chatzinikolaou, Dimitrios Papoutsis, Dimitra I. Vrampa, Spyridon Methenitis y Nikos V. Margaritelis. "Redox Profile of Skeletal Muscles: Implications for Research Design and Interpretation". Antioxidants 12, n.º 9 (7 de septiembre de 2023): 1738. http://dx.doi.org/10.3390/antiox12091738.
Texto completoKoerker, D. J., I. R. Sweet y D. G. Baskin. "Insulin binding to individual rat skeletal muscles". American Journal of Physiology-Endocrinology and Metabolism 259, n.º 4 (1 de octubre de 1990): E517—E523. http://dx.doi.org/10.1152/ajpendo.1990.259.4.e517.
Texto completoNorheim, Frode, Truls Raastad, Bernd Thiede, Arild C. Rustan, Christian A. Drevon y Fred Haugen. "Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training". American Journal of Physiology-Endocrinology and Metabolism 301, n.º 5 (noviembre de 2011): E1013—E1021. http://dx.doi.org/10.1152/ajpendo.00326.2011.
Texto completoHøeg, Louise D., Kim A. Sjøberg, Anne-Marie Lundsgaard, Andreas B. Jordy, Natalie Hiscock, Jørgen F. P. Wojtaszewski, Erik A. Richter y Bente Kiens. "Adiponectin concentration is associated with muscle insulin sensitivity, AMPK phosphorylation, and ceramide content in skeletal muscles of men but not women". Journal of Applied Physiology 114, n.º 5 (1 de marzo de 2013): 592–601. http://dx.doi.org/10.1152/japplphysiol.01046.2012.
Texto completoLaughlin, M. H., R. E. Klabunde, M. D. Delp y R. B. Armstrong. "Effects of dipyridamole on muscle blood flow in exercising miniature swine". American Journal of Physiology-Heart and Circulatory Physiology 257, n.º 5 (1 de noviembre de 1989): H1507—H1515. http://dx.doi.org/10.1152/ajpheart.1989.257.5.h1507.
Texto completoCaiozzo, Vincent J., Michael J. Baker, Karen Huang, Harvey Chou, Ya Zhen Wu y Kenneth M. Baldwin. "Single-fiber myosin heavy chain polymorphism: how many patterns and what proportions?" American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 285, n.º 3 (septiembre de 2003): R570—R580. http://dx.doi.org/10.1152/ajpregu.00646.2002.
Texto completoKenis, V. M., A. V. Sapogovskiy, E. V. Melchenko, O. E. Agranovich, A. I. Shubina y M. V. Zhurbitskaya. "Ultrasound elastography of muscles in cerebral palsy: systematic review". Neuromuscular Diseases 12, n.º 1 (14 de febrero de 2022): 10–20. http://dx.doi.org/10.17650/2222-8721-2022-12-1-10-20.
Texto completoGrounds, Miranda D. "Factors Controlling Movement of Skeletal Muscles". Leonardo 48, n.º 3 (junio de 2015): 270–71. http://dx.doi.org/10.1162/leon_a_01028.
Texto completoTurinsky, J., D. M. O'Sullivan y B. P. Bayly. "Modulation of prostaglandin E2 synthesis in rat skeletal muscle". American Journal of Physiology-Endocrinology and Metabolism 262, n.º 4 (1 de abril de 1992): E476—E482. http://dx.doi.org/10.1152/ajpendo.1992.262.4.e476.
Texto completoO'Connell, Grant, Ge Guo, Janelle Stricker, LeBris S. Quinn, Averil Ma y Emidio E. Pistilli. "Muscle-specific deletion of exons 2 and 3 of theIL15RAgene in mice: effects on contractile properties of fast and slow muscles". Journal of Applied Physiology 118, n.º 4 (15 de febrero de 2015): 437–48. http://dx.doi.org/10.1152/japplphysiol.00704.2014.
Texto completoMcCutchan, H. J., J. R. Schwappach, E. G. Enquist, D. L. Walden, L. S. Terada, O. K. Reiss, J. A. Leff y J. E. Repine. "Xanthine oxidase-derived H2O2 contributes to reperfusion injury of ischemic skeletal muscle". American Journal of Physiology-Heart and Circulatory Physiology 258, n.º 5 (1 de mayo de 1990): H1415—H1419. http://dx.doi.org/10.1152/ajpheart.1990.258.5.h1415.
Texto completoFagan, J. M., E. F. Wajnberg, L. Culbert y L. Waxman. "ATP depletion stimulates calcium-dependent protein breakdown in chick skeletal muscle". American Journal of Physiology-Endocrinology and Metabolism 262, n.º 5 (1 de mayo de 1992): E637—E643. http://dx.doi.org/10.1152/ajpendo.1992.262.5.e637.
Texto completoDong, Gongwu y Yu Wang. "EFFECT OF PHYSICAL EXERCISE ON INCREASING THE MAXIMUM OXYGEN UPTAKE OF SKELETAL MUSCLE". Revista Brasileira de Medicina do Esporte 27, n.º 7 (julio de 2021): 710–13. http://dx.doi.org/10.1590/1517-8692202127072021_0352.
Texto completoHerring, B. P., M. H. Nunnally, P. J. Gallagher y J. T. Stull. "Molecular characterization of rat skeletal muscle myosin light chain kinase". American Journal of Physiology-Cell Physiology 256, n.º 2 (1 de febrero de 1989): C399—C404. http://dx.doi.org/10.1152/ajpcell.1989.256.2.c399.
Texto completoSato, Koji, Motoyuki Iemitsu, Katsuji Aizawa y Ryuichi Ajisaka. "Testosterone and DHEA activate the glucose metabolism-related signaling pathway in skeletal muscle". American Journal of Physiology-Endocrinology and Metabolism 294, n.º 5 (mayo de 2008): E961—E968. http://dx.doi.org/10.1152/ajpendo.00678.2007.
Texto completoWu, G., J. R. Thompson y V. E. Baracos. "Glutamine metabolism in skeletal muscles from the broiler chick (Gallus domesticus) and the laboratory rat (Rattus norvegicus)". Biochemical Journal 274, n.º 3 (15 de marzo de 1991): 769–74. http://dx.doi.org/10.1042/bj2740769.
Texto completoRasmussen, Tara y Haley Tucker. "Loss of SMYD1 Results in Perinatal Lethality via Selective Defects within Myotonic Muscle Descendants". Diseases 7, n.º 1 (20 de diciembre de 2018): 1. http://dx.doi.org/10.3390/diseases7010001.
Texto completoSun, Baojun, Hitomi Maruta, Yun Ma y Hiromi Yamashita. "Taurine Stimulates AMP-Activated Protein Kinase and Modulates the Skeletal Muscle Functions in Rats via the Induction of Intracellular Calcium Influx". International Journal of Molecular Sciences 24, n.º 4 (18 de febrero de 2023): 4125. http://dx.doi.org/10.3390/ijms24044125.
Texto completo