Siga este enlace para ver otros tipos de publicaciones sobre el tema: Solvable groups.

Libros sobre el tema "Solvable groups"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores mejores libros para su investigación sobre el tema "Solvable groups".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore libros sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Manz, Olaf. Representations of solvable groups. Cambridge: Cambridge University Press, 1993.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Shunkov, V. P. O vlozhenii primarnykh ėlementov v gruppe. Novosibirsk: VO Nauka, 1992.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Shunkov, V. P. Mp̳-gruppy. Moskva: "Nauka", 1990.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Bencsath, Katalin A. Lectures on Finitely Generated Solvable Groups. New York, NY: Springer New York, 2013.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Bencsath, Katalin A., Marianna C. Bonanome, Margaret H. Dean, and Marcos Zyman. Lectures on Finitely Generated Solvable Groups. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5450-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Cossey, James, and Yong Yang. Characters and Blocks of Solvable Groups. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50706-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Fujiwara, Hidenori, and Jean Ludwig. Harmonic Analysis on Exponential Solvable Lie Groups. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55288-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Korhonen, Mikko. Maximal Solvable Subgroups of Finite Classical Groups. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-62915-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Abels, Herbert. Finite Presentability of S-Arithmetic Groups Compact Presentability of Solvable Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0079708.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Baklouti, Ali, Hidenori Fujiwara, and Jean Ludwig. Representation Theory of Solvable Lie Groups and Related Topics. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82044-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Wang, Xiaolu. The C [asterisk] -algebras of a class of solvable Lie groups. Harlow: Longman Scientific & Technical, 1989.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Christensen, Jens Gerlach. Trends in harmonic analysis and its applications: AMS special session on harmonic analysis and its applications : March 29-30, 2014, University of Maryland, Baltimore County, Baltimore, MD. Providence, Rhode Island: American Mathematical Society, 2015.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Pense, Judith. The p-length of a solvable group bounded by conditions on its character degree graph. [s.l.]: [s.n.], 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Characters of Solvable Groups. American Mathematical Society, 2018.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Wolf, Thomas R., and Olaf Manz. Representations of Solvable Groups. Cambridge University Press, 2009.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Wolf, Thomas R., and Olaf Manz. Representations of Solvable Groups. Cambridge University Press, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Robinson, Derek J. S. Finiteness Conditions and Generalized Soluble Groups: Part 1. Springer, 2010.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Robinson, Derek J. S. Finiteness Conditions and Generalized Soluble Groups: Part 2. Springer London, Limited, 2013.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Robinson, Derek J. S. Finiteness Conditions and Generalized Soluble Groups: Part 1. Springer London, Limited, 2013.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Robinson, Derek J. S. Finiteness Conditions and Generalized Soluble Groups: Part 2. Springer, 2010.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Semeniuk, Christine. Groups with Solvable Word Problems. Creative Media Partners, LLC, 2018.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Zyman, Marcos, Katalin A. A. Bencsath, Marianna C. Bonanome, and Margaret H. Dean. Lectures on Finitely Generated Solvable Groups. Springer, 2012.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Bencsath, Katalin A., Marianna C. Bonanome, and Margaret H. Dean. Lectures on Finitely Generated Solvable Groups. Springer, 2012.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Li, Cai-Heng, and Binzhou Xia. Factorizations of Almost Simple Groups with a Solvable Factor, and Cayley Graphs of Solvable Groups. American Mathematical Society, 2022.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Maximal Solvable Subgroups of Finite Classical Groups. Springer, 2024.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Fujiwara, Hidenori, and Jean Ludwig. Harmonic Analysis on Exponential Solvable Lie Groups. Springer Japan, 2014.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Fujiwara, Hidenori, and Jean Ludwig. Harmonic Analysis on Exponential Solvable Lie Groups. Springer Japan, 2016.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Fujiwara, Hidenori, and Jean Ludwig. Harmonic Analysis on Exponential Solvable Lie Groups. Springer, 2014.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Abels, Herbert. Finite Presentability of S-Arithmetic Groups. Compact Presentability of Solvable Groups. Springer London, Limited, 2006.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Finite presentability of S-arithmetic groups: Compact presentability of solvable groups. Berlin: Springer-Verlag, 1987.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Arnal, Didier, and Bradley Currey III. Representations of Solvable Lie Groups: Basic Theory and Examples. University of Cambridge ESOL Examinations, 2020.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Arnal, Didier, and Bradley Currey. Representations of Solvable Lie Groups: Basic Theory and Examples. Cambridge University Press, 2020.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Baklouti, Ali, Hidenori Fujiwara, and Jean Ludwig. Representation Theory of Solvable Lie Groups and Related Topics. Springer International Publishing AG, 2022.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Representation Theory of Solvable Lie Groups and Related Topics. Springer International Publishing AG, 2021.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Group and ring theoretic properties of polycyclic groups. London: Springer, 2009.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Wang, Yupeng, Wen-Li Yang, Junpeng Cao, and Kangjie Shi. Off-Diagonal Bethe Ansatz for Exactly Solvable Models. Springer, 2015.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Wang, Yupeng, Wen-Li Yang, Junpeng Cao, and Kangjie Shi. Off-Diagonal Bethe Ansatz for Exactly Solvable Models. Springer, 2016.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Wang, Yupeng, Wen-Li Yang, Junpeng Cao, and Kangjie Shi. Off-Diagonal Bethe Ansatz for Exactly Solvable Models. Springer, 2015.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

The C*-algebras of a class of solvable Lie groups. Harlow, Essex, England: Longman Scientific & Technical, 1989.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Characters and Blocks of Solvable Groups: A User's Guide to Large Orbit Theorems. Springer, 2024.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Premios de investicación [i.e. investigación] concedidos por la Academia en las secciones de exactas y físicas durante el periodo (1999-2000). [Zaragoza, Spain: Academia de Ciencias Exactas, Físicas, Químicas y Naturales de Zaragoza], 2000.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

The C*- Algebras of a Class of Solvable Lie Groups (Pitman Research Notes in Mathematics 199). Livingstone, Churchill, 1989.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Li, Huishi. Noncommutative Polynomial Algebras of Solvable Type and Their Modules: Basic Constructive-Computational Theory and Methods. Taylor & Francis Group, 2021.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Noncommutative Polynomial Algebras of Solvable Type and Their Modules: Basic Constructive-Computational Theory and Methods. Taylor & Francis Group, 2021.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Geometric Group Theory. American Mathematical Society, 2018.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Abbes, Ahmed, and Michel Gros. Representations of the fundamental group and the torsor of deformations. Local study. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691170282.003.0002.

Texto completo
Resumen
This chapter focuses on representations of the fundamental group and the torsor of deformations. It considers the case of an affine scheme of a particular type, qualified also as small by Faltings. It introduces the notion of Dolbeault generalized representation and the companion notion of solvable Higgs module, and then constructs a natural equivalence between these two categories. It proves that this approach generalizes simultaneously Faltings' construction for small generalized representations and Hyodo's theory of p-adic variations of Hodge–Tate structures. The discussion covers the relevant notation and conventions, results on continuous cohomology of profinite groups, objects with group actions, logarithmic geometry lexicon, Faltings' almost purity theorem, Faltings extension, Galois cohomology, Fontaine p-adic infinitesimal thickenings, Higgs–Tate torsors and algebras, Dolbeault representations, and small representations. The chapter also describes the descent of small representations and applications and concludes with an analysis of Hodge–Tate representations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

New developments in Lie theory and its applications: Seventh workshop in Lie theory and its applications, November 26-December 1, 2000, Cordoba, Argentina. Providence, R.I: American Mathematical Society, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Abbes, Ahmed, and Michel Gros. Representations of the fundamental group and the torsor of deformations. An overview. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691170282.003.0001.

Texto completo
Resumen
This chapter provides an overview of a new approach to the p-adic Simpson correspondence, focusing on representations of the fundamental group and the torsor of deformations. The discussion covers the notation and conventions, small generalized representations, the torsor of deformations, Faltings ringed topos, and Dolbeault modules. The chapter begins with a short aside on small generalized representations in the affine case, which will be used as intermediary for the study of Dolbeault representations. It then introduces the notion of generalized Dolbeault representation for a small affine scheme and the companion notion of solvable Higgs module, and constructs a natural equivalence between these two categories. It establishes links between these notions and Faltings smallness conditions and relates this to Hyodo's theory. It also describes the Higgs–Tate algebras and concludes with an analysis of the logical links for a Higgs bundle, between smallness and solvability.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Local Operators in Integrable Models. American Mathematical Society, 2021.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Eckle, Hans-Peter. Models of Quantum Matter. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199678839.001.0001.

Texto completo
Resumen
This book focuses on the theory of quantum matter, strongly interacting systems of quantum many–particle physics, particularly on their study using exactly solvable and quantum integrable models with Bethe ansatz methods. Part 1 explores the fundamental methods of statistical physics and quantum many–particle physics required for an understanding of quantum matter. It also presents a selection of the most important model systems to describe quantum matter ranging from the Hubbard model of condensed matter physics to the Rabi model of quantum optics. The remaining five parts of the book examines appropriate special cases of these models with respect to their exact solutions using Bethe ansatz methods for the ground state, finite–size, and finite temperature properties. They also demonstrate the quantum integrability of an exemplary model, the Heisenberg quantum spin chain, within the framework of the quantum inverse scattering method and through the algebraic Bethe ansatz. Further models, whose Bethe ansatz solutions are derived and examined, include the Bose and Fermi gases in one dimension, the one–dimensional Hubbard model, the Kondo model, and the quantum Tavis–Cummings model, the latter a model descendent from the Rabi model.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía