Siga este enlace para ver otros tipos de publicaciones sobre el tema: Spinal cord Locomotion.

Tesis sobre el tema "Spinal cord Locomotion"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores tesis para su investigación sobre el tema "Spinal cord Locomotion".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Chen, Yi. "Re-educating the injured spinal cord by operant conditioning of a reflex pathway". Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1147873519.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Restrepo, Arboleda Carlos Ernesto. "Neurotransmitter phenotypes of neurons in the spinal cord and their functional role in the mouse locomotor network". Stockholm, 2010. http://diss.kib.ki.se/2010/978-91-7409-833-4/.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Thota, Anil Kumar. "NEUROMECHANICAL CONTROL OF LOCOMOTION IN INTACT AND INCOMPLETE SPINAL CORD INJURED RATS". UKnowledge, 2004. http://uknowledge.uky.edu/gradschool_theses/195.

Texto completo
Resumen
Rodent models are being extensively used to investigate the effects of traumatic injuryand to develop and assess the mechanisms of repair and regeneration. We presentquantitative assessment of 2D kinematics of overground walking and for the first time3D joint angle kinematics of all four limbs during treadmill walking in the intact and inincomplete spinal cord contusion injured (iSCI) adult female Long Evans rats. Phaserelationship between joint angles on a cycle-by-cycle basis and interlimb footfalls areassessed using a simple technique. Electromyogram (EMG) data from major flexor andextensor muscles for each of the hindlimb joints and elbow extensor muscles of theforelimbs synchronized to the 3D kinematics is also obtained in intact rats. EMG activityindicates specific relationships of the neural activity to joint angle kinematics. We findthat the ankle flexors as well as the hip and elbow extensors maintain constant burstduration with changing cycle duration. Overground walking kinematics providesinformation on stance width (SW), stride length (SL) and hindfoot rotation (Rot). SW andRot increased in iSCI rats. Treadmill walking kinematics provides information on jointangle trajectories. In iSCI rats double burst pattern in ankle angle as seen in intact ratsis lost and knee extension and range are reduced. Intra and interlimb coordination isimpaired. Left-right interlimb coordination and forelimb kinematics are not alteredsignificantly. In iSCI rats, maximum flexion of the knee during swing occurs in phasewith the hip as opposed to knee flexion preceeding hip flexion in intact rats. A mildexercise regimen in intact rats over eight weeks does not alter the kinematics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Bulea, Thomas Campbell. "A Variable Impedance Hybrid Neuroprosthesis for Enhanced Locomotion after Spinal Cord Injury". Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1333564164.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Knafo, Steven. "Sensorimotor integration in the moving spinal cord". Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066559/document.

Texto completo
Resumen
Certaines observations suggèrent que les afférences méchano-sensorielles peuvent moduler l’activité des générateurs centraux du rythme locomoteur (ou Central Pattern Generators, CPGs). Cependant, il est impossible d’explorer les circuits neuronaux sous-jacents chez l’animal en mouvement à l’aide d’enregistrements électrophysiologiques lors d’expériences de locomotion dite « fictive ». Dans cette étude, nous avons enregistré de façon sélective et non-invasive les neurones moteurs et sensoriels dans la moelle épinière pendant la locomotion active en ciblant génétiquement le senseur bioluminescent GFP-Aequorin chez la larve de poisson zèbre. En utilisant l’imagerie calcique à l’échelle des neurones individuels, nous confirmons que les signaux de bioluminescence reflètent bien le recrutement différentiel des groupes de motoneurones spinaux durant la locomotion active. La diminution importante de ces signaux chez des animaux paralysés ou des mutants immobiles démontre que le retour méchano-sensoriel augmente le recrutement des motoneurones spinaux pendant la locomotion active. En accord avec cette observation, nous montrons que les neurones méchano-sensoriels spinaux sont en effet recrutés chez les animaux en mouvement, et que leur inhibition affecte les réflexes d’échappement chez des larves nageant librement. L’ensemble de ces résultats met en lumière la contribution du retour méchano-sensoriel sur la production locomotrice et les différences qui en résultent entre les locomotions active et fictive
There is converging evidence that mechanosensory feedback modulates the activity of spinal central pattern generators underlying vertebrate locomotion. However, probing the underlying circuits in behaving animals is not possible in “fictive” locomotion electrophysiological recordings. Here, we achieve selective and non-invasive monitoring of spinal motor and sensory neurons during active locomotion by genetically targeting the bioluminescent sensor GFP-Aequorin in larval zebrafish. Using GCaMP imaging of individual neurons, we confirm that bioluminescence signals reflect the differential recruitment of motor pools during motion. Their significant reduction in paralyzed animals and immotile mutants demonstrates that mechanosensory feedback enhances the recruitment of spinal motor neurons during active locomotion. Accordingly, we show that spinal mechanosensory neurons are recruited in moving animals and that their silencing impairs escapes in freely behaving larvae. Altogether, these results shed light on the contribution of mechanosensory feedback to motor output and the resulting differences between active and fictive locomotion
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Wikström, Martin. "Dopaminergic and serotonergic modulation of cellular and locomotor network properties in the lamprey spinal cord /". Stockholm, 1999. http://diss.kib.ki.se/1999/91-628-3731-1/.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Hagevik, André. "Brainstem and spinal cord mechanisms that control locomotor activity in larval lamprey /". free to MU campus, to others for purchase, 1997. http://wwwlib.umi.com/cr/mo/fullcit?p9842533.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Perry, Sharn. "Deciphering the Locomotor Network : The Role of Spinal Cord Interneurons". Doctoral thesis, Uppsala universitet, Institutionen för neurovetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-305601.

Texto completo
Resumen
In the spinal cord, an intricate neural network generates and coordinates the patterning of limb movements during locomotion. This network, known as the locomotor central pattern generator (CPG), comprises of various cell populations that together orchestrate the output of motor neurons. Identification of CPG neurons through their specific gene expression is a valuable tool that can provide considerable insight to the character, intrinsic properties and role of a population, which represents a step toward understanding locomotor circuit function and correlating neural activity to behaviour. We selectively targeted two inhibitory CPG populations to investigate their molecular characteristics, circuitry and functional role; Renshaw cells (RCs) marked by their specific expression of the cholinergic nicotinic receptor α2 (Chrna2) and a subset of the dI6 population derived by their selective expression of the Doublesex and mab-3 related transcription factor 3 (Dmrt3). We found that RCs have hyperpolarisation-activated cation (Ih) and small calcium-activated potassium (ISK) modulatory currents that differentially regulate their excitation and firing properties, which influence the instantaneous feedback to motor neurons through the recurrent inhibition circuit. Due to previous difficulties isolating RCs from the surrounding locomotor circuits, their functional role remains poorly defined. For the first time, we selectively silenced RC inhibition and found that all aspects of motor behaviour, including coordination and gait were normal. The deletion of RC signalling instead altered the electrical and synaptic properties of the recurrent inhibitory circuit, suggesting that developmental plasticity compensates for the loss of RC inhibition. We reveal Dmrt3 neurons comprise a population of glycinergic inhibitory, spike-frequency adapting commissural interneurons active during locomotion. Conditional silencing of the Dmrt3 population resulted in considerable gait abnormalities in the neonatal and adult mouse. This manifested as an uncoordinated CPG output in vitro, impaired limb coordination in pups and increased fore- and hindlimb synchrony in adults that was exacerbated at faster locomotor speeds. Dmrt3 mediated inhibition subsequently impacts locomotion and suggests the Dmrt3 population contribute to coordinating speed dependent left-right limb alternation. This thesis provides cellular, circuit and behavioural insights into the Renshaw cell and Dmrt3 populations and enhances our knowledge regarding their probable function within the locomotor CPG.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Pomfret, David. "Differences in Aerobic Response to Wheelchair Locomotion". DigitalCommons@CalPoly, 2010. https://digitalcommons.calpoly.edu/theses/299.

Texto completo
Resumen
The purpose of this study was to explore the differences in the aerobic response to wheeling between wheelchair dependent individuals and able-bodied individuals of similar genders and ages. Five wheelchair dependent men (WC) and five able-bodied men (AB) performed a 13 minute wheeling test (5 min. at rest, 8 min. wheeling) at 4.0 km∙hr-1. Heart rate (HR) and VO2 were recorded using a Vmax ST system during the constant speed test. There was no significant difference in HR or VO2 between the two groups during rest. Both HR and VO2 were higher for WC during exercise. The mean METS during exercise for WC and AB were 3.589 ± 0.516 and 2.726 ± 0.164, respectively. The results indicate that at a given workload a spinal cord injured wheelchair user will have a greater aerobic response than an able-bodied person in a wheelchair completing the same task.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Hansen, Christopher Nelson. "REMOTE DISRUPTION OF FUNCTION, PLASTICITY, AND LEARNING IN LOCOMOTOR NETWORKS AFTER SPINAL CORD INJURY". The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1385716231.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Kyriakatos, Alexandros. "Neuromodulation via endocannabinoids and nitric oxide in the lamprey spinal cord". Stockholm : Karolinska institutet, 2009. http://diss.kib.ki.se/2009/978-91-7409-664-4/.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Wang, Di. "Ion channels and intrinsic membrane properties of locomotor network neurons in the lamprey spinal cord". Stockholm : Department of Neuroscience, Karolinska Institutet, 2009. http://diss.kib.ki.se/2009/978-91-7409-722-1/.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Hamilton, L. "Development of a computer-assisted system for the analysis of canine locomotion following spinal cord injury". Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.603616.

Texto completo
Resumen
This project aimed to develop an objective, quantitative system for assessing canine locomotion that would enable sensitive detection of changes following thoracolumbar spinal cord injury (SCI), with the eventual aim of using this to analyse the effects of an autologous olfactory ensheathing cell (OEC) transplant. Using a motion capture camera system, data analysis methods were developed which enabled objective assessment of the dog’s pelvic limb motion. Measures were developed which were independent of potential variables as size, breed and concurrent orthopaedic conditions. Locomotion was assessed immediately after incomplete SCI, and, where possible, during recovery from such an injury. Some features of locomotion were found to improve measurably and rapidly, whereas other features did not. A cohort of dogs with chronic and near-complete SCI received an autologous OEC transplant. In several animals, subtle changes in gait were detected both in the short and the long term after transplant, however no changes could be definitively attributed to the transplant. Initial information regarding the timescale and features of gait changes over time following chronic SCI was gathered. This project shows that it is possible to objectively quantify locomotor coordination in any dog, regardless of a lack of knowledge of its gait prior to injury; and that these methods are sufficiently sensitive to detect changes that may not be observed visually. Therefore, these methods may prove valuable in the analysis of the outcome of therapeutic interventions following SCI.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Nascimento, Filipe. "Cholinergic modulation of spinal motoneurons and locomotor control networks in mice". Thesis, University of St Andrews, 2018. http://hdl.handle.net/10023/16141.

Texto completo
Resumen
Locomotion is an innate behaviour that is controlled by different areas of the central nervous system, which allow for effectiveness of movement. The spinal cord is an important centre involved in the generation and maintenance of rhythmic patterns of locomotor activity such as walking and running. Interneurons throughout the ventral horn of the spinal cord form the locomotor central pattern generator (CPG) circuit, which produces rhythmic activity responsible for hindlimb movement. Motoneurons within the lumbar region of the spinal cord innervate the leg muscles to convey rhythmic CPG output to drive appropriate muscle contractions. Intrinsic modulators, such as acetylcholine acting via M2 and M3 muscarinic receptors, regulate CPG circuitry to allow for flexibility of motor output. Using electrophysiology and genetic techniques, this work characterized the receptors involved in cholinergic modulation of locomotor networks and the role and mechanism of action of a subpopulation of genetically identified cholinergic interneurons in the lumbar region of the neonatal mouse spinal cord. Firstly, the effects of M2 and M3 muscarinic receptors on the output of the lumbar locomotor network were characterised. Experiments in which fictive locomotor output was recorded from the ventral roots of isolated spinal cord preparations revealed that M3 muscarinic receptors are important in stabilizing the locomotor rhythm while M2 muscarinic receptor activation seems to increase the irregularity of the locomotor frequency whilst increasing the strength of the motor output. This work then explored the cellular mechanisms through which M2 and M3 muscarinic receptors modulate motoneuron output. M2 and M3 receptor activation exhibited contrasting effects on motoneuron function suggesting that there is a fine balance between the activation of these two receptor subtypes. M2 receptor activation induces an outward current and decreases synaptic drive to motoneurons while M3 receptors are responsible for an inward current and increase in synaptic inputs to motoneurons. Despite the different effects of M2 and M3 receptor activation on synaptic drive and subthreshold properties of MNs, both M2 and M3 receptors are required for muscarine-induced increase in motoneuron output. CPG networks therefore appear to be subject to balanced cholinergic modulation mediated by M2 and M3 receptors, with the M2 subtype also being important for regulating the intensity of motor output. Next, using Designer Receptor Exclusively Activated by Designer Drug (DREADD) technology, the impact of the activation or inhibition of a genetically identified group of cholinergic spinal interneurons that express the Paired-like homeodomain 2 (Pitx2) transcription factor was explored. Stimulation of these interneurons increased motoneuron output through the activation of M2 muscarinic receptors and subsequent modulation of Kv2.1 channels. Inhibition of Pitx2+ interneurons during fictive locomotion decreased the amplitude of locomotor bursting. Genetic ablation of these cells confirmed that Pitx2+ interneurons increase the strength of locomotor output by activating M2 muscarinic receptors. Overall, this work provides new insights into the receptors and mechanisms involved in intraspinal cholinergic modulation. Furthermore, this study provides direct evidence of the mechanism through which Pitx2+ interneurons regulate motor output. This work is not only important for advancing understanding of locomotor networks that control hindlimb locomotion, but also for dysfunction and diseases where the cholinergic system is impaired such as Spinal Cord Injury and Amyotrophic Lateral Sclerosis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Kettunen, Petronella. "Neuromodulation within a spinal locomotor network : role of metabotropic glutamate receptor subtypes /". Stockholm, 2004. http://diss.kib.ki.se/2004/91-7140-079-6/.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Rauscent, Aude. "Remaniements fonctionnels des réseaux locomoteurs spinaux au cours du développement de l’amphibien Xenopus laevis en métamorphose". Thesis, Bordeaux 1, 2008. http://www.theses.fr/2008BOR13750/document.

Texto completo
Resumen
La plasticité du système nerveux central face aux contraintes environnementales ou morphologiques est un processus fondamental mis en place afin de permettre à l’animal de maintenir des comportements adaptés. Parce que le comportement locomoteur est essentiel à la survie de l'animal, les mécanismes neuronaux permettant sa genèse doivent s’adapter aux modifications morphologiques de l’organisme pendant son développement. Pour aborder cette question, nous avons développé un nouveau modèle expérimental pour lequel les modifications morphologiques au cours du développement sont extrêmes et impliquent des reconfigurations à long terme du système nerveux. L'amphibien Xenopus laevis lors de sa métamorphose est, en effet, un modèle pertinent pour étudier (par des approches comportementales, neuroanatomiques, électro-physiologiques et pharmacologiques), les mécanismes impliqués dans la réorganisation des réseaux neuronaux locomoteurs de la moelle épinière face à des modifications extrêmes du schéma corporel. En effet, pendant sa métamorphose, l'animal passe d'un mode de locomotion ondulatoire mettant en jeu sa musculature axiale, à un mode de locomotion appendiculaire grâce aux membres néo-formés. Il existe de plus des stades intermédiaires où les deux modes de locomotion coexistent et expriment des relations fonctionnelles variables. Nos expériences d’électrophysiologie extracellulaire nous ont permis de dégager la dynamique temporelle de l’émergence du réseau de neurones commandant la locomotion appendiculaire adulte et de ses relations fonctionnelles avec le réseau locomoteur commandant la nage larvaire lorsque ces deux réseaux coexistent. D’après les résultats présentés, il apparaît un changement de l’équilibre fonctionnel et des interactions entre les commandes locomotrices ondulatoire et appendiculaire, faisant des stades intermédiaires de la métamorphose les témoins privilégiés du passage de relais progressif entre les deux systèmes locomoteurs. Nos travaux ont également démontré que l’activité de chaque réseau ainsi que leurs relations fonctionnelles sont sujettes à modulation glutamatergique et aminergique destinées à adapter la locomotion aux besoins de l'animal. Nous montrons que certains modulateurs (tels que le glutamate, la sérotonine et la noradrénaline) exercent des effets opposés sur les réseaux locomoteurs larvaires et adultes, alors qu'à l'inverse, la dopamine conserve les mêmes propriétés modulatrices sur ces réseaux malgré les profonds bouleversements subis pendant le développement. Outre leur rôle modulateur, nos résultats suggèrent aussi un rôle des afférences aminergiques dans la maturation des réseaux locomoteurs et ouvrent de nombreuses interrogations quant aux mécanismes impliqués dans la plasticité des afférences neuromodulatrices elles-mêmes au cours de la métamorphose. L’apparition et la disparition de neurones sérotoninergiques intraspinaux concomitantes avec la croissance des membres postérieurs, et précédant la régression de l'appendice caudal laissent envisager un rôle de la sérotonine dans la maturation du réseau locomoteur appendiculaire ou dans la chronologie de la régression du réseau axial
Plasticity of the central nervous system is fundamental to an animal's capacity to adapt to continually changing biomechanical and environmental demands. Although the neuronal mechanisms underlying such essential behaviours as locomotion must adapt to an organism's morphological modifications during growth and development, the associated changes that occur in central nervous function remain poorly understood. To address this issue, we have developed a new experimental model - the amphibian Xenopus laevis during its metamorphosis - in which the extreme biomechanical modifications occurring during this critical period necessitate a correspondingly extensive and long-term reorganisation of locomotor neural circuitry within the animal's spinal cord. During metamorphosis, the locomotory strategy of Xenopus shifts from undulatory swimming involving axial tail-based movements, to appendicular propulsion that uses the newly formed limbs. At intermediate metamorphic stages, moreover, the two locomotor strategies coexist within the same animal as the secondary limb-based motor circuitry is progressively replaces the primary axial network as the limbs are added and the tail regresses. By making extracellular recordings of spontaneous "fictive" locomotor patterns generated by isolated brainstem/spinal cord preparations, we have charted the temporal dynamics of the emergence of the appendicular neuronal network and determined its functional relationship with larval axial locomotor circuitry through the metamorphic period. Our results have shown that the limb circuitry is initially present but not functional, functional but subordinate to the embryonic axial network, functionally independent from the axial network, and ultimately alone after axial circuitry disappears with tail resorption. Furthermore, the use of pharmacological approaches established that during the metamorphic transition, the coexisting spinal locomotory networks and their functional interactions are subject to glutamatergic and aminergic modulation in order to adapt locomotory performance to the immediate behavioural needs of the animal. Interestingly, the neuromodulators glutamate, serotonin and noradrenaline exert directly opposing influences on the larval and adult locomotor networks, while dopamine preserves a similar modulatory action on the two circuits in spite of their profound remodelling during metamorphic development. Finally, in addition to a short-term modulatory role, our immunocytochemical evidence suggested that descending aminergic systems may contribute to the long-term maturation of spinal locomotor circuitry during metamorphosis in parallel with their own developmental reconfiguration. Specifically, the appearance and disappearance of a population of intraspinal serotonergic neurons concomitant with hindlimb growth and preceding tail regression suggested a role of serotonin in the maturation of the appendicular locomotor network and/or in the chronology of axial network regression
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Sternberg, Jenna. "Neuronal populations underlying locomotion in zebrafish". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066603/document.

Texto completo
Resumen
Les circuits neuronaux sous-tendant la locomotion requièrent d'intégrer à la fois des stimuli sensoriels et l'état physiologique. Cependant, la manière dont ces circuits fonctionnent pendant la locomotion active reste peu comprise. La larve de poisson zèbre est un organisme vertébré idéal pour étudier cette question de part son répertoire locomoteur simple et son accessibilité à la manipulation génétique. Dans le Chapitre 1, je décris le logiciel que nous avons développé afin de nous permettre de traquer les comportements et caractériser automatiquement les modules locomoteurs à haut débit. Les interneurones V2a sont des neurones excitateurs de la moelle épinière et du cerveau postérieur caractérisés par l'expression du facteur de transcription chx10. Afin de tester leur implication dans la locomotion, j'ai, dans le Chapitre 2, validé l'utilisation d'une toxine génétiquement encodée dans le but d'inhiber la population chx10 positive in vivo. Par analyse comportementale, enregistrements de locomotion fictive et imagerie calcique, nous avons montré que les V2as sont impliqués différemment dans la locomotion lente et rapide. Les neurones contactant le liquide céphalorachidien (NcLCRs) relaient des informations sensorielles aux circuits moteurs. Par ciblage génétique, imagerie calcique, pharmacologie et électrophysiologie, j'ai, dans le Chapitre 3, investigué le rôle de l'activité spontanée dans les NcLCRs. J'ai montré que l'ouverture de canaux PKD2L1 représentait une source intrinsèque d'activité spontanée dans les NcLCRs. Ces résultats offrent une meilleure compréhension de la manière dont les interactions dynamiques structurent les sorties locomotrices in vivo
The neural networks that underlie locomotion are complex and require integration of sensory input and physiological state. However, how these networks function during active locomotion to incorporate sensory input from the environment and the internal state of the animal remains poorly understand. The zebrafish larva is an ideal vertebrate to study these questions thanks to its simple locomotor repertoire, transparency, and amenability to genetic manipulation. In Chapter 1, I describe a program to track behavior at high speeds and automatically characterize locomotor patterns in a high-throughput manner. V2a interneurons are excitatory interneurons in the spinal cord and hindbrain identified by the chx10 transcription factor. In Chapter 2, I validated the use of a genetically-encoded botulinum toxin to silence the chx10 population in vivo. Using fictive locomotor recordings and calcium imaging, I demonstrated that silencing V2as leads to decreased activity in primary motor neurons during fast swimming, corresponding to a lower swimming frequency in V2a-silenced larvae. Cerebrospinal fluid-contacting neurons (CSF-cNs) are intraspinal neurons that relay sensory information to motor circuits. CSF-cNs in diverse species express GABA and the transient receptor potential channel PKD2L1. In Chapter 3, I used genetic targeting, calcium imaging, pharmacology, and electrophysiology to investigate the role of spontaneous activity in CSF-cNs. I showed that single channel opening of PKD2L1 represents an intrinsic source of spontaneous activity in CSF-cNs. These tools and results will allow a more complete picture of how dynamic interactions shape locomotor output in vivo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Hayes, Heather Brant. "Biomechanics and electrophysiology of sensory regulation during locomotion in a novel in vitro spinal cord-hindlimb preparation". Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/42797.

Texto completo
Resumen
The purpose of this dissertation was to gain insight into spinal sensory regulation during locomotion. To this end, I developed a novel in vitro spinal cord-hindlimb preparation (SCHP) composed of the isolated in vitro neonatal rat spinal cord oriented dorsal-up with intact hindlimbs locomoting on a custom-built treadmill or instrumented force platforms. The SCHP combines the neural and pharmacological accessibility of classic in vitro spinal cord preparations with intact sensory feedback from physiological hindlimb movements. thereby expanding our ability to study spinal sensory function. I then validated the efficacy of the SCHP for studying behaviorally-relevant, sensory-modulated locomotion by showing the impact of sensory feedback on in vitro locomotion. When locomotion was activated by serotonin and N-methyl D-aspartate, the SCHP produced kinematics and muscle activation patterns similar to the intact rat. The mechanosensory environment could significantly alter SCHP kinematics and muscle activitation patterns, showing that sensory feedback regulates in vitro spinal function. I further demonstrated that sensory feedback could reinforce or initiate SCHP locomotion. Using the SCHP custom-designed force platform system, I then investigated how presynaptic inhibition dynamically regulates sensory feedback during locomotion and how hindlimb mechanics influence this regulation. I hypothesized that contralateral limb mechanics would modulate presynaptic inhibition on the ipsilateral limb. My results indicate that contralateral limb stance-phase loading regulates ipsilateral swing-phase sensory inflow. As contralateral stance-phase force increases, contralateral afferents act via a GABAergic pathway to increase ipsilateral presynaptic inhibition, thereby inhibiting sensory feedback entering the spinal cord. Such force-sensitive contralateral presynaptic inhibition may help preserve swing, coordinate the limbs during locomotion, and adjust the sensorimotor strategy for task-specific demands. This work has important implications for sensorimotor rehabilitation. After spinal cord injury, sensory feedback is one of the few remaining inputs available for accessing spinal locomotor circuitry. Therefore, understanding how sensory feedback regulates and reinforces spinally-generated locomotion is vital for designing effective rehabilitation strategies. Further, sensory regulation is degraded by many neural insults, including spinal cord injury, Parkinson's disease, and stroke, resulting in spasticity and impaired locomotor function. This work suggests that contralateral limb loading may be an important variable for restoring appropriate sensory regulation during locomotion.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Gormley, Kevin Michael. "The role of long range coupling in the control of fictive locomotion in the lamprey spinal cord". Thesis, St George's, University of London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.272195.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Ross, Kyla Turpin. "Quantitative Analysis of Feedback During Locomotion". Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14110.

Texto completo
Resumen
It is known that muscles possess both intrinsic and reflexive responses to stretch, both of which have been studied extensively. While much is known about heterogenic and autogenic reflexes during XER, these have not been well characterized during locomotion. In this study, we mapped the distribution of autogenic and heterogenic feedback in hindlimb extensor muscles using muscle stretch in the spontaneously locomoting premammillary decerebrate cat. We used natural stimulation and compared stretch-evoked force responses obtained during locomotion with those obtained during XER. The goal was to ascertain whether feedback was modulated between the two states. We found that heterogenic feedback pathways, particularly those emanating from MG, remained inhibitory during locomotion while autogenic feedback specifically in MG increases in gain. Furthermore, increases in MG gain were due to force-dependent mechanisms. This suggests that rather than an abrupt transition from inhibition to excitation with changes in motor tasks, these pathways coexist and contribute to maintaining interjoint coordination. Increases in autogenic gain provide a localized loading reflex to contribute to the completion of the movement. The results of these experiments are clinically significant, particularly for the rehabilitation of spinal cord injured patients. To effectively administer treatment and therapy for patients with compromised spinal reflexes, a complete understanding of the circuitry is required.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Fidelin, Kevin. "Modulation of premotor circuits controlling locomotor activity by spinal GABAergic sensory neurons in zebrafish : connectivity mapping of an intraspinal sensory feedback circuit". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066200/document.

Texto completo
Resumen
Comprendre les mécanismes mis en place au sein du système nerveux pour générer des répertoires locomoteurs complexes reste l'un des grands défis des neurosciences systémiques. Le travail présenté dans ce manuscrit vise à comprendre comment les neurones de la moelle épinière contribuent à la production et à la modulation de l'activité locomotrice. Pour répondre à ce problème, nous utilisons le poisson-zèbre comme organisme modèle et avons développé de nouvelles approches génétiques et optiques afin de disséquer l'architecture du circuit formé par une classe de neurones sensoriels de la moelle et qui est conservée chez tous les vertébrés. Ces neurones sont appelés les neurones au contact du liquide céphalo-rachidien (Nc-LCR) et nous proposons de sonder leur(s) fonction(s) in vivo. Ces neurones sensoriels forment une interface unique entre le liquide céphalo-rachidien et le réseau de neurones impliqué dans le contrôle du mouvement dans la moelle épinière. Cependant, leur diagramme de connectivité demeure complètement inconnu. Afin de comprendre comment ces " Nc-LCR ou CSF-cNs " modulent la locomotion chez les vertébrés, nous avons développé un projet combinant des approches génétiques, électrophysiologiques, d'imagerie, et d'analyse du comportement, afin de cartographier le circuit qu'elles forment avec les neurones de la moelle épinière. Nos résultats montrent que les CSF-cNs projettent sur de nombreux éléments du centre générateur de rythme de la moelle. Notre approche révèle également la capacité des CSF-cNs à moduler la locomotion selon l'état dans lequel se trouve l'animal, une propriété caractéristique des circuits proprioceptifs dans la moelle épinière
Understanding how the central nervous system generates motor sequences, coordinates limbs and body orientation in an ever-changing environment, while adapting to sensory cues remains a central question in the field of systems neuroscience. The work presented here aims to understand how local sensory neurons in the spinal cord contribute to the production and/ or the modulation of locomotor activity. We focused our work on a conserved class of spinal sensory neurons termed cerebrospinal fluid contacting neurons (CSF-cNs). These neurons lie at the interface between the CSF and spinal interneurons controlling motor output and represent an interesting yet poorly understood sensorimotor loop in the vertebrate spinal cord. However, the connectivity of CSF-cNs remains completely uncharacterized. To understand how CSF-cNs modulate locomotion in vertebrates, we combined genetics, imaging, optogenetics, electrophysiology, and behavior analysis to map the functional connectivity of these sensory neurons and test their function in the zebrafish larva. Our results demonstrate that CSF-cNs target several elements thought to be part of the locomotor central pattern generator in zebrafish, including glutamatergic spinal neurons involved in slow and fast swimming. We show that CSF-cNs can modulate the duration and occurrence of spontaneous locomotor events in a state dependent manner and tune the frequency of evoked fast escape responses. Altogether our work dissecting sensorimotor integration in the spinal cord bridged single cell function in vivo to behavior in zebrafish and should contribute to a better understanding of the role of sensory feedback during locomotion in vertebrates
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Acton, David. "Regulation of mammalian spinal locomotor networks by glial cells". Thesis, University of St Andrews, 2017. http://hdl.handle.net/10023/10133.

Texto completo
Resumen
Networks of interneurons within the spinal cord coordinate the rhythmic activation of muscles during locomotion. These networks are subject to extensive neuromodulation, ensuring appropriate behavioural output. Astrocytes are proposed to detect neuronal activity via Gαq-linked G-protein coupled receptors and to secrete neuromodulators in response. However, there is currently a paucity of evidence that astrocytic information processing of this kind is important in behaviour. Here, it is shown that protease-activated receptor-1 (PAR1), a Gαq-linked receptor, is preferentially expressed by glia in the spinal cords of postnatal mice. During ongoing locomotor-related network activity in isolated spinal cords, PAR1 activation stimulates release of adenosine triphosphate (ATP), which is hydrolysed to adenosine extracellularly. Adenosine then activates A1 receptors to reduce the frequency of locomotor-related bursting recorded from ventral roots. This entails inhibition of D1 dopamine receptors, activation of which enhances burst frequency. The effect of A1 blockade scales with network activity, consistent with activity-dependent production of adenosine by glia. Astrocytes also regulate activity by controlling the availability of D-serine or glycine, both of which act as co-agonists of glutamate at N-methyl-D-aspartate receptors (NMDARs). The importance of NMDAR regulation for locomotor-related activity is demonstrated by blockade of NMDARs, which reduces burst frequency and amplitude. Bath-applied D-serine increases the frequency of locomotor-related bursting but not intense synchronous bursting produced by blockade of inhibitory transmission, implying activity-dependent regulation of co-agonist availability. Depletion of endogenous D-serine increases the frequency of locomotor-related but not synchronous bursting, indicating that D-serine is required at a subset of NMDARs expressed by inhibitory interneurons. Blockade of the astrocytic glycine transporter GlyT1 increases the frequency of locomotor-related activity, but application of glycine has no effect, indicating that GlyT1 regulates glycine at excitatory synapses. These results indicate that glia play an important role in regulating the output of spinal locomotor networks.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Narotam, Nalini. "Localization of a sub-population of commissural cells active in treadmill locomotion in the adult rat thoracolumbar spinal cord". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ35077.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Hofstetter, Christoph. "Cell therapy for spinal cord injury, studies of motor and sensory systems /". Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-382-5/.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Hanson, Martin Gartz Jr. "THE EMBRYONIC NEURAL CIRCUIT: MECHANISM AND INFLUENCE OF SPONTANEOUS RHYTHMIC ACTIVITY IN EARLY SPINAL CORD DEVELOPMENT". Case Western Reserve University School of Graduate Studies / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=case1085515804.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Cangiano, Lorenzo. "Mechanisms of rhythm generation in the lamprey locomotor network /". Stockholm, 2004. http://diss.kib.ki.se/2004/91-7140-042-7/.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Roussel, Yann. "Development of Spinal Circuits for Swimming in Zebrafish (DANIO RERIO) LARVAE. Emphasizing on the Rhythm Generation Mechanism". Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38069.

Texto completo
Resumen
It has long been established that the spinal cord is able to produce locomotor activity on its own. Despite extensive research identifying and describing the involvement of multiple spinal neuron populations that are part of the spinal locomotor circuit, the manner in which these different components act together to precisely control the rhythm and the pattern of activation of muscles during locomotion remains largely undetermined. We sought to shed light on how the components of spinal locomotor circuits interact to produce robust locomotion using a developmental approach in zebrafish larvae. We used electrophysiological techniques to observe how the rhythm generation mechanism developed while the fish was transitioning from an early form of swimming to a more mature swimming behaviour. In the process we were able to highlight fundamental changes in the organization of spinal locomotor circuits as its operation moves from a pacemaker-based architecture relying on intrinsic properties of neurons to a network oscillator-based architecture relying on synaptic connectivity to generate proper rhythm driving the fish tail beats. Additionally, we revealed that this transition occurred at different times along the spinal cord progressing in a caudorostral direction. By combining these experimental observations with already published insights we were able to propose models of spinal locomotor circuits reproducing the successive locomotor behaviours encountered through development. By incrementing supplementing the circuit model in a manner that reflected biological processes by which the nervous system maturates (neurogenesis, synaptic connectivity refinement and maturation of intrinsic properties) we mirrored the natural development of the spinal locomotor circuit. This series of successively constructed models permitted us to pinpoint possible roles of specific neural populations for swimming behaviour as well as eventual targets and mechanism of actions of neuromodulators (serotonin and dopamine). In the process, I further provided testable hypotheses for future inquiries. Overall, the experimental findings in combination with the modeling work are an important step forward in fully understanding how the spinal cord generates swimming movements in zebrafish.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Dunford, Catherine. "The distribution and physiological roles of nitric oxide in the locomotor circuitry of the mammalian spinal cord". Thesis, University of St Andrews, 2012. http://hdl.handle.net/10023/3580.

Texto completo
Resumen
The mammalian spinal cord contains the neuronal circuitry necessary to generate rhythmic locomotor activity in the absence of inputs from the higher brain centre or sensory system. This circuitry is regulated by local neuromodulatory inputs, which can adjust the strength and timing of locomotor output. The free radical gas nitric oxide has been shown to act as an important neuromodulator of spinal circuits, which control locomotion in other vertebrate models such as the tadpole and lamprey. Despite this, the involvement of the NO-mediated soluble guanylate cyclase/cyclic guanosine monophosphate secondary messenger-signalling pathway (NO/sGC/cGMP) in mammalian locomotion has largely been under-investigated. The NADPH diaphorase histochemical reaction was used to identify sources of NO in the lumbar spinal cord. The largest population NADPH diaphorase reactive neurons were located in the dorsal horn, followed by the laminae of the ventral horn, particularly around the central canal (lamina X) and lamina VII. NADPH diaphorase reactive neurons were found along a rostrocaudal gradient between lumbar segments L1 to L5. These results show that that discrete neuronal sources of NO are present in the developing mouse spinal cord, and that these cells increase in number during the developmental period postnatal day P1 – P12. NADPH diaphorase was subsequently used to identify NADPH diaphorase reactive neurons at P12 in the mouse model of ALS using the SODG93A transgenic mouse. Physiological recordings of ventral root output were made to assess the contribution of NO to the regulation induced rhythmic fictive locomotion in the in vitro isolated spinal cord preparation. Exogenous NO inhibits central pattern generator (CPG) output while facilitating and inhibiting motor neuron output at low and high concentrations respectively. Removal of endogenous NO increases CPG output while decreasing motor neuron output and these effects are mediated by cGMP. These data suggest that an endogenous tone of NO is involved in the regulation of fictive locomotion and that this involves the NO/sGC/cGMP pathway. Intracellular recordings from presumed motor neurons and a heterogeneous, unidentified sample of interneurons shows that NO modulates the intrinsic properties of spinal neurons. These data suggest that the net effect of NO appears to be a reduction in motor neuron excitability.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Mahrous, Amr A. "Regulation of the motor output of the spinal cord: burst firing generation and sensorimotor integration". Wright State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=wright1523970444739026.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Le, Gal Jean-Patrick. "Coordination locomotion-respiration : influences des réseaux locomoteurs cervico-lombaires sur l'activité des neurones respiratoires spinaux et bulbaires". Thesis, Bordeaux 2, 2013. http://www.theses.fr/2013BOR22089/document.

Texto completo
Resumen
Le système nerveux central possède des réseaux de neurones capables de générer des commandes motrices rythmiques en l'absence d'informations sensorielles. Ces réseaux neuronaux sont communément appelés générateurs centraux de patron (CPG, central pattern generator) et sont impliqués dans plusieurs fonctions et comportements vitaux tels que la locomotion et la respiration. Dans certaines circonstances, ces réseaux neuronaux se doivent d'interagir afin de produire un comportement moteur adapté aux contraintes environnementales ainsi qu'aux exigences de l'organisme. C'est notamment le cas lors d'un effort physique où une augmentation du rythme respiratoire est rapidement observée pour subvenir aux besoins en oxygène de l'organisme. Dans ce contexte de neurosciences intégratives, mon travail doctoral a porté sur l'étude des mécanismes neurogènes responsables de l'interaction entre les CPG respiratoires du tronc cérébral et les CPG locomoteurs de la moelle épinière. Cette étude a été réalisée sur des préparations de tronc cérébral-moelle épinière isolée in vitro de rat nouveau-né (P0 à P2) au sein desquelles les centres respiratoires et locomoteurs sont conservés intacts. Par des approches électrophysiologique, pharmacologique, lésionnelle et neuroanatomique, les mécanismes de coordination entre ces sous-groupes neuronaux ont été étudiés. Dans ce contexte, un des principaux résultats de ce travail doctoral est la mise en évidence de l'existence d'une influence ascendante excitatrice issues des CPG locomoteurs spinaux sur les centres respiratoires, et plus particulièrement sur le groupe respiratoire parafacial, structure située dans le bulbe rachidien et impliquée dans la genèse de la commande respiratoire. Outre son implication dans la modulation du rythme respiratoire, cette influence ascendante module également l'activité des populations neuronales expiratoires des régions spinales thoraciques et lombaires. Ces données constituent la première mise en évidence de l'existence de neurones bi-fonctionnels au sein de la moelle-épinière chez le rat nouveau-né
The central nervous system contains neural networks that can generate rhythmic motor drive in absence of sensory feedback. These neural networks are commonly called central pattern generators (CPG) and are involved in many vital functions and behaviors, such as locomotion or respiration. In certain circumstances, these neural networks must interact to produce motor behaviors adapted to environmental constraints and the basic needs of organism. This is the case during physical exercise when the respiratory frequency increases in order to satisfy the oxygen needs. In a context of integrative neurosciences, my doctoral work aimed at exploring the neurogenic mechanisms involved in the coordination between the medullary respiratory networks and the spinal locomotor CPG. To address this question, we used an isolated in vitro brain stem-spinal cord preparations from neonatal rats (0-2 days) in which the respiratory and the locomotor networks are kept intact. Using electrophysiological, pharmacological, lesional and neuroanatomical approaches, mechanisms involved in the coordination between locomotor and respiratory rhythms have been studied. The major finding of this doctoral work is the identification of an ascending excitatory influence from spinal locomotor CPG to the respiratory networks, acting particularly on the parafacial respiratory group, which is known to be engaged in the genesis of expiratory activity. In addition to the respiratory frequency modulation, this ascending influence also modulates the activity of spinal expiratory neurons located in lumbar and thoracic segments. These data provide the first evidence for the existence of bi-functional neurons in newborn rat spinal cord
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Beliez, Lauriane. "Mécanismes spinaux et supraspinaux impliqués dans le couplage entre les réseaux locomoteurs et posturaux". Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0367/document.

Texto completo
Resumen
Les fonctions locomotrices et posturales sont contrôlées par un ensemble de réseaux neuronaux qui doivent interagir afin de produire un comportement locomoteur optimal, adaptable aux contraintes internes et externes de l’organisme. Le maintien d’un équilibre dynamique au cours de la locomotion repose sur des processus internes de coordination entre les réseaux nerveux spinaux et supraspinaux qui commandent les différents segments du corps (membres, tête et tronc). C’est dans ce contexte que nous nous sommes intéressés aux interactions entre la fonction locomotrice et la fonction posturale, sur des préparations réduites de tronc cérébral-moelle épinière de rats nouveau-nés, au sein desquelles les CPGs locomoteurs spinaux et les noyaux vestibulaires sont intacts. Des approches combinées électrophysiologiques, pharmacologiques, neuroanatomique et lésionnelles nous ont permis de mettre en évidence une partie des mécanismes à l’origine du couplage entre les différents réseaux neuronaux étudiés. Dans cette étude nous avons montré que les réseaux locomoteurs lombaires contrôlent l’activité des réseaux thoraciques axiaux, de manière à produire une activation coordonnée des réseaux moteurs des membres et du tronc. Cette coordination est sous influence des entrées supraspinales. Les amines induisent une organisation temporelle spécifique de l’activité des réseaux thoraco-lombo-sacrés, et les informations en provenance des noyaux vestibulaires influencent le rythme locomoteur. Ces données apportent des éléments nouveaux concernant les processus neuronaux à l’origine de la coordination des réseaux moteurs et posturaux
Locomotor and postural functions are controlled by a set of neural networks that must interact to produce optimal locomotor behavior, adaptable to internal and external constraints of the body. Maintaining a dynamic balance during locomotion is based on internal coordination processes between spinal and supraspinal neuronal networks controlling different parts of the body (limbs, head and trunk). In this context, we have interested in the interactions between locomotor and postural functions, in spinal and supraspinal networks. The experiments were conducted on isolated brainstem-spinal cord preparations from neonatal rats, in which the spinal locomotor CPGs and the vestibular nuclei are intact. Electrophysiological, pharmacological, and neuroanatomical approaches allowed us to highlight some of the mechanisms involved in the coupling of the different neural networks. In this study we showed that the lumbar locomotor networks control the activity of axial thoracic networks, in order to produce a coordinated activation of motors networks of limbs and trunk. This coordination is modulated by amines and information from the vestibular nuclei. These data provide new evidence for spinal mechanisms involved in the coordination of motor and postural networks
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Dambreville, Charline. "Compensation neuromusculaire lors de la locomotion suite à une dénervation de deux extenseurs de la cheville chez le chat adulte spinalisé". Mémoire, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/8780.

Texto completo
Resumen
Résumé : Le muscle squelettique étant d’une grande plasticité, il peut être la cible lors de thérapies en réhabilitation motrice. Toutefois, les structures neurales impliquées dans cette plasticité sont encore peu connues. Afin de déterminer si un mécanisme spinal est suffisant pour induire une plasticité musculaire, le nerf innervant le gastrocnémien latéral et le soleus a été sectionné unilatéralement chez 4 chats ayant retrouvé une locomotion au niveau des pattes arrières suite à une spinalisation complète. Des enregistrements électromyographiques et cinématiques ont été enregistrés avant et jusque 8 semaines après dénervation chez ces chats. Des analyses histologiques ont été réalisées pour les deux gastrocnémiens médial et latéral chez les 4 chats spinalisés et chez 4 chats intacts servant de contrôle. Chez les chats spinaux, la durée de cycle pour la patte ispilatérale et controlatérale à la dénervation pouvait être diminuée ou augmentée par rapport aux valeurs de pré-dénervation. Pour la durée de la phase d’appui, elle était généralement augmentée pour la patte controlatérale et diminuée pour la patte ipsilatérale. L’amplitude EMG du MG était augmentée bilatéralement après la dénervation et est restée élevée 8 semaines post dénervation. Concernant le poids des muscles, chez les chats spinaux, le LG ipsilatéral était significativement plus petit que le LG controlatéral alors que le MG ipsilatéral était plus gros que le MG controlatéral. Les analyses histologiques ont montré une plus grande aire pour les fibres de type IIa pour le MG ipsilatéral pour 3 des 4 chats. La densité de capillaires sanguins dans le MG ipsilatéral était aussi plus élevée que dans le MG controlatéral. Pour les chats intacts, aucune différence n’a été observée pour le poids, l’aire des fibres ou la densité capillaire entre les 2 MG. Ces résultats montrent que le muscle squelettique peut s’adapter même après une lésion de la moelle épinière, ce qui souligne l’importance de son utilisation en réhabilitation motrice.
Abstract : Skeletal muscle is highly plastic and can be targeted for motor rehabilitation. Although neural activity potently regulates muscle phenotype, the neural structures required are poorly defined. To determine if a spinal mechanism is sufficient for adaptive muscle plasticity, the nerve supplying the lateral gastrocnemius and soleus muscles was sectioned unilaterally in four cats that had recovered hindlimb locomotion following spinal transection. In these spinal cats, kinematics and electromyography (EMG) were collected before and for 8 weeks after denervation. Muscle histology was performed on the lateral (LG) and medial (MG) gastrocnemii bilaterally in four spinal and four intact cats. In spinal cats, cycle duration for the hindlimb ipsilateral or contralateral to the denervation could be increased or decreased compared to pre-denervation values. Stance duration was generally increased and decreased for the contralateral and ipsilateral hindlimbs, respectively. The EMG amplitude of MG was increased bilaterally following denervation and remained elevated 8 weeks post-denervation. In spinal cats, the ipsilateral LG was significantly smaller than the contralateral LG whereas the ipsilateral MG weighed significantly more than the contralateral MG. Histological characterizations revealed significantly larger fiber areas for Type IIa fibers of the ipsilateral MG in three of four spinal cats. Microvascular density in the ipsilateral MG was significantly higher than the contralateral MG. In intact cats, no differences were found for muscle weight, fiber area or microvascular density between homologous muscles. Results show that skeletal muscle remains remarkably adaptable after complete spinal cord injury, highlighting its importance to maximize force production in motor rehabilitation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Oueghlani, Zied. "Contrôle afférent du réseau locomoteur lombaire chez le rat néonatal intact et spino-lésé". Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0347/document.

Texto completo
Resumen
Lors de la locomotion, la commande rythmique envoyée aux muscles des membres est organisée de manière spatiale et temporelle par les générateurs centraux du patron locomoteur (CPGs) localisés dans la moelle épinière. Ces derniers sont sous le contrôle des centres supraspinaux impliqués dans l'aspect motivationnel du comportement locomoteur dont l’activité est constamment modulée par des afférences sensorielles afin de permettre d'adapter les mouvements aux changements environnementaux. L’objectif majeur de mon travail doctoral était d’explorer les mécanismes des interactions dynamiques entre (1) les centres supraspinaux, (2) les CPGs et (3) les afférences sensorielles dans le contrôle de la locomotion chez le rat nouveau-né intact et spino-lésé. En nous appuyant sur le modèle de préparation de tronc cérébral / moelle épinière isolée in vitro, nous avons montré que la manipulation de l’organisation temporelle de la commande locomotrice en provenance de la formation réticulée (située dans le tronc cérébral) est efficace pour ajuster finement l’activité des CPGs locomoteurs. Nous avons ensuite mis en lumière l’importance des voies descendantes sérotonergiques dans l’intégration de l’information sensorielle par les CPGs locomoteurs durant la première semaine postnatale. Enfin, en combinant des approches comportementales, neurochimiques et électrophysiologiques, nous avons mis en évidence des effets différents mais complémentaires des neuromodulateurs monoaminergiques (sérotonine, dopamine et noradrénaline) dans la réexpression du comportement locomoteur après une lésion spinale. Notre travail ouvre de belles perspectives pour la compréhension du contrôle afférent de la moelle épinière, à la fois dans un contexte non-pathologique et après un traumatisme médullaire
Located within the spinal cord, the locomotor central pattern generators (CPGs) organize the rhythmical activation of limb muscles according to specific gait pattern requirements. These CPGs are under the control of supraspinal centers that are involved in the motivational aspect of locomotor behavior, and their activity is constantly modulated by sensory inputs to adapt the locomotor activities to environmental changes. The aim of my doctoral work was to further understand the dynamic interactions between (1) the supraspinal centers, (2) the CPGs and (3) the sensory inputs in both healthy and spinalized newborn rats. Using the isolated brainstem / spinal cord preparation as an in vitro experimental model, we first showed that manipulating the periodicity and the relative durations of left and right descending reticulospinal commands at the brainstem level is efficient to set the locomotor speed and sustain directional changes. We next established the interaction between the descending serotonergic pathways and sensory feedback to shape the spinal locomotor outputs during the first postnatal week. Finally, by combining behavioral, neurochemical and electrophysiological techniques, we showed different but complementary effects of monoaminergic neuromodulators (serotonin, dopamine and norepinephrine) in the expression of locomotor behavior after a spinal cord injury. Our work brings additional data to better understand the afferent control of locomotor spinal CPGs in healthy and spinalized newborn rats
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Beyeler, Anna. "Développement du réseau locomoteur spinal au cours de la métamorphose de l'amphibien Xenopus laevis : coordinations propriospinales, influences vestibulaires et commande mésencéphalique". Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13951/document.

Texto completo
Resumen
Au cours de la métamorphose, les amphibiens subissent une réorganisation complète de leur anatomie et de leur physiologie. Chez Xenopus laevis le système locomoteur est un des plus affecté au cours de cette phase développementale, l’animal passant d’une nage ondulatoire à une nage appendiculaire. Cette transformation du mode locomoteur implique une réorganisation du réseau locomoteur central. Dans une première étude, nous avons mis en évidence que les muscles axiaux s’activent de manière bilatéralement alternée chez le têtard alors que les muscles équivalents chez l’adulte s’activent de manière synchrone au cours de la nage. Nous avons montré que ce nouveau patron d’activation musculaire, accompagné d’une synchronisation avec les muscles appendiculaires extenseurs, reposent principalement sur la mise en place de nouvelles projections propriospinales lombo-thoraciques. Ces résultats suggèrent l’existence d’un contrôle postural proactif au cours de la locomotion, reposant directement sur le CPG des membres postérieurs. Dans une deuxième étude, nous nous sommes intéressés à l’influence d’un déséquilibre des afférences vestibulaires sur le développement du réseau locomoteur spinal au cours de la métamorphose. Pour cela nous avons réalisé une suppression unilatérale des organes vestibulaires avant ou après la métamorphose. Dans les deux cas, cette lésion aigue génère d’importants troubles locomoteurs et posturaux. Nous avons montré que la lésion chronique au cours de la métamorphose entraîne une modification ipsi-lésionnelle du développement du réseau locomoteur lombo-thoracique, de manière concomitante à une compensation comportementale. De façon intéressante, cette plasticité développementale ainsi que la compensation des troubles locomoteurs sont absentes chez les animaux lésés au stade adulte. Ces résultats suggèrent que les informations sensorielles sont un facteur déterminant pour le développement du réseau locomoteur spinal. Enfin, dans une troisième étude, nous avons analysé le développement du réseau locomoteur supra-spinal et en particulier les propriétés de déclenchement et de contrôle de la région locomotrice mésencéphalique (MLR). Nous avons mis en évidence l’existence fonctionnelle des deux noyaux de cette structure, le noyau pédonculopontin (PPN) et le noyau latérodorsal du tegmentum (LDT) tout au long de la métamorphose du xénope, ainsi qu’une fréquence d’activation optimale de 10-20 Hz pour le PPN
Throughout the course of metamorphosis, amphibians undergo a complete anatomical and physiological reorganization. In Xenopus laevis, the locomotor system is one of the most affected during this developmental phase where the animal passes from undulatory swimming to limb-based propulsion. This transformation implies a parallel reorganization of the central locomotor network. In an initial study we showed that axial muscles which are activated in bilateral alternation in tadpoles mature to dorsal muscles that are synchronously active during adult locomotion. We found that this new pattern, accompanied by coordination of dorsal and hindlimb muscle activities, is principally sustained by the development of new propriospinal lumbo-thoracic projections, suggesting proactive postural control coming from the hindlimb CPG during ongoing locomotion. In a second study, we examined the influence of disequilibrium in vestibular inputs on the metamorphic development of the spinal locomotor network. To induce this sensory asymmetry we performed unilateral removal of vestibular end organs either before or after metamorphosis. Acutely, in both cases, the lesion induced dramatic postural and locomotor changes. Chronically, the lesion altered the metamorphic development of the lumbo-thoracic network on the lesioned side, concomitantly with compensation for locomotor defects. Interestingly, animals lesioned after metamorphosis neither compensated nor expressed this developmental spinal plasticity. Altogether, these results suggest that descending sensory inputs are crucial cues for the development of the spinal locomotor network. Finally, we studied the metamorphic development of the supra-spinal network, focusing our attention on the locomotor triggering and control properties of the mesencephalic locomotor region (MLR). We showed that both subparts of this structure, the laterodorsal tegmentum (LDT) and the pedunculopontine (PPN) nuclei, are present and functional during the entire period of metamorphosis and that the PPN has an optimal activation frequency of 10-20 Hz
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Thibaudier, Yann. "Coordination antéropostérieure pendant la locomotion chez le chat adulte intact et suite à une lésion partielle de la moelle épinière". Thèse, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/8170.

Texto completo
Resumen
Résumé : Une coordination appropriée entre les pattes antérieures et postérieures chez les mammifères terrestres est essentielle pour maintenir une stabilité pendant la locomotion quadrupède. Il a été fortement suggéré que les voies propriospinales et le retour sensoriel pourraient jouer un rôle important dans la coordination antéropostérieure. Cependant, les mécanismes neurophysiologiques impliqués dans la coordination entre les membres antérieurs et les membres postérieurs pendant la marche demeurent méconnus. Suite à une lésion partielle de la moelle épinière, plusieurs déficits de la coordination antéropostérieure ont pu être dénotés chez l’animal non-humain et chez l’humain. Malgré tout, les effets d’une lésion partielle sur la coordination antéropostérieure n’ont pas encore été clairement caractérisés. Au regard du nombre considérable de blessés médullaires présentant des troubles de l’équilibre et de la coordination entre les bras et les jambes après avoir récupéré la marche, il semble essentiel de mieux comprendre ces mécanismes. L’objectif du projet était d’offrir une meilleure caractérisation de la coordination antéropostérieure chez le chat intact et suite à une hémisection latérale de la moelle épinière. Pour ce faire, un tapis roulant partitionné transverse permettant de dissocier les vitesses de locomotion entre les pattes antérieures et postérieures a été utilisé. Huit chats implantés chroniquement pour réaliser des enregistrements électromyographiques ont été entrainés dans diverses conditions de locomotion partitionnée et non-partitionnée. Parmi ces 8 chats, 6 ont subi une hémisection latérale du côté droit de la moelle épinière entre la 5ème et la 6ème vertèbre thoracique (T6). Des analyses cinématiques et électromyographiques ont été réalisées chez les chats intacts et 8 semaines après la lésion partielle de la moelle épinière. Les résultats obtenus démontrent que la coordination antéropostérieure est contrôlée par des influences bidirectionnelles et asymétriques entre les pattes antérieures et postérieures. De plus, lorsque la vitesse de locomotion des pattes antérieures était plus élevée que celle des pattes postérieures, une dissociation du rythme était observée avec les pattes antérieures réalisant davantage de pas chez le chat intact. Suite à la lésion, cette dissociation était également observée lors de la locomotion non-partitionnée. Cependant, que ce soit avant ou après la lésion, quand une telle dissociation apparaissait, une nouvelle forme stable de coordination antéropostérieure apparaissait consistant à réaliser deux pas des pattes antérieures pendant un pas des pattes postérieures (coordination 2-1). Finalement, la coordination antéropostérieure pouvait être modulée par l’utilisation du tapis roulant partitionné et une coordination 1-1 pouvait être restaurée suite à la lésion en faisant marcher les pattes postérieures à une vitesse plus élevée. À partir de ces résultats, nous avons proposé un nouveau modèle théorique du contrôle neurophysiologique de la coordination antéropostérieure. Qui plus est, un raffinement des échelles d’évaluation de la récupération locomotrice suite à des lésions de la moelle épinière s’avère indispensable afin d’inclure une caractérisation détaillée de la coordination antéropostérieure. Finalement, d’un point de vue clinique, ces résultats suggèrent que de nouvelles stratégies thérapeutiques basées sur la coordination antéropostérieure pourraient être envisagées afin de renforcer la récupération locomotrice suite à des lésions de la moelle épinière.
Abstract : An appropriate coordination between the forelimbs and the hindlimbs in terrestrial mammals is essential to maintain stability during quadrupedal locomotion. It is thought that propriospinal pathways and sensory feedback contribute to the control of forelimbhindlimb coordination. However, the neurophysiological mechanisms involved in this coordination during locomotion remain poorly defined. After a partial spinal cord injury, several impairments of interlimb coordination have been observed in non-human animal models and human patients. Despite this, the effects of a partial lesion on forelimb-hindlimb coordination have not been clearly characterised. Patients with spinal cord injury have pronounced deficits with their equilibrium and a deficient control of interlimb coordination could be a main contributor. The purpose of these studies was to better characterize forelimb-hindlimb coordination in intact cats and following a lateral hemisection of the spinal cord. A transverse split-belt treadmill was used to independently control the speed of the forelimbs and of the hindlimbs. Eight cats were chronically implanted for e;ectromyography and trained to perform various tied-belt and transverse split-belt locomotor conditions. Among these 8 cats, 6 were hemisected at the 6th thoracic segment of the spinal cord on the right side. Electromyographic and kinematic analyses were performed in the intact state and 8 weeks post-hemisection. The results demonstrate that interlimb coordination is controlled by bidirectional and asymmetrical influences between the forelimbs and the hindlimbs. Moreover, when the forelimbs stepped faster than the hindlimbs, dissociation of the forelimb and hindlimb rhythms occurred, with the forelimbs taking more steps. After the lesion, this dissociation was observed, even during tied-belt locomotion. However, in both intact and injured cats, when such dissociation occurred, a new stable form of forelimb-hindlimb coordination appeared, consisting of two forelimb steps for one hindlimb step (2-1 forelimb-hindlimb coordination). Finally, the transverse split-belt treadmill could modulate forelimb-hindlimb coordination and 1-1 coordination could be restored after the lesion during transverse split-belt locomotion with a faster hindlimb speed. From these results, we propose a theoretical model of the neurophysiological control of interlimb coordination. Moreover, a refinement of performance scales evaluating the locomotor recovery after spinal cord injury is necessary to include a detailed characterisation of interlimb coordination. Finally, from a clinical perspective, these results suggest that new therapeutic strategies based on interlimb coordination could be used to strengthen locomotor recovery after spinal cord injuries.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Iwagaki, Noboru. "Modulation of mammalian spinal motor networks by group I metabotropic glutamate receptors : implications for locomotor control and the motor neuron disease amyotrophic lateral sclerosis". Thesis, University of St Andrews, 2012. http://hdl.handle.net/10023/3023.

Texto completo
Resumen
The present study examined the role of group I metabotropic glutamate receptors (mGluRs) in mammalian spinal motor networks and investigated the potential role of mGluRs in the fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS). Group I mGluR activation was found to modulate locomotor-related activity recorded from ventral roots of in vitro mouse spinal cord preparations. Activation of group I mGluRs led to an increase in the frequency of locomotor-related bursts and a decrease in their amplitude. The cellular mechanisms underlying group I mGluR-mediated modulation were investigated using whole-cell patch-clamp recordings from spinal neurons. Recordings from motoneurons revealed a wide range of effects, some of which were expected to increase motoneuron excitability, such as membrane depolarisation and hyperpolarisation of action potential thresholds. However, the net modulatory effect of group I mGluR activation was a reduction in motoneuron excitability, likely reflecting a reduction in the density of fast inactivating Na+ currents. The activation of group I mGluRs also reduced excitatory synaptic input to motoneurons, suggesting that modulation of motoneuron properties and synaptic transmission both contribute to group I mGluR-mediated reductions in locomotor motoneuron output. Recordings from spinal interneurons revealed a smaller range of modulatory effects for group I mGluRs. The clearest effect on interneurons, membrane depolarisation, may underlie group I mGluR-mediated increases in the frequency of locomotor activity. Finally, the potential role of group I mGluRs in the pathogenesis of ALS was investigated using a mouse model of the disease. Although no major perturbations in group I mGluR-mediated modulation were demonstrated in ALS affected spinal cords, there appeared to be a difference in the intrinsic excitability of spinal interneurons between wild type and ALS affected animals. Together these data highlight group I mGluRs as important sources of neuromodulation within the spinal cord and potential targets for the treatment of ALS.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Hurteau, Marie-France. "Effet d’une stimulation cutanée tonique de la région lombaire sur l’activité locomotrice du chat adulte ayant une lésion complète de la moelle épinière". Mémoire, Université de Sherbrooke, 2015. http://hdl.handle.net/11143/6749.

Texto completo
Resumen
Résumé : Suite à une lésion de la moelle épinière, divers comportements moteurs invalidants, tels des spasmes peuvent apparaître. Les traitements actuels pour la spasticité causent divers effets secondaires, dont une réduction de la capacité locomotrice des patients. La recherche de traitements non invasifs et non pharmacologiques permettant de réduire la spasticité sans affecter la récupération fonctionnelle du patient s’avère donc un enjeu prioritaire. Par ailleurs, une réduction des spasmes rythmiques peut être observée lorsque la peau lombosacrée est pincée. Ce potentiel inhibiteur d’une stimulation cutanée tonique est également perçu chez l’animal comme le lapin et le chat suite à une perte des voies supraspinales. Par contre, bien que ce type de stimulation semble efficace pour réduire la spasticité, son effet sur la capacité locomotrice n’a toujours pas été évalué. L’objectif du projet était de déterminer l’effet d’un pincement de la peau à divers niveaux lombaires sur la locomotion du chat ayant une lésion de la moelle épinière. Six chats implantés chroniquement pour l’électromyographie (EMG) ont subi une lésion complète de la moelle épinière au niveau thoracique et ont été entraînés sur tapis roulant pour récupérer une fonction locomotrice des pattes postérieures. L’effet d’une stimulation de 6 sites cutanés sur la ligne médiane au niveau des vertèbres lombaires L2 à L7 a été évalué lors de marche à 0.4 m/s via des analyses cinématiques et EMG. Les résultats obtenus démontrent que la zone cutanée perturbant le plus l’activité locomotrice se trouve sur la ligne médiane au niveau lombaire L4. À ce niveau, une diminution de l’activité des extenseurs et des fléchisseurs est perçue au niveau de l’EMG. De plus, des modifications du patron locomoteur comme un positionnement plus caudal de la patte lors de son contact et de son décollage sont également visibles, tout comme une perte du support de poids (force de réaction au sol). La coordination spatiale entre les pattes postérieures est également perturbée. Ces résultats suggèrent que bien que la stimulation cutanée puisse être une alternative intéressante pour le traitement non pharmacologique de la spasticité, celle-ci altère la capacité locomotrice. || Abstract : After a spinal cord injury, multiple abnormal motor activities can occur, such as rhythmic spasms. These activities can be invalidating and are treated with different drugs that cause various side effects, including a reduction of locomotor ability in patients. Therefore, there is a need for novel non-invasive and non-pharmacological treatments for spasticity that will not affect the functional recovery of patients. A reduction of rhythmic spasms can be observed when the lumbosacral skin is pinched in a spinal cord-injured patient. This inhibition of rhythmic activity by a tonic cutaneous stimulation is also present in cats and rabbits after the loss of supraspinal input. Although this stimulation seems effective to reduce spasticity, its effects on real locomotion have not been evaluated. The goal of this project was to determine the effect of stimulating the skin at different lumbar levels on hindlimb locomotion of the spinal cord-transected (spinalized) cat. Six cats chronically implanted for electromyography (EMG) recording were spinalized at low thoracic levels and trained to recover hindlimb locomotion on a treadmill. The effect of stimulating the skin over the midline of lumbar vertebrae was evaluated during locomotion at 0.4 m/s and compared to control trials (without stimulation) with kinematic, kinetic and EMG analyses. Stimulating the lumbar skin disrupted hindlimb locomotion, with the largest effects observed at mid-lumbar levels. Cutaneous stimulation reduced extensor and flexor EMG activity. Moreover, position of the paw at contact and lift-off was more caudal and there was a loss of body weight support with cutaneous stimulation. Spatial coordination between the hindlimb was also perturbed by the cutaneous stimulation. Thus, results suggest that despite the fact that cutaneous stimulation appears to be an interesting approach to diminish rhythmic spasms in spinal cord-injured patients, it disrupts spinal-mediated locomotor capacity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Yildiz, Ozge. "Understanding the Role of Prdm12b in Zebrafish Development". eScholarship@UMMS, 2019. https://escholarship.umassmed.edu/gsbs_diss/1013.

Texto completo
Resumen
Function of the adult nervous system relies on the appropriate establishment of neural circuits during embryogenesis. In vertebrates, the neurons that make up motor circuits form in distinct domains along the dorsoventral (DV) axis of the neural tube. Each domain is characterized by a unique combination of transcription factors (TFs) that promote a specific fate, while repressing the fates of adjacent domains. The prdm12 TF is required for the expression of eng1b and the generation of V1 interneurons in the p1 domain, but the details of its function remain unclear. We used CRISPR/Cas9 genome editing technology to generate the first germline mutants for the prdm12 gene and used this resource, together with classical luciferase reporter assays and co-immunoprecipitation experiments, to study prdm12b function in zebrafish. We also generated germline mutants for bhlhe22 and nkx6.1 to examine how these TFs act with prdm12b to control p1 formation. We find that prdm12b mutants lack eng1b expression in the p1 domain and also possess an abnormal Mauthner cell-dependent escape response. Using cell culture-based luciferase reporter assays, we demonstrate that Prdm12b acts as transcriptional repressor, most likely by recruiting EHMT2/G9a. We also show that the Bhlhe22 TF binds to the Prdm12b zinc finger domain to form a Bhlhe22:Prdm12b complex. However, bhlhe22 mutants display normal eng1b expression in the p1 domain. While prdm12 has been proposed to promote p1 fates by repressing expression of the nkx6.1 TF, we do not observe an expansion of the nkx6.1 domain upon loss of prdm12b function, nor is eng1b expression restored upon simultaneous loss of prdm12b and nkx6.1. We conclude that prdm12b germline mutations produce a phenotype that is indistinguishable from that of morpholino-mediated loss of prdm12 function. In terms of prdm12b function, our results indicate that Prdm12b acts as transcriptional repressor and interacts with both EHMT2/G9a and Bhlhe22. However, bhlhe22 function is not required for eng1b expression in vivo, perhaps indicating that other bhlh genes can compensate for its loss during embryogenesis. Lastly, we do not find evidence for nkx6.1 and prdm12b acting as a repressive pair in the formation of the p1 domain – suggesting that prdm12b is not solely required to repress non-p1 fates, but is also needed to promote p1 fates.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Gaspar, Roberta Caveiro. "Respostas motoras durante a marcha com suspensão parcial de peso na esteira em indivíduos com lesão medular completa e incompleta". Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/39/39136/tde-18062018-151435/.

Texto completo
Resumen
Introdução: A Locomoção tem como uma das características básicas a ritmicidade. Entre os mecanismos que envolvem seu controle destaca-se o conceito de um gerador de padrão central (GPC) capaz de gerar atividades neurais e musculares rítmicas. A técnica de treino locomotor com suspensão de peso na esteira (TLSP) utiliza esse conceito e emerge como uma estratégia terapêutica efetiva após a lesão medular (LM) em humanos em função do alto nível de automatismo do sistema nervoso, podendo ser esperadas diferentes respostas em lesões completas e incompletas. Portanto, uma análise detalhada das respostas biomecânicas obtidas durante o TLSP pode servir como base para compreensão do controle neural da locomoção humana. Objetivos: Caracterizar, a partir de parâmetros biomecânicos, a marcha com suspensão parcial de peso e assistência manual em indivíduos com lesões medulares completas e incompletas. Método: 40 indivíduos (20 com LM e 20 sem lesão) foram divididos em quatro grupos: Lesão Medular ASIA A (GLA), Lesão Medular ASIA B (GLB), Lesão Medular ASIA C e D (GLC) e Grupo Controle (GC) composto por sujeitos sem lesão. Durante o TLSP, ambos os grupos foram submetidos ao mesmo protocolo, com suspensão do peso corporal, duração total do treino e velocidades pré-definidas. Foram coletados dados de eletromiografia de superfície e a análise cinemática foi realizada por meio de 7 centrais inerciais. As análises foram realizadas por meio de análise de variância múltipla (MANOVA) Resultados: Em relação às variáveis cinemáticas o GC apresentou menor tempo de apoio em relação ao GLA não havendo diferenças entre os outros grupos com lesão medular. Quanto à ativação muscular o GLA e GLB apresentaram maior atividade de músculos proximais com co-contrações, GLC atividade proximal similar à GLA, GLB e distal similar ao GC que apresentou níveis mais baixos de atividade muscular com maior atividade distal em relação a proximal. Para o momento do pico de atividade, o GC apresentou momento antecipado para músculos proximais, atrasado para músculos distais em relação aos grupos com LM. Conclusão: Quando comparados ao GC, os grupos com LM apresentaram maiores amplitudes de sinal eletromiográfico, provavelmente pelo fato de o GC realizar a tarefa de forma mais eficiente com menor demanda de ativação muscular. Não foi possível reconhecer padrões rítmicos de ativação nos grupos com LM
Introduction: The locomotion has a characteristic the rhythmicity. Concerning the understanding of the mechanisms involving its control, the concept of a central pattern generator (GPC) capable of generating neural and muscular rhythmic activities stands out. The body weight support treadmill training (BWSTT) technique uses this concept and emerges as an effective therapeutic strategy after spinal cord injury (LM) in humans due to the high level of automatism of the nervous system, and different responses can be expected in complete and incomplete injuries. Therefore, a detailed analysis of the biomechanical responses obtained during BWSTT may serve as a basis for understanding the neural control of human locomotion. Objectives: To characterize, from biomechanical parameters, treadmill gait with body weight support in individuals with complete and incomplete spinal cord injury. Method: 40 individuals (20 with LM and 20 without lesion) were divided into four groups: ASIA A (GLA), ASIA B (GLB), ASIA C and D (GLC) and Control Group (GC) composed of subjects without injury. During BWSTT, both groups were submitted to the same protocol, with pre-defined body weight suspension, total training duration and speeds. Surface electromyography data were collected and kinematic analysis was performed by means of 7 inertial power plants. The analyzes were performed through multiple variance analysis (MANOVA). Results: In the kinematic variables, the CG presented less support time in relation to the GLA and there were no differences between the other groups with spinal cord injury. As for muscle activation, GLA and GLB presented higher activity of proximal muscles with co-contractions, GLC presented similar proximal activity similar to GLA, GLB and distal similar to GC, which presented lower levels of muscular activity with greater distal activity in relation to proximal muscles. For the moment of peak activity, the GC presented early moment for proximal muscles, delayed to distal muscles in relation to the groups with LM. Conclusion: When compared to CG, the groups with LM presented higher amplitudes of electromyographic signal, probably because the CG performed the task more efficiently with less demand for muscle activation. It was not possible to recognize rhythmic patterns of activation in the LM groups
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Costa, Viviane de Souza Pinho. "Representações sociais da cadeira de rodas na lesão da medula espinhal: de equipamento indispensável à expressão de autonomia". Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/22/22132/tde-14092009-163227/.

Texto completo
Resumen
A lesão da medula espinhal (LME) é uma das principais causas de modificações na integridade física, psíquica e social, decorrentes das perdas funcionais que afetam a capacidade de andar das pessoas acometidas. A cadeira de rodas é um recurso utilizado para suprir a dificuldade de locomoção das pessoas com deficiência física, que contribui como um instrumento para a promoção de independência funcional, permitindo a continuidade das atividades cotidianas da vida. Sob esta ótica, buscouse compreender a representação social do uso da cadeira de rodas atribuído pelas pessoas com lesão da medula espinhal. Para analisar estas informações optou-se pela pesquisa qualitativa, sob a fundamentação da Teoria das Representações Sociais, desenvolvida com dez pessoas acometidas por LME, atendidas por dois serviços distintos de fisioterapia da cidade de Londrina / PR. A coleta de dados ocorreu através de entrevistas semi-estruturadas, gravadas e transcritas na íntegra. Todas as pessoas aceitaram participar voluntariamente da pesquisa e assinaram o termo de consentimento livre e esclarecido. A Análise de Conteúdo, na modalidade temática, foi a técnica eleita para interpretar as informações coletadas, que permitiram, sob o enfoque das representações sociais, a construção de cinco categorias temáticas: 1) Equipamento indispensável; 2) Símbolo de deficiência; 3) Meio de locomoção e transporte; 4) Extensão dos membros inferiores e do corpo e 5) Expressão de autonomia. O fenômeno vivenciado sobre a utilização da cadeira de rodas possibilitou compreender as suas representações sociais numa trajetória ascendente de significados e simbologias, repassados a este equipamento como indispensável, após as perdas motoras e sensoriais sofridas pela LME. É vista como símbolo de deficiência, quando a pessoa percebe as modificações em sua integridade física e a situação de dependência funcional. Representada como meio de locomoção, transporte e resgate dos valores de seus potenciais funcionais, para a capacidade de locomoção. A cadeira de rodas passa a integralizar, sem distinção, parte ou todo o seu corpo, e, por fim, emerge como expressão de autonomia, atingindo a representação social com a caracterização máxima de seu papel, no desenvolvimento funcional para uma pessoa que teve sua capacidade de andar interrompida subitamente pela incidência da LME. Neste aspecto a cadeira de rodas, como extensão do corpo modificado pela lesão da medula espinhal, ao devolver-lhe o direito de locomoção, presenteia-o não só com a autonomia para vários atos da vida, como também lhe devolve a dignidade, tão essencial à vida humana.
Spinal injury (SI) is one of the major causes of physical integrity, psychological and social changes due to functional losses that affect the ability to walk. The wheelchair is a resource used to manage the locomotion difficulty of people with physical handicaps providing functional independence and allowing them to continue with their daily activities. Under this optic we tried to understand the social representation of the use of the wheelchair for people with spinal injuries. To analyze these data we decided to use the qualitative research, applying the Social Representation Theory approach to ten people with SI that underwent physical therapy care in two different clinics in Londrina-PR. Data was collected by semi-structured interviews that were recorded and fully transcripted. All individuals voluntarily accepted to take part in this study and signed the Informed Consent Form. The Content Analysis was the technique chosen to interpret the data collected, using the thematic approach and under the view of the social representations spawning five thematic categories: 1) Indispensable equipment; 2) Symbol of handicap; 3) Mean of locomotion and transport; 4) Extension of the body and lower limbs and 5) Autonomy expression. The experienced phenomena of using a wheelchair allowed to comprehend its social representations in an ascending trajectory of meanings and symbologies that were attributed to this equipment as indispensable after motor and sensorial losses due to the SI. It is seen as a symbol of handicap when the person realizes the changes in their physical integrity and the situation of functional dependence. It is represented as a mean of locomotion and transport and the regaining of the praise for their functional potentialities for locomotion ability. The wheelchair becomes part of their body without distinction of parts or whole, and, eventually, there is the idea of the wheelchair as autonomy expression reaching the social representation as the highest characterization of its role in functional development to a person that had their walking ability taken suddenly from them due to SI. Considering this aspect, the wheelchair is a extension of their bodies that were modified by the SI, giving back to them their locomotion and right, gifting them not only with the autonomy for many aspects of daily life, but also reassuring their dignity which is so essential to human life.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Sourioux, Mélissa. "Étude des mécanismes de coordination des activités rythmiques locomotrices et sympathiques au sein d’un réseau spinal activé par l’acétylcholine chez le rat nouveau-né". Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0895/document.

Texto completo
Resumen
La locomotion, comme toute autre forme d'activité physique, mobilise le système nerveux autonome pour faire face à la demande physiologique croissante. Ces réponses autonomes impliquent un couplage entre les activités motrices sympathiques et somatiques. De manière intéressante, à la fois les réseaux locomoteurs spinaux, ainsi que les neurones préganglionnaires sympathiques intermédiolatéraux (IMLs) sont les cibles d’une modulation par le système cholinergique propriospinal. Dans ce contexte, le but de mon travail doctoral a été d'étudier le rôle du système cholinergique propriospinal dans la coordination entre ces deux systèmes. En utilisant une préparation de moelle épinière de rat nouveau-né isolée in vitro, nous avons montré que l’acétylcholine pourrait permettre un couplage entre les réseaux locomoteurs et sympathiques via l’activation de récepteurs muscariniques. En effet, l'oxotrémorine, un agoniste non-sélectif de ces récepteurs, induit une activité rythmique lente bloquée par des antagonistes des récepteurs muscariniques M1, M2, M3 et M4. De plus, l’oxotrémorine permet de révéler des capacités rythmogènes endogènes de la moelle épinière thoracique. Nous avons observé que les motoneurones thoraciques étaient rythmiquement actifs à la fois durant des épisodes de locomotion fictive et lors de l’application d'oxotrémorine. A l’inverse, les IMLs présentaient une activité rythmique uniquement en présence d'oxotrémorine. Cette étude fournit ainsi de nouveaux éléments concernant les processus neuronaux à l'origine du couplage entre les systèmes somatiques et sympathiques. Nous proposons ici que ces mécanismes de synchronisation sont réalisés en partie via un réseau intraspinal pouvant être activé conditionnellement par le système cholinergique propriospinal
Locomotion, as any other forms of physical activity, mobilizes the autonomic nervous system to match the increasing physiological demand. These autonomic responses mostly rely on the coupling between sympathetic and somatic motor activities. The propriospinal cholinergic system plays an important role in the control of locomotor networks, and several lines of evidences suggest that it may also activate sympathetic preganglionic neurons from the intermediolateral nucleus (IMLs). The aim of my doctoral thesis was to investigate the role of the cholinergic propriospinal system in the coordination between these two systems. Using the in vitro isolated spinal cord from new born rat, we showed that application of acetylcholine synchronized the locomotor and sympathetic networks, via the activation of muscarinic receptors. Indeed, the non-selective agonist oxotremorine induced slow rhythmic activity blocked by M1, M2, M3 and M4 muscarinic receptor antagonists. In addition, oxotremorine revealed endogenous rhythmogenic capabilities of the thoracic segments. This slow oscillatory activity propagated from thoracic ventral roots to lumbar ones, but not the reverse. We observed that thoracic MNs were rhythmically activated during both locomotorlike activity and oxotremorine-induced rhythm. In contrast, IMLs were rhythmically activated solely in the presence of oxotremorine. This study provides new light on the origin of the coupling between the somatic and the sympathetic systems. We propose that synchronizing mechanisms are achieved in part by an intraspinal network which may be activated under the control of the cholinergic propriospinal system
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Sadlaoud, Ilhem Karina. "Plasticité post-traumatique des systèmes inhibiteurs spinaux chez le rat adulte et au cours du développement". Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM5039.

Texto completo
Resumen
La locomotion implique l'activité coordonnée de réseaux d'interneurones spinaux inhibiteurs et excitateurs qui génèrent le rythme et le pattern de la décharge des motoneurones et de la contraction musculaire. La maturation de la transmission inhibitrice au niveau des motoneurones chez le rat se produit durant la période périnatale. Dans cette fenêtre temporelle, les projections provenant du tronc cérébral commencent à envahir l'élargissement lombaire de la moelle épinière. Nous avons étudié les effets du blocage de la mise en place des afférences supraspinales dans la moelle lombaire par transection complète de la moelle épinière (SCT) à la naissance (P0), sur l'expression des sous-unités des récepteurs GABAA et glycine (RcGABAA et RcGly) au niveau des motoneurones lombaires. Nous concluons en une plasticité différentielle des récepteurs de l'inhibition en réponse à une section spinale néonatale. La première étape de notre seconde étude était d'évaluer les modifications de la transmission synaptique inhibitrice sur des motoneurones lombaires innervant des muscles fléchisseurs et extenseurs après SCT complète chez des rats adultes. Une étude longitudinale a montré une évolution différentielle de l'expression des RcGly et des RcGABAA au cours des mois qui suivent la lésion mais qui est a peu près identique sur les Mns fléchisseurs et extenseurs. Nos résultats montrent que chez les rats avec SCT, l'entrainement permet d'acquérir une « locomotion spinale » qui résulte d'interactions dynamiques entre un programme moteur dans la moelle sous lésionnelle, et des feedback proprioceptifs
Maturation of inhibitory postsynaptic transmission onto motoneurons in the rat occurs during the perinatal period, a time window during which pathways arising from the brainstem reach the lumbar enlargement of the spinal cord. There is a developmental switch in miniature IPSCs (mIPSCs) from predominantly long-duration GABAergic to short-duration glycinergic events. We investigated the effects of a complete neonatal [postnatal day 0 (P0)] spinal cord transection (SCT) on the expression of Glycine and GABAA receptor subunits (GlyR and GABAAR subunits) in lumbar motoneurons. In P7 animals with neonatal SCT (SCT-P7), the GlyR densities were unchanged compared with controls of the same age, while the developmental down regulation of GABAAR was prevented. After spinal cord injury, the disruption of flexion/extension and left-right alternations is largely attributed to a deterioration of the inhibitory circuitry below the lesion, but most of the cellular mechanisms are still unknown. Our aim of this was to measure the alteration of the GABA and glycinergic synaptic transmission on lumbar motoneurons (Mns) after spinal cord transection (SCT) in the adult rat, and evaluate the benefit of manual training and stepping recovery on the inhibitory networks. All in all our results show that, the presynaptic and postsynaptic components of the glycinergic synapses are relatively preserved on lumbar Mns. We developed a manual training procedure, based on daily alternate phases of imposed stepping and free walking in enriched environment. Pharmacological treatment with 5-HT2 receptor agonists allowed a standing recovery and alternate stepping
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Chedly, Jamila. "Biomatériau à base de chitosane pour la restauration de la moelle épinière traumatique de rat : analyses anatomiques et fonctionnelles". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066338.

Texto completo
Resumen
La régénération après une lésion de la moelle épinière (ME) est abortive. Elle est du à une cascade d'événements cellulaires et moléculaires, dont la rupture de la barrière hémato-encéphalique, une inflammation persistante, une cicatrice gliale et la formation d'une cavité, combinée à la présence de molécules inhibitrices pour la repousse. Actuellement, aucune thérapie n'est efficace, mais le design de biomatériaux implantables pourrait permettre leur développement. L'hydrogel de chitosane (hCh) apparait prometteur, notamment grâce à la modulation de ses propriétés biologiques, notamment en modifiant son degré de déacétylation (DA). J'ai donc testé, dans une hémisection dorsale de la ME de rat, différentes formulations d'hCh fragmenté et examiné leur capacité à s'intégrer dans le tissu hôte lésé, sans produire une inflammation ou une réaction astrocytaire excessive. Mon travail montre que l'implantation de fragments d'hCh avec un DA de 4% est favorable à la reconstruction du tissu, en attirant différents types cellulaires et en recréant une vascularisation fonctionnelle. Il permet aussi de moduler la réponse inflammatoire, en favorisant une polarisation des macrophages en un phénotype M2. La cicatrice gliale est aussi réduite et les processus astroytaires s'orientent vers l'implant, en s'associant aux axones qui régénèrent et caractérisés par traçage axonale et immunohistochimie. Plusieurs sont myélinisés ou entourés par des cellules de Schwann, au moins jusqu'à 10 semaines après la lésion. Enfin, le remodelage structural est associé à une récupération locomotrice significative
Regeneration after traumatic spinal cord injury generally fails due to a cascade of cellular and molecular events, including blood-spinal cord barrier breakdown,persistent and uncontrolled inflammation, and glial scarring and cavity formation combined with the presence of axon growth-inhibitory molecules. While efficient therapies are still lacking, recent progress in the design of implantable biomaterials may well open up new possibilites for their development. Chitosan hydrogels (hCh) seem particularly promising as their biological properties can be fine-tuned, notably by their degree of acetylation (DA). In the context of a rat dorsal spinal cord hemisection, I have tested different formulations of fragmented hCh for their ability to integrate into lesioned host tissue without creating additional inflammation, or excessive astrocytic reaction. Thus, I found that implantation of hCh particles of 4% DA allows for tissue reconstruction by attracting different cell types and recreating a functional vasculature. Importantly, it modulates the inflammatory response, favoring polarization of invading macrophages towards the M2 phenotype. In lesioned-implanted animals, the glial scar is less fibrous, astrocyte processes are mainly oriented towards the lesion and accompany a robust regrowth of fibers, whose origin was identified by axon tracing and immunohistochemistry. Many of these fibers are myelinated or ensheathed by Schwann cells, maintained at long term in the implant. Finally, this structural remodeling is associated with significant, long-lasting recovery of locomotor function, as I have shown by open-field and gait analysis
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Oliveira, Inês Tavares Lacerda Figueiredo. "Efeito da neuroreabilitação funcional na obtenção de locomoção fictícia em cães". Master's thesis, Universidade de Lisboa, Faculdade de Medicina Veterinária, 2019. http://hdl.handle.net/10400.5/17757.

Texto completo
Resumen
Dissertação de Mestrado Integrado em Medicina Veterinária
A doença degenerativa do disco intervertebral (DDIV) é uma das causas mais comuns de disfunção neurológica em cães, podendo resultar em quadros clínicos de doentes em grau 0 segundo a Escala de Frankel modificada (EFM). A perda da sensibilidade à dor profunda (SDP) é um factor de prognóstico bastante desfavorável, traduzindo-se em incapacidade sensorial e motora e perda da qualidade de vida. A neuroreabilitação funcional (NRF) é uma área da medicina veterinária que pretende restabelecer a funcionalidade e independência do doente, através da reorganização neural por neuroplasticidade, neuromodulação e memorização. Nos doentes de grau 0, o objectivo da NRF é estimular a recuperação da SDP ou o desenvolvimento de locomoção fictícia funcional (LFF). O presente estudo tem como objectivos aferir o papel do treino de NRF intensivo (TNRFI) na recuperação da funcionalidade por locomoção voluntária ou por LFF, determinando a percentagem de recuperação da SDP e o tempo necessário para atingir a funcionalidade motora. Incluiram-se 28 cães diagnosticados com lesão medular (T3-L3) por DDIV, de grau 0, que foram integrados num TNRFI, ao qual foi associado a administração farmacológica de 4-aminopiridina. Em doentes de grau 0, o estudo permitiu concluir que o TNRFI é uma indicação terapêutica, uma vez que o retorno à funcionalidade foi de 60,7%, tendo 28,6% dos doentes recuperado a SDP e destes 10,7% num período temporal de 2 meses. No período temporal de 2 a 3 meses, 17,9% recuperaram a SDP e 32,1% obtiveram funcionalidade por LFF. Neste estudo verificouse ainda que a recuperação da funcionalidade por LFF dependeu do peso (p=0,036) e houve tendência para depender da idade do doente (p=0,098), pois todos os animais com LFF tiveram peso inferior a 7 kg e idade inferior a 7 anos. Verificou-se ainda que no grupo com locomoção fictícia não funcional, a plasticidade neural conferiu automaticidade não funcional compatível com capacidade de obter qualidade de vida.
ABSTRACT - EFFECT OF FUNCTIONAL REHABILITATION ON THE OBTENTION OF FICTIVE LOCOMOTION IN DOGS - Intervertebral disc disease is one of the most common causes of neurological dysfunction in dogs and can lead to clinical conditions of patients in grade 0, according to the modified Frankel scale (MFS). The loss of deep pain perception (DPP) is considered a bad prognostic factor, resulting in sensory and motor incapacity and poor life quality. Functional neurorehabilitation (FNR) is a field of veterinary medicine that aims to restore the patient’s independency and functionality, through neural reorganization by neuroplasticity, neuromodelation and memorization. In grade 0 patients, the objective of FNR is to recover DPP or to obtain functional fictive locomotion. The present study aims at assessing the role of intensive FNR training (IFNRT) in the recovery of functionality by voluntary locomotion or functional fictive locomotion, to determine the recovery of DPP and the time required to achieve motor function. In the study, 28 dogs were diagnosed with spinal cord injury (T3-L3) due to IVDD, classified in grade 0 that were integrated into an IFNRT, which was associated with the administration of 4-aminopyridine. In grade 0 patients, the study concluded that IFNRT should be a therapeutic indication, since it stimulated the return to functionality in 60.7%, with 28.6% of the patients recovering DPP and among these 10.7% in 2 months. In the period of 2 to 3 months, 17.9% recovered DPP and 32.1% obtained functionality by fictive locomotion. In this study it was verified that recovery of functionality by fictive locomotion depended on the weight (p=0,036) and there was a tendency to depend on the age of the patient (p=0,098), since all the patients with fictive locomotion had weight inferior to 7 kg and age inferior to 7 years. It was also concluded that in the group that didn’t achieve functional fictive locomotion, the neural plasticity conferred non functional automaticity, compatible with capacity to obtain quality of life.
N/A
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Hillyer, Jessica Erin. "Enhancing Locomotor Recovery after Spinal Cord Injury". Kent State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=kent1216910376.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Plantier, Vanessa. "La spasticité après lésion de la moelle épinière : Identification des mécanismes moléculaires et ioniques sous-jacents". Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM5059.

Texto completo
Resumen
La spasticité est l’une des nombreuses complications motrices qui peuvent apparaître après une lésion de la moelle épinière. Elle est présente dans 75 % des patients médullo-lésés et se caractérise par une hypertonie musculaire en réponse à un réflexe d’étirement. Les traitements actuels, qui ciblent les symptômes et non les causes de la spasticité, sont peu efficaces. Bien que les mécanismes neurologiques qui sous-tendent la spasticité soient complexes et restent en grande partie méconnus, un certain consensus se dégage sur le fait qu’elle est associée à une hyperexcitabilité intrinsèque des motoneurones et à une levée de l’inhibition des réflexes spinaux. L’hyperexcitabilité motoneuronale se manifeste par une décharge soutenue de potentiels de plateau et résulte en partie d’une augmentation des courants entrants persistants sodiques (INaP). La désinhibition découle, en partie, d’une baisse de l’expression des cotransporteurs potassium-chlorure de type 2 (KCC2) à la membrane des motoneurones, modifiant ainsi le gradient électrochimique des ions Cl- et donnant un caractère excitateur aux deux principaux neurotransmetteurs inhibiteurs que sont le GABA et la glycine. Néanmoins, les mécanismes à l’origine des dérégulations du courant INaP et des co-transporteurs KCC2 ne sont toujours pas élucidés
Spasticity is commonly caused by several pathologies and specifically after a spinal cord injury (SCI). Spasticity is usually associated with hypertonia, clonus, muscle spasm and pain. The present thesis aims to identify the upstream mechanism in the pathophysiology of spasticity Calpain, a calcium-activated cysteine protease, has been shown to participate in the development of the inflammatory processes after SCI. Of special interest, some determinants governing the inactivation of sodium (Na+) channels are sensitive to proteases and their proteolytic cleavage prevents inactivation of Na+ channels. As a result, INaP is strongly increased. It is worth mentioning that the C-terminal domain of KCC2 is also sensitive to proteases which alter KCC2 ability to extrude Cl- ions. Among the different proteases, calpains are able to truncate both Na+ channels and KCC2 transporters. This led us to consider the exciting possibility that a proteolytic cleavage of both Na+ channels and KCC2 by calpains could compose an upstream inflammatory mechanism contributing to the development of spasticity after SCI. My thesis demonstrates that the cleavage of Na+ channels and KCC2 by calpain after SCI, is responsible for the upregulation of INaP and disinhibition of motoneurons, that both act synergistically to generate spasticity. Calpain inhibition by MDL28170 reduced the cleavage of both Na+channels and KCC2 associated with a respective downregulation of INaP, hyperpolarizing shift of the EIPSP, and an alleviation of spasticity. The thesis represents a significant breakthrough by opening novel perspectives to develop therapies
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Crowley, Kristine C. "Neurochemical substrates of locomotor and non-locomotor rhythms in rat spinal cord". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ31972.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Jia, Yan. "Computer simulation of the lamprey spinal cord locomotor system". Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610128.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Hannold, Elizabeth Marie. "Effects of locomotor training on the psychosocial adaptation of persons with incomplete spinal cord injury". [Gainesville, Fla.] : University of Florida, 2004. http://wwwlib.umi.com/cr/ufl/fullcit?p3136947.

Texto completo
Resumen
Thesis (Ph.D.)--University of Florida, 2004.
Typescript. Title from title page of source document. Document formatted into pages; contains 244 pages. Includes Vita. Includes bibliographical references.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Jackson, Adam Wesley. "Organization of brain and spinal cord locomotor networks in larval lamprey". Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4481.

Texto completo
Resumen
Thesis (Ph.D.)--University of Missouri-Columbia, 2006.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on April 27, 2009) Vita. Includes bibliographical references.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía