Literatura académica sobre el tema "Steplength selection"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Steplength selection".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Steplength selection"

1

Curtis, Frank, and Jorge Nocedal. "Steplength selection in interior-point methods for quadratic programming." Applied Mathematics Letters 20, no. 5 (2007): 516–23. http://dx.doi.org/10.1016/j.aml.2006.05.020.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

di Serafino, Daniela, Valeria Ruggiero, Gerardo Toraldo, and Luca Zanni. "On the steplength selection in gradient methods for unconstrained optimization." Applied Mathematics and Computation 318 (February 2018): 176–95. http://dx.doi.org/10.1016/j.amc.2017.07.037.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Crisci, Serena, Valeria Ruggiero, and Luca Zanni. "Steplength selection in gradient projection methods for box-constrained quadratic programs." Applied Mathematics and Computation 356 (September 2019): 312–27. http://dx.doi.org/10.1016/j.amc.2019.03.039.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Gunzburger, Max D., and Janet S. Peterson. "Predictor and steplength selection in continuation methods for the Navier-Stokes equations." Computers & Mathematics with Applications 22, no. 8 (1991): 73–81. http://dx.doi.org/10.1016/0898-1221(91)90015-v.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Porta, Federica, Marco Prato, and Luca Zanni. "A New Steplength Selection for Scaled Gradient Methods with Application to Image Deblurring." Journal of Scientific Computing 65, no. 3 (2015): 895–919. http://dx.doi.org/10.1007/s10915-015-9991-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Loris, I., M. Bertero, C. De Mol, R. Zanella та L. Zanni. "Accelerating gradient projection methods for ℓ1-constrained signal recovery by steplength selection rules". Applied and Computational Harmonic Analysis 27, № 2 (2009): 247–54. http://dx.doi.org/10.1016/j.acha.2009.02.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Franchini, Giorgia, Valeria Ruggiero, Federica Porta, and Luca Zanni. "Neural architecture search via standard machine learning methodologies." Mathematics in Engineering 5, no. 1 (2022): 1–21. http://dx.doi.org/10.3934/mine.2023012.

Texto completo
Resumen
<abstract><p>In the context of deep learning, the more expensive computational phase is the full training of the learning methodology. Indeed, its effectiveness depends on the choice of proper values for the so-called hyperparameters, namely the parameters that are not trained during the learning process, and such a selection typically requires an extensive numerical investigation with the execution of a significant number of experimental trials. The aim of the paper is to investigate how to choose the hyperparameters related to both the architecture of a Convolutional Neural Netwo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Franchini, Giorgia, Valeria Ruggiero, and Luca Zanni. "Ritz-like values in steplength selections for stochastic gradient methods." Soft Computing 24, no. 23 (2020): 17573–88. http://dx.doi.org/10.1007/s00500-020-05219-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Pellegrini, Riccardo, Andrea Serani, Giampaolo Liuzzi, Francesco Rinaldi, Stefano Lucidi, and Matteo Diez. "A Derivative-Free Line-Search Algorithm for Simulation-Driven Design Optimization Using Multi-Fidelity Computations." Mathematics 10, no. 3 (2022): 481. http://dx.doi.org/10.3390/math10030481.

Texto completo
Resumen
The paper presents a multi-fidelity extension of a local line-search-based derivative-free algorithm for nonsmooth constrained optimization (MF-CS-DFN). The method is intended for use in the simulation-driven design optimization (SDDO) context, where multi-fidelity computations are used to evaluate the objective function. The proposed algorithm starts using low-fidelity evaluations and automatically switches to higher-fidelity evaluations based on the line-search step length. The multi-fidelity algorithm is driven by a suitably defined threshold and initialization values for the step length, w
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Crisci, Serena, Federica Porta, Valeria Ruggiero, and Luca Zanni. "Hybrid limited memory gradient projection methods for box-constrained optimization problems." Computational Optimization and Applications, September 4, 2022. http://dx.doi.org/10.1007/s10589-022-00409-4.

Texto completo
Resumen
AbstractGradient projection methods represent effective tools for solving large-scale constrained optimization problems thanks to their simple implementation and low computational cost per iteration. Despite these good properties, a slow convergence rate can affect gradient projection schemes, especially when high accurate solutions are needed. A strategy to mitigate this drawback consists in properly selecting the values for the steplength along the negative gradient. In this paper, we consider the class of gradient projection methods with line search along the projected arc for box-constrain
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Steplength selection"

1

DE, ASMUNDIS ROBERTA. "New gradient methods: spectral properties and steplength selection." Doctoral thesis, 2014. http://hdl.handle.net/11573/918064.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Sgattoni, Cristina. "Solving systems of nonlinear equations via spectral residual methods." Doctoral thesis, 2021. http://hdl.handle.net/2158/1238325.

Texto completo
Resumen
This thesis addresses the numerical solution of systems of nonlinear equations via spectral residual methods. Spectral residual methods are iterative procedures, they use the residual vector as search direction and a spectral steplength, i.e., a steplength that is related to the spectrum of the average matrices associated to the Jacobian matrix of the system. Such procedures are widely studied and employed since they are derivative-free and low-cost per iteration. The first aim of the work is to analyze the properties of the spectral residual steplengths and study how they affect the perfo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Steplength selection"

1

Franchini, Giorgia, Valeria Ruggiero, and Luca Zanni. "On the Steplength Selection in Stochastic Gradient Methods." In Lecture Notes in Computer Science. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39081-5_17.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Franchini, Giorgia, Valeria Ruggiero, and Luca Zanni. "Steplength and Mini-batch Size Selection in Stochastic Gradient Methods." In Machine Learning, Optimization, and Data Science. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64580-9_22.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Franchini, Giorgia, Valeria Ruggiero, and Ilaria Trombini. "Thresholding Procedure via Barzilai-Borwein Rules for the Steplength Selection in Stochastic Gradient Methods." In Machine Learning, Optimization, and Data Science. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95470-3_21.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!