Libros sobre el tema "Supervised neural network"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 22 mejores mejores libros para su investigación sobre el tema "Supervised neural network".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore libros sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
J, Marks Robert, ed. Neural smithing: Supervised learning in feedforward artificial neural networks. Cambridge, Mass: The MIT Press, 1999.
Buscar texto completoSuresh, Sundaram, Narasimhan Sundararajan y Ramasamy Savitha. Supervised Learning with Complex-valued Neural Networks. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-29491-4.
Texto completoGraves, Alex. Supervised Sequence Labelling with Recurrent Neural Networks. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24797-2.
Texto completoGraves, Alex. Supervised Sequence Labelling with Recurrent Neural Networks. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Buscar texto completoSuresh, Sundaram. Supervised Learning with Complex-valued Neural Networks. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Buscar texto completoSurinder, Singh. Exploratory spatial data analysis using supervised neural networks. London: University of East London, 1994.
Buscar texto completoSFI/CNLS Workshop on Formal Approaches to Supervised Learning (1992 Santa Fe, N.M.). The mathematics of generalization: The proceedings of the SFI/CNLS Workshop on Formal Approaches to Supervised Learning. Editado por Wolpert David H. Reading, Mass: Addison-Wesley Pub. Co., 1995.
Buscar texto completoSupervised and unsupervised pattern recognition: Feature extraction and computational intelligence. Boca Raton, Fla: CRC Press, 2000.
Buscar texto completoLeung, Wing Kai. The specification, analysis and metrics of supervised feedforward artificial neural networks for applied science and engineering applications. Birmingham: University of Central England in Birmingham, 2002.
Buscar texto completoReed, Russell. Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks. A Bradford Book, 1999.
Buscar texto completoReed, Russell y Robert J. MarksII. Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks. MIT Press, 1999.
Buscar texto completoSundararajan, Narasimhan, Sundaram Suresh y Ramasamy Savitha. Supervised Learning with Complex-valued Neural Networks. Springer, 2012.
Buscar texto completoSupervised Sequence Labelling With Recurrent Neural Networks. Springer, 2012.
Buscar texto completoGraves, Alex. Supervised Sequence Labelling with Recurrent Neural Networks. Springer, 2012.
Buscar texto completoSupervised Sequence Labelling with Recurrent Neural Networks. Springer Berlin / Heidelberg, 2014.
Buscar texto completoSundararajan, Narasimhan, Sundaram Suresh y Ramasamy Savitha. Supervised Learning with Complex-valued Neural Networks. Springer, 2014.
Buscar texto completoLorentz, C. MACHINE LEARNING with NEURAL NETWORKS: SUPERVISED LEARNING. EXAMPLES with MATLAB. Independently Published, 2020.
Buscar texto completoBateman, Blaine, Benjamin Johnston, Ishita Mathur y Ashish Ranjan Jha. the Supervised Learning Workshop: A New, Interactive Approach to Understanding Supervised Learning Algorithms, 2nd Edition. Packt Publishing, Limited, 2020.
Buscar texto completoLorentz, C. SUPERVISED LEARNING TECHNIQUES. TIME SERIES FORECASTING. EXAMPLES with NEURAL NETWORKS and MATLAB. Independently Published, 2020.
Buscar texto completoMasters, Timothy. Deep Belief Nets in C++ and CUDA C: Volume 1: Restricted Boltzmann Machines and Supervised Feedforward Networks. Apress, 2018.
Buscar texto completoA Discriminative Approach to Bayesian Filtering with Applications to Human Neural Decoding. Providence, USA: Brown University, 2019.
Buscar texto completo