Literatura académica sobre el tema "Ternary Jordan algebra"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Ternary Jordan algebra".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Ternary Jordan algebra"
BREMNER, MURRAY R. y IRVIN R. HENTZEL. "IDENTITIES RELATING THE JORDAN PRODUCT AND THE ASSOCIATOR IN THE FREE NONASSOCIATIVE ALGEBRA". Journal of Algebra and Its Applications 05, n.º 01 (febrero de 2006): 77–88. http://dx.doi.org/10.1142/s0219498806001594.
Texto completoCASTRO, CARLOS. "ON OCTONIONIC GRAVITY, EXCEPTIONAL JORDAN STRINGS AND NONASSOCIATIVE TERNARY GAUGE FIELD THEORIES". International Journal of Geometric Methods in Modern Physics 09, n.º 03 (mayo de 2012): 1250021. http://dx.doi.org/10.1142/s0219887812500211.
Texto completoŠlapal, Josef. "Digital Jordan Curves and Surfaces with Respect to a Closure Operator". Fundamenta Informaticae 179, n.º 1 (9 de febrero de 2021): 59–74. http://dx.doi.org/10.3233/fi-2021-2013.
Texto completoZhuchok, A. V. "The least dimonoid congruences on relatively free trioids". Matematychni Studii 57, n.º 1 (31 de marzo de 2022): 23–31. http://dx.doi.org/10.30970/ms.57.1.23-31.
Texto completoStachó, Lászlo L. y Wend Werner. "On non-commutative Minkowski spheres". Analele Universitatii "Ovidius" Constanta - Seria Matematica 20, n.º 2 (1 de junio de 2012): 159–70. http://dx.doi.org/10.2478/v10309-012-0047-y.
Texto completoKeshavarz, Vahid y Sedigheh Jahedi. "Orthogonally C ∗ -Ternary Jordan Homomorphisms and Jordan Derivations: Solution and Stability". Journal of Mathematics 2022 (26 de diciembre de 2022): 1–7. http://dx.doi.org/10.1155/2022/3482254.
Texto completoGHARETAPEH, S. KABOLI, MADJID ESHAGHI GORDJI, M. B. GHAEMI y E. RASHIDI. "TERNARY JORDAN HOMOMORPHISMS IN C∗ -TERNARY ALGEBRAS". Journal of Nonlinear Sciences and Applications 04, n.º 01 (12 de febrero de 2011): 1–10. http://dx.doi.org/10.22436/jnsa.004.01.01.
Texto completoGORDJI, M. ESHAGHI, R. KHODABAKHSH y H. KHODAEI. "ON APPROXIMATE n-ARY DERIVATIONS". International Journal of Geometric Methods in Modern Physics 08, n.º 03 (mayo de 2011): 485–500. http://dx.doi.org/10.1142/s0219887811005245.
Texto completoSavadkouhi, M. Bavand, M. Eshaghi Gordji, J. M. Rassias y N. Ghobadipour. "Approximate ternary Jordan derivations on Banach ternary algebras". Journal of Mathematical Physics 50, n.º 4 (abril de 2009): 042303. http://dx.doi.org/10.1063/1.3093269.
Texto completoKaygorodov, Ivan, Alexander Pozhidaev y Paulo Saraiva. "On a ternary generalization of Jordan algebras". Linear and Multilinear Algebra 67, n.º 6 (5 de marzo de 2018): 1074–102. http://dx.doi.org/10.1080/03081087.2018.1443426.
Texto completoTesis sobre el tema "Ternary Jordan algebra"
Hajjaji, Atef. "Étude des opérateurs de Rota-Baxter relatifs sur les algèbres ternaires de type Lie et Jordan". Electronic Thesis or Diss., Mulhouse, 2024. http://www.theses.fr/2024MULH7172.
Texto completoThe goal of this thesis is to explore relative Rota-Baxter operators in the context of ternary algebras of both Lie and Jordan types. We mainly consider Lie triple systems, 3-Lie algebras and ternary Jordan algebras. The study covers their structure, cohomology, deformations, and their connection with the Yang-Baxter equations. The work is divided into three main parts. The first part aims first to introduce and study a graded Lie algebra whose Maurer-Cartan elements are Lie triple systems. It turns out to be the controlling algebra of Lie triple systems deformations and fits with the adjoint cohomology theory of Lie triple systems introduced by Yamaguti. In addition, we introduce the notion of relative Rota-Baxter operators on Lie triple systems and construct a Lie 3-algebra as a special case of L∞-algebras, where the Maurer-Cartan elements correspond to relative Rota-Baxter operators. In the second part, we introduce the concept of twisted relative Rota-Baxter operators on 3-Lie algebras and construct an L∞-algebra, where the Maurer-Cartan elements are twisted relative Rota-Baxter operators. This allows us to define the Chevalley-Eilenberg cohomology of a twisted relative Rota-Baxter operator. In the last part, we deal with a representation theory of ternary Jordan algebras. In particular, we introduce and discuss the concept of coherent ternary Jordan algebras. We then define relative Rota-Baxter operators for ternary Jordan algebras and discuss solutions ofthe ternary Jordan Yang-Baxter equation involving relative Rota-Baxter operators. Moreover, we investigate ternary pre-Jordan algebras as the underlying algebraic structure of relative Rota-Baxter operators
Capítulos de libros sobre el tema "Ternary Jordan algebra"
Gordji, Madjid Eshaghi, N. Ghobadipour, A. Ebadian, M. Bavand Savadkouhi y Choonkil Park. "Approximate Ternary Jordan Homomorphisms on Banach Ternary Algebras". En Springer Optimization and Its Applications, 305–15. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3498-6_17.
Texto completoGordji, Madjid Eshaghi y Vahid Keshavarz. "Hyperstability of Ternary Jordan Homomorphisms on Unital Ternary C*-Algebras". En Series on Computers and Operations Research, 307–30. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811261572_0011.
Texto completo